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1 Introduction

The mean curvature flow is part of the bigger family of geometric flows, which are flows
on a manifold associated with some geometrical quantity. This family includes some
very famous examples such as the Calabi flow and the Ricci flow. Those two example
are defined intrinsiquely, meaning the the definition of the flow is done through some
measure on the manifold, and doesn’t depend on its imbedding on a higher dimension
space. But this is not the case of the mean curvature flow, which is defined extrinsin-
quely. This conveniently allows to see the mean curvature flow as a deformation of a
manifold.

Mean curvature flows are often given as a model for soap films. Such objects are
driven by surface tension, which directly depend on the curvature of the soap film. The
analogy is quite strong and reflects many properties of the mean curvature flow. For
example, it is well known that soap films tend to converge to a minimal surface, which
are critical points of the mean curvature flow under reasonable constraints.

This paper is organized as follows. Section 2 will give the main definitions and
concepts used throughout the paper. Then section 3 will treat the case of convex initial
conditions, proving asymptotic convergence to a spherical singularity. Section 4 will
explore the concept of weak solutions after a singularity has occured, and section 5 will
conclude and give some possible future work.
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2 Definitions, intuition and examples

Let {Mt}t∈R+ be a family of hypersurfaces of codimension 1 in Rn+1, with M0 given.
Let these surfaces be represented locally by a diffeomorphism

F : U ⊂ Rn → F (U) ⊂ Rn+1. (1)

We say that Mt is moving by mean curvature flow (MCF) if it satisfies the equation

∂tF (x, t) = ~H(x, t) ∀x ∈ U (2)

where ~H(x, t) is the inwards mean curvature vector of the surface at position x and time
t. Since the surface in imbedded, there is no problem in defining ~H with the principal
curvatures λi and the outwards unit normal vector ν by

~H = −~ν 1

n

n∑
i=1

λi. (3)

We will sometimes refer to the mean curvature as a scalar by calling it H := n|H|.
Before investigating the propertiess of this equation, let’s look at some examples.

2.1 Shriking sphere

A very simple example is when M0 is a sphere of radius R0. Any point on M0 can be
described by a vector θ(θ1, ..., θn−1) and a radius R(t). The initial normal vector at any
point on M0 is x

|x| = θ, and this vector doesn’t change over time. The equation (3) for
curvature thus gives

H(x) = −θ 1

n

n∑
i=1

1

R(t)
= −θ 1

R(t)
(4)

so that the MCF equation (2) becomes

∂t(θR(t)) = −θ 1

R(t)
(5)

⇒ ∂tR(t) = − 1

R(t)
(6)

⇒ R(t) =
√
R2

0 − 2t. (7)

This trivial example exhibits many important features of the MCF. First, we see that
since the radius of the sphere decreases, the area of the surface also decreases. We will
see that this is a comon features of surfaces advected by MCF. Also, we remark that

after a time T =
R2

0
2 < ∞ the surface degenerates to a single point. It is important to

notice that the speed at which the surface approaches the singularity is asymptotically
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infinite, which is also the case for many initial surfaces.

The mean curvature flow equation is parabolic, and thus has some of the smoothing
properties of a heat equation for short times. But as we see in the case of the sphere, a
singularity is created after a certain finite time. It is a comon feature of this equation
to devellop such singularities, as will be pointed out for instance in section 3.

2.2 Self-shrinking surfaces

MCF being a parabolic equation, we see that it is invariant under the parabolic scaling

x 7→ λx t 7→ λ2t (8)

so we look for solutions of the form

Mt =
√
−tM? t < 0. (9)

for some fixed surface M?. We mean here that the surface is shrinking by homothety
from a negative time −T up to T = 0 where the solution becomes singular. We call such
surfaces self-shrinking surfaces. An example is the sphere described above, but there
are other examples of self-shrinking surfaces. One obvious solution is the cylinder in R3,
and another consist of a well chosen torus. But finding more example happens to be a
difficult problem.

