Lecture¹ 7

Restriction and Support

Definition 1. Let $u \in \mathscr{D}'(\Omega)$ and consider $\omega \subset \Omega$ open. The restriction $u|_{\omega} \in \mathscr{D}'(\omega)$ of u to ω is defined by:

$$< u |_{\omega}, \phi > = < u, \phi >, \quad \forall \phi \in \mathscr{D}(\omega)$$

Theorem 1. Let $u \in \mathscr{D}'(\Omega)$. The following hold:

- $a) \ u\big|_{\Omega} = u.$
- b) If $\sigma \subseteq \omega \subseteq \Omega$ is open, then $(u|_{\omega})|_{\sigma} = u|_{\sigma}$.
- c) Let $\{\omega_{\alpha}\}$ be an open cover of Ω , then $u\big|_{\omega_{\alpha}} = 0 \implies u = 0$.
- d) Let $\{\omega_{\alpha}\}$ be an open cover. Suppose $u_{\alpha} \in \mathscr{D}'(\omega_{\alpha})$ satisfying

$$u_{\alpha}\big|_{\omega_{\alpha}\cap\omega_{\beta}} = u_{\beta}\big|_{\omega_{\alpha}\cap\omega_{\beta}}, \forall \alpha, \beta \implies \exists u \in \mathscr{D}'(\Omega) \ s.t \ u\big|_{\omega_{\alpha}} = u_{\alpha}, \ \forall \alpha.$$

Proof. d) Let $\phi \in \mathscr{D}(\Omega)$, $K = supp\phi$ compact and consider a partition of unity $\{\chi_{\alpha}\}$ of K subordinate to $\{\omega_{\alpha}\}$.

$$< u, \phi > := \sum_{\alpha} < u_{\alpha}, \chi_{\alpha} \phi > .$$

Suppose $\{\xi_{\beta}\}$ another partition of unity, we have

$$\sum_{\beta} \langle u_{\beta}, \xi_{\beta}\phi \rangle = \sum_{\beta} \langle u_{\beta}, \sum_{\alpha} \chi_{\alpha}\xi_{\beta}\phi \rangle$$
(1)

$$=\sum_{\alpha}\sum_{\beta} < u_{\beta}, \chi_{\alpha}\xi_{\beta}\phi >$$
⁽²⁾

$$=\sum_{\alpha}\sum_{\beta} < u_{\alpha}, \chi_{\alpha}\xi_{\beta}\phi >$$
(3)

$$=\sum_{\alpha} < u_{\alpha}, \sum_{\beta} \xi_{\beta} \chi_{\alpha} \phi >$$
(4)

$$=\sum_{\alpha} < u_{\alpha}, \chi_{\alpha}\phi > \tag{5}$$

To establish continuity, consider $K \subset \Omega$ compact, $\phi \in \mathscr{D}(K)$,

$$| < u, \phi > | \le \sum_{\alpha} | < u_{\alpha}, \chi_{\alpha} \phi > |$$
(6)

$$\leq \sum_{\alpha} C_{\alpha} \|\chi_{\alpha}\phi\|_{C^{m_{\alpha}}(K)} \tag{7}$$

$$\leq \sum_{\alpha} C'_{\alpha} \|\phi\|_{C^{m_{\alpha}}(K)} \tag{8}$$

$$\leq C \|\phi\|_{C^m(K)}.\tag{9}$$

¹Notes by Ibrahim Al Balushi

Definition 2. Let $u \in \mathscr{D}'(\Omega)$. The support of u,

$$supp \ u = \Omega \backslash \bigcup \{ \omega \subset \Omega \ open: \ u \big|_{\omega} = 0 \}$$