Lecture¹ 5

X Lf-space: $X_1 \subset X_2 \subset \cdots \subset X$ with each X_i Frechet.

Define the local base σ by $A \subset X$ is convex $\to A \in \sigma$ if and only if $\forall n, A \cap X_n \in \mathcal{N}(0)$ in X_n .

Fact: X is complete Hausgorff LCTVS such that $\forall n$, the topology of X_n coincides with the one induced by $X_n \subset X$. Proof is in [RUDIN] for the case $X = \mathscr{D}(\Omega)$.

Test Functions and Distributions: The space $\mathscr{D}(\Omega)$

The space $C_c^{\infty}(\Omega)$ is said to be the space of *test functions* on Ω , a space consisting of all C^{∞} functions whose support is compact in Ω . C_c^{∞} also has a vector space structure. A topology may be defined on $C_c^{\infty}(\Omega)$ by equipping it with the sequence of norms

$$\|\cdot\|_{C^k} = \sup_{x \in \Omega, |\alpha| \le k} |\partial^{\alpha} \phi(x)|.$$
(1)

Restricting this norm to subspaces $\mathscr{D}(K) = \{\phi \in C_o^{\infty}(\Omega) : \operatorname{supp} \phi \subset K\}, \ \mathscr{D}_K \subset C_c^{\infty}(\Omega) \text{ induces the same Frechet topology on } \mathscr{D}_K \text{ generated by the family of semi-norm}$

$$p_k(\phi) = \sup_{x \in K, |\alpha| \le k} |\partial^{\alpha} \phi(x)|,$$

By virtue of Theorem² 1 in lecture 3, the family of norms in (1) generates a *locally convex metrizable* topology on $C_c^{\infty}(\Omega)$, however, it ceases to be complete with respect to its metric. In other words the subspaces \mathscr{D}_K do not pass their completeness on to the whole space $C_c^{\infty}(\Omega)$. Fortunately, the LF-topology we define below will turn out to be complete. However, as we will see it is not metrizable.

We consider the *LF*-topology on $C_c^{\infty}(\Omega)$ induced by $\mathscr{D}(K_1) \subset \mathscr{D}(K_2) \subset \ldots$, with each $\mathscr{D}(K_n)$ having the Fréchet topology generated by the semi-norms $\{\|\cdot\|_{C^m(K_n)} : m = 1, 2, \ldots\}$. We formulate this more precisely in the following definition.

Definition 1. *[RUDIN]Def.6.3.* Let $\Omega \subset \mathbb{R}^n$ nonempty, open set.

- a) Any compact $K \subset \Omega$, τ_K denotes the Frechet space topology of $\mathscr{D}(K)$ described above; $K_n \subset K_{n+1}$, such that $\bigcup_n K_n = \Omega$.
- b) σ be collection of convex sets $A \subset \mathscr{D}(\Omega)$ such that, for all K_n , $A \cap \mathscr{D}_{K_n} \in \mathcal{N}(0)$ in $\mathscr{D}(K_n)$.

 σ defines a local base for the LF-topology τ on $C_c^{\infty}(\Omega)$. Define the topological space

$$\mathscr{D}(\Omega) \stackrel{def}{=} (C_c^{\infty}(\Omega), \tau).$$

Definition 2. X TVS. $\{x_n\}$ is Cauchy if $\forall \mathcal{U} \in \mathcal{N}(0)$ in X $\exists N$ such that $x_n - x_k \in \mathcal{U}, \forall n, k \geq N$.

Lemma 1. Cauchy sequences are bounded.

¹Notes by Ibrahim Al Balushi

 $^{^{2}}$ Theorem 1.37 in Rudin's text

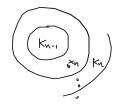
Proof. Let $\mathcal{U}, \mathcal{V} \in \mathcal{N}(0)$ balanced in X satisfying $\mathcal{U} + \mathcal{U} \subset \mathcal{V}$. There exists N > 0 such that $x_n - x_N \in \mathcal{U}$. $\mathcal{U}. x_n \in x_n + \mathcal{U}$. Let s > 1 such that $x_n \in s\mathcal{U}$,

$$\implies x_n \in s\mathcal{U} + \mathcal{U} \subset s\mathcal{U} + s\mathcal{U} \subset s\mathcal{V}.$$

Theorem 1. [RUDIN] Sec 6.5.