One great interest of such self-shrinking surfaces is that when singularities are cre-
ated in MCF, the surface around them locally tends asymptotically to a self-shrinking
surface. For instance, we will see in section 4 that any convex initial surface M0 will
converge to a point asymptotically like a sphere.

The cylinder is also a very important example because a surface with handles will
tend to approach instabilities in a cylindrical manner. For instance, if we look at the
torus in figure 1, wee se that since the curvature of the hole is greater than the curvature
of the tube, a singularity will develop in the center and the surface will asymptotically
shrink like a cylinder in the center until it reaches the singularity.

2.3 Normalized equation

We made the remark in the begining of this paper that MCF models the behavior of soap
films. But we also showed in section 2.1 that a sphere will shrink to a point in a finite
time, which is definitely not what happens to a spherical soap bubble. The problem is
that such a bubble has the additional constraint of having to enclosed a constant volume
of air, which was not imposed in our MCF model.
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Figure 1: A torus that will develop a cylindrical singular point at its center.

But instead of dealing with constant enclosed volume, it is more convenient to deal
with flows conserving the total area. This is easily obtained by defining the new surfaces
M̃t by the diffeomorphisms

F̃ (x, t) = ψ(t) · F (x, t) (10)

where ψ(t) is the unique function so that the total area of Mt is conserved, i.e.,∫
M̃t

dµ̃ =

∫
M0

dµ̃. (11)

We also change the time variable in order to have more regularized modification of the
equation. In other words, we want to avoid the speed of the manifold to go to infinity
such as in the example of the sphere. We take the new time t̃ to be

t̃(t) =

∫ t

0
ψ2(y)dy (12)

so that the time increases following the modification in the total area of the surfaces.
This gives the normalized equation

∂t̃F̃ (x, t̃) = H̃(x) +
1

n

∫
M̃t̃
H̃2dµ̃∫

M̃t̃
dµ̃

F̃ (x, t̃) ∀x ∈ M̃t̃ ∀t̃ ∈ R
+ (13)

with M̃0 = M0.

The space variable can also be translated so that the surfaces M̃t stay inside a ball of
a given finite radius around the origin. This can be done, for instance, by recentering M̃t

at everystep so that its center of mass is at the origin. Under these normalized equations,
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any convex initial surface will converge to a sphere of the same total area. Even though
these equations have a more regular behavior and do not generate singularities as easily
as the original MCF equation (2), they are more complicated to deal with. For this
reason, we will still use (2) as our governing equation. Nevertheless, the normalized and
original MCF equations are strongly related up until the time where singularities are
created in the original MCF equation, so any results we will prove for equation (2) can
be easily transposed to apply for equation (13).
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3 Convex initial conditions

In this section, we explore in more details the case where M0 is a convex surface governed
by the MCF equation (2). We want to show the following three interesting results

Theorem 1. Let n ≥ 2 and M0 be a uniformly convex initial surface, i.e., its principal
curvatures are all strictly positive everywhere. Then

i The evolution equation (2) with smooth initial conditions has a smooth solution on
a finite time interval 0 ≤ t ≤ T <∞.

ii The surfaces Mt converge to a single point asymptotically spherically as t→ T .

iii The convergence rate is infinite as t→ T .

Proof. We follow here the main ideas of the proof given by Huisken in [2]. The proof
uses a lot of lemmas that are mostly computational, which we will use without proof.

