MATH 581 ASSIGNMENT 2

DUE FRIDAY FEBRUARY 3

- 1. Let $\Omega \subset \mathbb{R}^n$ be an open set, $K \subset \Omega$ compact, and \mathcal{U} an open cover of K. Show that there exists a $\mathcal{D}(\Omega)$ -partition of unity over K subordinate to \mathcal{U} , i.e., show that there exists a finite set $\{\chi_k\} \subset \mathcal{D}(\Omega)$ satisfying
 - i) Each $\chi_k(\Omega) \subset [0,1];$
 - *ii)* There is an open set $V \supset K$ such that $\sum_k \chi_k = 1$ on V;
 - *iii)* For every k, there is $U \in \mathcal{U}$ such that $\operatorname{supp} \chi_k \subset U$.
- 2. Let $\Omega \subset \mathbb{R}^n$ be an open set. Prove that
 - a) $\mathcal{D}(\Omega)$ is dense in $C^k(\Omega)$ for $0 \le k \le \infty$;
 - b) $\mathcal{D}(\Omega)$ is dense in $L^p(\Omega)$ for $1 \leq p < \infty$.
- 3. Let $\varphi \in \mathcal{D}(\mathbb{R}), \ \varphi \neq 0$, and $\varphi(0) = 0$. In each of the following cases, decide if $\varphi_j \to 0$ as $j \to \infty$ in $\mathcal{D}(\mathbb{R})$. Does it hold $\varphi_j \to 0$ pointwise or uniformly?

a)
$$\varphi_j(x) = j^{-1}\varphi(x-j);$$

b) $\varphi_i(x) = j^{-n}\varphi(jx)$, where n > 0 is an integer.

- 4. Show that a map $f: \mathcal{D}(\Omega) \to \mathcal{D}(\Omega')$ is continuous if and only if for every compact set $K \subset \Omega$ there exists a compact set $K' \subset \Omega'$ such that $f : \mathcal{D}(K) \to \mathcal{D}(K')$ is continuous. 5. Show that the following operations are continuous
 - a) $L: \mathcal{D}(\Omega) \to \mathcal{D}(\Omega)$ where L is a linear differential operator with smooth coefficients;
 - b) Pointwise multiplication $(u, v) \mapsto uv : \mathcal{D}(\Omega) \times \mathcal{D}(\Omega) \to \mathcal{D}(\Omega).$
- 6. Show that in each of the following cases, f defines a distribution on \mathbb{R}^2 , and find its order.
 - $\begin{array}{l} \mathrm{a)} \ f(\varphi) = \int_{\mathbb{R}^2} |x|^{-1} e^{|x|^2} \varphi(x) \mathrm{d}x; \\ \mathrm{b)} \ f(\varphi) = \int_{\mathbb{R}} \varphi(s,0) \mathrm{d}s; \end{array}$

 - c) $f(\varphi) = \int_0^1 \partial_1 \varphi(0, s) \mathrm{d}s.$
- 7. Compute the derivatives of the following functions in the sense of distributions.
 - a) The Heaviside step function $\theta(x)$ (1 if $x \ge 0$ and 0 otherwise);
 - b) The sign function sign x (0 if x = 0 and x/|x| otherwise);
 - c) The absolute value |x|;
 - d) $\log |x|$.

Date: Winter 2012.