- a) $E \subset \mathscr{D}(\Omega)$ is bounded if and only if $E \subset \mathscr{D}(K)$ for some compact $K \subset \Omega$, and E is bounded in $\mathscr{D}(K)$.
- b) $\{\phi_j\} \subset \mathscr{D}(\Omega)$ Cauchy in $\mathscr{D}(\Omega)$ if and only if $\{\phi_j\} \subset \mathscr{D}(K), \exists K \subset \Omega \text{ compact and } \phi_j \text{ is Cauchy in } \mathscr{D}(K).$
- c) $\phi_j \to 0$ in $\mathscr{D}(\Omega)$ if and only if $\{\phi_j\} \subset \mathscr{D}(K), \exists K \subset \Omega \text{ compact and } \phi_j \to 0 \text{ in } \mathscr{D}(K).$

Proof. a) $K_1 \subset K_2 \subset \cdots \subset \Omega$, $\bigcup_n K_n = \Omega$, $E \subset \mathscr{D}(\Omega)$ but $E \not\subset \mathscr{D}(K_n)$ for all n. $\exists x_n \in \mathcal{D}(K_n)$



 $K_n \setminus K_{n-1} \exists \phi_n \subset E$ such that $\phi_n(x_n) \neq 0$.

$$W = \{\phi \in \mathscr{D}(K) : |\phi(x_n)| < \frac{1}{n} |\phi_n(x_n)|, \ \forall n\}$$

 $mW \not\supseteq E$, for all $m \in \mathbb{N}$. $\phi \in mW \implies |\phi(x_m)| < |\phi_m(x_m)|$. $W \cup \mathscr{D}(K_n)$ such that $\{\phi \in \mathscr{D}(K_n) : \psi(x_m) \mid x \in \mathbb{N} \}$

 $\sup_{K_n} |\phi| < \delta \} \subset W \cap \mathscr{D}(K_n)$. *E* not bounded. *E* bounded $\implies E \subset \mathscr{D}(K_n) \exists n$.

Theorem 2. Y LCTVS, $f : \mathscr{D}(\Omega) \to Y$ linear. Then the following are equivalent:

- a) f continuous
- b) For any $K \subset \Omega$ compact, $f : \mathscr{D}(K) \to Y$ is continuous.
- c) $\phi_i \to 0$ in $\mathscr{D}(\Omega) \implies f(\phi_i) \to 0$ in Y.

Proof. a) \iff b) proved. a) \implies c) straight forward. For c) \implies a): Choose $\mathcal{U} \in \mathcal{N}(0)$ convex and balanced in Y. $V = f^{-1}(\mathcal{U})$ is convex and balanced. $0 \in V$. V open $\iff \mathscr{D}(K) \cap V$ open, for any compact set $K_n \subset \Omega$.

Definition 3. An element of $\mathscr{D}'(\Omega)$ is called a distribution. The dual

$$RM(\Omega) = [C_c^0(\Omega)]^{\prime}$$

of $C_c^0(\Omega) = \bigcup_n C_c^0(K_n)$ is called the set of **Radon measures**.

Corollary 1. The following are equivalent:

- a) f is a distribution.
- b) $\forall K \subset \Omega$ compact, $f \in \mathscr{D}'(K) \iff \forall K$, $\exists m \text{ such that } |f(\phi)| \leq ||\phi||_{C^m(K)} \; \forall \phi \in \mathscr{D}(K).$
- c) $\phi_j \to 0$ in $\mathscr{D}(K) \implies f(\phi_j) \to 0.$

Definition 4. Suppose τ_1, τ_2 define two topologies on set X with the property that $\tau_1 \subset \tau_2$, where we do not consider equality. Then τ_1 is said to be a **weaker** topology on X.

Definition 5. Let X be TVS, X' its dual. The topology on X induced by the semi-norms

$$\{x \mapsto |f(x)| : f \in X'\}$$

is called the weak topology on X. Similarly, the topology on X' induced by the seminorms

$$\{f \mapsto |f(x)| : x \in X\},\$$

is called the weak * topology on X'.

Lemma 2. X' w/ its weak* topology is a Hausdorff LCTVS.

Proof. Suppose $f \in X'$, $f \neq 0$. Explicitly, $\exists x_* \in X$ such that $f(x_*) \neq 0$. $f \mapsto f(x_*)$.

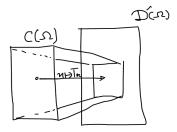
Definition 6. We equipt $\mathscr{D}'(\Omega)$ with its weak* topology. This topology is generated by the local subbase:

$$V(\phi, n) = \left\{ f \in \mathscr{D}'(\Omega) : |f(\phi) < \frac{1}{n}, \ \phi \in \mathscr{D}(\Omega), \ n \in \mathcal{N} \right\}$$

 $f_j \to 0 \text{ in } \mathscr{D}'(\Omega) \iff f_j(\phi) \to 0 \ \forall \phi \in \mathscr{D}(\Omega).$

Notation: $\langle f, \phi \rangle = \langle \phi, f \rangle =: f(\phi)$

 $u \in C^k$. Define



$$T_u(\phi) = \int_{\Omega} f\phi \implies T_u \in \mathscr{D}'(\Omega), \ T_u \in RM(\Omega).$$

 $C(\Omega)\subset \mathscr{D}'(\Omega)$

$$\int u\phi = \int v\phi \implies u = v$$
$$T: u \mapsto T_u: C(\Omega) \to \mathscr{D}'(\Omega).$$
$$\tilde{T}_u(\phi) = \int_{\Omega} u\phi \ d\mu, \qquad \mu \in RM(\Omega)$$

 $T=\tilde{T}$ with $d\mu$ =Lebesque measure.

References

[RUDIN] Walter Rudin, Functional Analysis, McGraw-Hill Inc. Second Edition (1991).