First of all, since equation (2) is strongly parabolic, it has a solution on some interval
0 ≤ t < T . But we can also show that T < ∞. Let A denote the second fundamental
form of the surface. We have from direct calculations the following evolution equation
for the mean curvature H :

∂tH = ∆H +H|A|2 ≥ ∆H +
1

n
H3 (14)

which possesses a maximum principle. Then take φ to be the solution of the ODE

∂tφ =
1

n
φ3 φ(0) = Hmin(0) (15)

where Hmin(0) is the minimal mean curvature of the initial condition, which is positive
since we suppose that the initial surface is convex. This implies

φ(t) =
Hmin(0)√

1− 2t
nH

2
min(0)

. (16)

Now we can take the equation (14) but apply it to H − φ (seeing φ as a function of t
and x but constant in x), which gives

∂t(H − φ) ≥ ∆(H − φ) +
1

n
(H − φ)3 (17)

and since the minimum of (H −φ) is zero by construction, the maximum principle gives

H ≥ φ (18)

on the interval 0 ≤ t < T where the solution exists. But we have that φ → ∞ as
t→ n

2H2
min(0)

, and so we also have that H →∞ as t→ n
2H2

min(0)
<∞, so the solution will
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blow up in a finite time, which shows T <∞ and concludes part i) of theorem 1.

For part ii), the idea is to show that the eigenvalues of the second fundamental from
approach each other, and thus the surface approaches a sphere (this implication isn’t
trivial, but requires a lot of machinery that we will omit here. See [2] for a detailed
proof). Denoting by κi the eigenvalues of A, we can use the identity

|A|2 − 1

n
H2 =

1

n

n∑
i<j

(ki − kj)2 (19)

so that |A|2 − 1
nH

2 can be used as a measure of the relative distances between the
eigenvalues. We then want to show that this quantity becomes small, and it turns out
that it is sufficient to show that it becomes small compared to H2, i.e.,

|A|2 − 1

n
H2 ≤ CH2−δ for some δ > 0, C <∞ (20)

to have that the convergence in asymptotically spherical. We first need some intermedi-
ate results, which we will use without proof. The proofs are mainly computational and

do not give a lot of insight, but they can be found in [2]. We define fσ :=
|A|2−H

2

n
H2−σ .

Lemma 1. Let α = 2− σ, then for any σ we have

∂tfσ ≤ ∆fσ +
2(α− 1)

H
〈∇iH,∇ifσ〉 −

ε2

Hα
|∇H|2 + σ|A|2fσ (21)

for 0 ≤ t < T where 〈·, ·〉 denotes the inner product on Mt

Lemma 2. There exists a constant C1 < ∞ depending only on M0 such that for all p
and σ satisfying

p ≥ 100

ε2
and σ ≤ nε3

8
√
p

(22)

the inequality (∫
Mt

fpσdµ

) 1
p

≤ C1 (23)

holds for 0 ≥ t < T .

Lemma 3. Suppose that

p ≥
(

16m

nε3

)2

and σ ≤ nε3

16
√
p

(24)

then we have (∫
Mt

Hmfpσdµ

) 1
p

≤ C1 (25)

for 0 ≤ t < T .
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Lemma 4. For all Lipschitz functions v on M we have(∫
M
|v|

n
n−1dµ

)n−1
n

≤ c(n)

(∫
M
|∇v|dµ+

∫
M
H|v|dµ

)
(26)

Now equipped with these lemmas, we can attack the proof of part ii) of theorem 1.

Define A(k) to be the set over which fσ > k and define also fσ,k := max(fσ − k, 0).
From lemma 2 we derive that

∂t

∫
A(k)

fpσ,kdµ+
1

2
p(p− 1)

∫
A(k)
|∇fσ|2fp−2σ,k dµ ≤ σp

∫
A(k)

H2fp−1σ,k fσdµ. (27)

Also, we have on A(k) that

1

2
p(p− 1)fp−2σ,k |∇fσ|

2 ≥ |∇fp/2σ,k |
2 (28)

and thus by taking v = f
p/2
σ,k we have

∂t

∫
A(k)

v2dµ+

∫
A(k)
|∇v|2dµ ≤ σp

∫
A(k)

H2fpσdµ. (29)

Now using lemma 4 we have

(∫
M
v2qdµ

) 1
q

≤ c(n)

∫
M
|∇v|2dµ+ c(n)

(∫
supp(v)

Hndµ

) 2
n (∫

M
v2q
) 1
q

(30)

with some constant c(n) depending on n and q = n
n−2 if n > 2 and q =∞ if n = 2. Since

we have that v is supported on a subset of A(k) by construction, we can use lemma 3

with p ≥ 28

ε6
and σ ≤ nε3

16
√
p to get

(∫
supp(v)

Hndµ

) 2
n

≤ k−2p/n
(∫

A(k)
Hnfpσdµ

) 2
n

≤ k−2p/nC2p/n
1 . (31)

We thus have, for large enough k, say k ≥ k1, that

sup
[0,T ]

∫
A(k)

v2dµ+ c(n)

∫ T

0

(∫
A(k)

v2qdµ

) 1
q

dt ≤ σp
∫ T

0

∫
A(k)

H2fpσ dµ dt. (32)

Also, we directly have from Lp spaces inequalities that(∫
A(k)

v
2
(

1
a/q+(1−a)

)
dµ

)a
q
+(1−a)

≤

(∫
A(k)

v2qdµ

)a/q (∫
A(k)

v2dµ

)(

1− a) (33)
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which leads to(∫ T

0

∫
A(k)

v
2
(

1
a/q+(1−a)

)
dµ dt

)a
q
+(1−a)

≤ c(n)σp||A(k)||1−
1
r

(∫ T

0

∫
A(k)

H2rfprσ dµ dt

) 1
r

(34)

if we pick r > 1 and where ||A(k)|| =
∫ T
0

∫
A(k) dµ dt. Then, if we choose

p ≥ r210

ε6
and σ ≤ ε6

29
√
r

(35)

we get by lemma 3 and Holder inequalities that

fσ ≤ k1 +
(
C22

pγ/(γ+1)||A(k1)||γ−1
) 1
p

(36)

with γ = 2 − 1
q − (1 − a) − 1

r . We can show that the total area of the surfaces Mt is
decreasing over time (see [2]) and we already showed that T in bounded, so ||A(k)|| is
bounded, and we get as wanted that

fσ ≤ C (37)

⇒ |A|2 − 1

n
H2 ≤ CH2−δ (38)

which proves part ii) of theorem 1.

Now for part iii), we want to show that the speed at which the surface collapses to
a point is infinite. We need the three following lemmas from [2]. We omit the proofs
since they are mainly computational and not very insightful.

Lemma 5. Let gij be a time dependant metric on a compact manifold M for 0 ≤ t <
T <∞. Suppose ∫ T

0
max
M
|∂tgij | dt ≤ C <∞ (39)

where

|∂tgij | =
√
gikgjl (∂tgij) (∂tgkl) (40)

with the convention of summation over repeated indices. Then the metrics gij(t) for all
different times are equivalent (i.e. they generate the same topology) and they converge
uniformly as t → T to a positive definite metric tensor gij(T ) which is continuous and
also equivalent to the gij(t).
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Lemma 6. The metrics gij satisfy the equation

∂tgij = −2Haij (41)

where the aij are the elements of the second fundamental form A.

Lemma 7. If the second fundamental form A satisfies

max
Mt

|A|2 ≤ C on 0 ≤ t < T <∞ (42)

then

|∇mA| ≤ Cm ∀m. (43)

We then proceed by contradiction. Suppose that

max
Mt

|A|2 ≤ C on 0 ≤ t < T (44)

where we know that T < ∞ from part i) of this theorem. From the MCF equation (2)
we have directly that

|F (x, a)− F (x, b)| ≤
∫ b

a
H(x, t)dt (45)

for 0 ≤ a ≤ b < T . Since we suppose that |A| is bounded, H is bounded, and F converges
to a continuous function F (x, T ) as t → T . But we need to ensure that this map still
represents a limit surface MT . But we have, using together the fact that all the Mt are
diffeomorphic by constructrion, lemma 6, our assumption, and the fact that T < ∞,
that ∫ T

0
max
Mt

|∂tgij |dt .
∫ T

0
max
τ

max
Mτ

|∂tgij |dt (46)

≤
∫ T

0
max
M0

|2H|A| |dt (47)

≤ 2C2

∫ T

0
dt (48)

≤ C1 <∞ (49)

which implies by lemma 5 that the metrics converge to something continuous as t→ T .
Lemma 7 then tells us that the surface actually converge to a smooth surface MT . But
then the solution can be continued beyond T , which contradicts the fact that T < ∞,
and thus proves that the curvature is unbounded when the surface collapses to a singular
point, which also means that the convergence speed is infinite. This concludes the proof
of part iii), and concludes also the proof of theorem 1.
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The results of theorem 1 also give intuitive information about the normalized equa-
tions (13). First, since the convergence is spherical, we can show that this automatically
causes the normalized surfaces M̃t to converge to a sphere. Also, since the convergence
rate as t → T goes to infinity, the interval 0 ≤ t ≤ T maps to 0 ≤ t̃ < ∞, giving a
smooth solution for the normalized surfaces for any positive time t̃. These results about
the normalized equations are proven rigourously in sections 9 and 10 of [2].
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Figure 2: A barbel with a very thin neck that will create a singularity and transfom into
two blobs under MCF.

4 Solutions beyond singularities

We showed in the previous section that convex initial surfaces will collapse to a point
in a finite time T under mean curvature flow. In that case, there is thus no need to
describe what happens after the singularity is created. But for other cases, the solution
may still make sense after the first singularity is created. For instance, if we look at the
example of the torus from section 2.2, the hole in the torus will collapse to a point in a
finite time T1, and the outer part of the surface will remain and will continue to evolve
up until it collapses to a set of measure 0 in a larger but still finite time T2. Another
example given by Grayson [4] is the barbel in figure 2. The curvature in the very thin
neck in the middle of this surface will cause the middle region to collapse to a point,
separating the initial shape into two surfaces that will both collapse to a point. The
problem is that when transitioning from T1 − ε to T1 + ε, the diffeomorphism approach
we have been using so far fails to describe what happens is a continuous manner.

For the MCF, the classification of the different types of possible singularities is not
complete yet, and it is thus impossible to give a general solution by listing all the
possible cases. We therefore use another method to describe the surfaces, which will
give a suitable definition of a weak solution after singularities occur.

4.1 Level set functions

Any imbedded manifold M of codimension 1 in Rn can be represented as the zero level
set of a function, i.e.,

∃u : Rn × R+ → R such that Mt = {x ∈ Rn : u(x, t) = 0}. (50)
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Such a function u is called a level set function for M . Of course, the choice of u is not
unique, but the choice of level set function for the initial surface is of small importance for
what follows. Still, we can choose u to be at least continuous and we use the convention
that u is positive inside the surface and negative outside of it. The goal is then to
transpose the MCF equation for Mt into an equation for u, so that the zero level of
u still represents Mt for any positive time. Once again, there are a lot of evolution
equations for u that would have this property, but if we impose that the equations
evolves all of the level sets of u by MCF, then the choice of equation is unique (see [5])
and given by

∂tu− |∇u| ∇ ·
(
∇u
|∇u|

)
= 0 (51)

where ∇u represents the spatial gradient. This equation is called the level set equation
for MCF.

The level set function representation has the useful property of being able to describe
many geometrical properties of M in a simple way. For instance, the normal velocity
V is given by ∂tu

|∇u| , the inward pointing unit normal vector of M at any point is given

by ∇u
|∇u| and the curvature is therefore given by ∇ · ∇u|∇u| . The computations to arrive at

these quantities are rather easy. For instance, for the normal vector, take a curve γ(s)
on M for a fixed time. Let x0 := γ(0). Then we have

u(γ(s)) = 0 (52)

and differentiating by s we get

∇u(γ(0)) · ∂sγ(0) = 0 (53)

and this is true for any curve going through x0 at s = 0, so ∇u is perpendicular to any
tangeant vector to the curve, so ∇u is a normal vector. We then get a unit vector by
normalizing it, which gives ∇u

|∇(u)| .

The derivation of the level set equation is also direct. We have from standard differ-
ential geometry that

H = ∇ · ~n = ∇ ·
(
∇u
|∇u|

)
(54)

and since the MCF equation can be written as

V = H (55)

we get directly

∂tu

|∇u|
= ∇ ·

(
∇u
|∇u|

)
(56)
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or

∂tu− |∇u| ∇ ·
(
∇u
|∇u|

)
= 0 (57)

which is equation (51).

As shown in the 2D toy example of figure 3, the advantage of the level set approach is
that a singular M can still be obtained from a smooth u. Also, it can be shown that the
solution of (51) exists and is unique for a given initial level set function (see section 4.2).
Furthermore, the zero level set of u coincides with Mt as defined in section 2 for times
0 ≤ t ≤ T where the solution by the diffeomorphism approach exists, so this level set ap-
proach is really an extension of the concept of classical solutions for mean curvature flows.

4.2 Perron’s method

We show here a quick overview of how to show existence of solutions to the level set
equation (51) by Perron’s method. The details can be found in chapter 2 of [3].

The equation we are trying to solve is parabolic, but very degenerate, and we will
use the concepts of viscosity solutions to get more regular properties on the equation by
treating it as a degenerate elliptic equation.

To simplify the notation, we will use a more generic notation. We will look at the
equation

∂tu(z) + F (z, u(z),∇u(z),∇2u(z)) = 0 (58)

for which the MCF is a particular case by taking

F (a, b, c, d) = −trace

(
I − c⊗ c

|c|2

)
d. (59)

We have indeed that in that case, F is degenerate elliptic, i.e.,

F (a, b, c, d1) ≤ F (a, b, c, d2) for d1 ≥ d2. (60)

We will want to look at the solutions on a domain Θ = Ω× [0, T ). This is not a problem
for level set function, since we can take Ω large enough to contain all zero level sets,
and extend it by a constant outside Ω. We define the upper and lower semicontinuous
envelopes u? and u? by

u?(z) = lim
r↘0

sup{u(w) |w ∈ Br(z)} (61)

u?(z) = lim
r↘0

inf{u(w) |w ∈ Br(z)} (62)
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(a) Level set function at t=0. (b) M at t=0.

(c) Level set function at t=3. (d) M at t=3.

(e) Level set function at t=6. (f) M at t=6.

Figure 3: Toy example of a level set function. We use the initial level set function
u0(x) = (x4 − 9x2 − 3x) + 20 1+y2

√
−23 and suppose that the solution to the level set

MCF equation is u(x, t) = u0(x) + t. We show here the solution for times 0, 3 and 6.
On the left is the level set function along with the zero plane, and on the left is the
zero level set. We see that the level set function has no problems when dealing with the
singularity of M at t = 3.



which makes the upper and lower parts of u continuous on open sets. The whole idea
of Perron’s method is based on sub- and supersolutions. A function u is called a sub-
(resp. super-) solution if

∂tu+ F (z, u(z),∇u(z),∇2u(z)) ≤ 0 (resp. ≥ 0) (63)

on Θ.

With these definitions, we can state the fundamental principle of Perron’s method.

Theorem 2. (Comparison principle.) If u and v are respectively sub- and superso-
lutions of (66) in Θ, then if u? ≤ v? on the parabolic boundary of Θ

∂tΘ := Ω× 0 ∪ ∂Ω× [0, T ) (64)

then u? ≤ v? also everywhere in Θ.

This result is used to create a solution by squeezing it between a sub- and a super-
solution, as we will see shortly. We need two lemmas before concluding this section.

Lemma 8. Let S be a set of subsolutions of (66). Then the function u defined by

u(z) = sup{v(z)|v ∈ S} (65)

is also a subsolution.

Lemma 9. Let h be a supersolution and let Sh be the set of all subsolutions v of (66)
that satisfy v ≤ h everywhere in Θ. Then if a particular v0 ∈ Sh is not a supersolution,
then there exists a function w ∈ Sh such that v0(z) < w(z) for some point z ∈ Θ.

We can now state the existence result for the level set equation.

Theorem 3. Let h− and h+ be sub- and supersolution, and suppose h− ≤ h+. Suppose
also that h−? > −∞ and h?+ <∞. Then there exists a solution of the level set equation
(66) satisfying h− ≤ u ≤ h+.

Proof. The proof easily follows from the previous lemmas. Since h− ≤ h+, the set Sh+
as defined in lemma 9 is not empty. Therefore, we can create u as in lemma 8 by
u(z) = sup{v(z)|v ∈ Sh+}. This gives a well defined function since −∞ < u < ∞. The
same lemma thus gives that u is a subsolution. u is also a supersolution, because if it
was not, then by lemma 8 there would exist a member w of Sh+ so that u ≯ w, which is
impossible by definition of u. Being a sub- and supersolution, u is therefore a solution
of the level set equation. The last part of the theorem follows by definition of u.

The problem of existence is therefore translated into finding sub- and supersolutions
of (66). But this is easier than finding actual solutions, and we can even use sequences
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of solutions to define those sub- and supersolutions, meaning that if uε is a sub- or
supersolution of

∂tuε(z) + Fε(z, u(z),∇u(z),∇2u(z)) = 0 (66)

for a sequence Fε → F as ε ↘ 0, and if uε → u uniformly for some u, then this u is a
sub- of supersolution of (66).

If one is able to find sub- and supersolutions u− and u+ such that u?+ = u = u−?,
then by Perron’s method u is automatically a solution. Moreover, by looking for u−
and u+ that are equal on ∂tΩ, we can apply the comparison principle to get u? ≤ u?
everywhere in Θ, so u is continuous.

The comparison principle also gives us uniqueness of the solution. If u and v are
solutions with same value on ∂tΩ, then we have u ≤ v and v ≤ u on the boundary so
by the comparison principle we have u ≤ v and v ≤ u everywhere in Θ, so u = v.
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5 Conclusion

We explored in this paper some of the main characteristics of the mean curvature flow.
We spent a lot of time showing properties in the case where the initial surface is convex,
concluding that it will develop a singulaity in a finite time. We then explored a possible
option to extend the solutions beyond the formation of singularities in the sense of weak
solutions, focusing mainly on the level set approach.

Most of the work we did here can be transposed without too much difficulty to other
geometric flows. Using the notation of section 4.2, if we can write another geometric
flow in the form

∂tu(z) + F (z, u(z),∇u(z),∇2u(z)) = 0 (67)

with F having properties similar to the MCF, the arguments are similar. The book by
Giga [3] treats generic surface evolutions equations this way. To give an example, to
apply Perron’s method to other geometric flows, having that F is degenerate elliptic is
sufficient to use the same ideas.

Of course, many other properties of the level set approach we used to extend the
classical solutions beyond singularities would need to be explored. Giga [3] does a good
job of rigourously showing convergence of the viscosity solutions in very general cases,
covering for instance higher dimension equations and some boundary problems. It also
shows another approach to weak solutions using a set-theoritic technique.

The problems related to the mean curvature flows are in general very hard. For
instance, the types of singularities that can be created from smooth initial surfaces are
hard to classify, and numerical tools are often needed in order to find new results. The
equation is nevertheless very useful a wide variety of domains, so every progress done
has a lot of impact.
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