Lecture¹ 4

Fact: X locally convex TVS. Then there exists a separating family of seminorms that defines the topology of X.

Theorem 1. (X, \mathcal{P}) , (Y, \mathcal{Q}) LCTVS's, where \mathcal{P} and \mathcal{Q} are separating families of seminorms defining the topologies of X, Y. A linear map $f: X \to Y$ is continuous if and only if

$$\forall q \in Q \; \exists p \in \mathcal{P}, \; \exists C > 0 \; st. \; q(f(x)) \le Cp(x) \quad \forall x \in X.$$

Proof. (\Leftarrow) Let $x \in X$, $V \in \mathcal{N}(f(x))$. It suffices to show that there exists $\mathcal{U} \in \mathcal{N}(x)$, such that $f(\mathcal{U}) \subset V$. Moreover, $V = \bigcap_{i=1}^{k} V(q_i, n_i)$. Using the assumption that $\exists p_i \in \mathcal{P}, c_i > 0 \text{ s.t } q_i(f(x)) \leq C_i p_i(x) \ \forall x \in X$, define

$$\mathcal{U} = \bigcap_{i=1}^k \left\{ p_i(x) < \frac{1}{c_i n_i} \right\} = \bigcap_{i=1}^k \left\{ c_i p_i(x) < \frac{1}{n_i} \right\}.$$

then,

$$f(\mathcal{U}) = \left\{ f(x) : c_i p_i(x) < \frac{1}{n_i} \right\} \subset \left\{ f(x) : q_i(f(x)) < \frac{1}{n_i} \right\} \subset V$$

Conversely, suppose f is continuous on X. Let $x \in X$, $q \in \mathcal{Q}$ and consider V(q, 1). There exists $\mathcal{U} = \bigcap_{i=1}^{k} V(p_i, n_i)$ such that

$$f(\mathcal{U}) = \left\{ f(x) : p_i(x) < \frac{1}{n_i} \right\} \subset V(q, 1) = \{ f(x) : q(f(x)) < 1 \}$$

i.e q(f(x)) < 1 for $x \in X$ satisfying $p_i(x) < \frac{1}{n_i}$, i = 1, ..., k. Let $y \in X$ define $x = \frac{y}{t}$ with $t > \max\{n_1p_1(y), ..., n_kp_k(y)\}$

$$p_i(x) = \frac{1}{t} p_i(y) < \frac{p_i(y)}{\max_j \{n_j p_j(y)\}} \le 1$$

 $q(f(y)) = tq(f(x)) \le t$, so choose $t = (n_k + 1)p_k(y)$, (where WLOG index k yields max $p_i(y)$) \Box

Corollary 1. Y normed. $f: X \to Y$ linear map is continuous if and only if

$$\exists p \in \mathcal{P}, \ \exists C > 0 \ s.t \ \|f(x)\|_Y \le Cp(x) \quad \forall x \in X.$$

Example: $\Omega \subset \mathbb{R}^n$ domain. $y \in \Omega$. $\delta_y : C(\Omega) \to \mathbb{R}$. $\delta_y(f) = f(y)$.

Want:
$$|\delta_f(f)| \le C \cdot ||f||_{C^0(k)}$$
.

K compactly embedded in Ω such that $y \in K$.

$$|\delta_y(f)| \le \sup_{x \in K} |f(x)| = \|f\|_{C^0(K)} \le \|f\|_{C^m(K)}$$

 $\begin{array}{l} C(\Omega)\subset C^k(\Omega), \ k=1,...,\infty\\ \delta_y\in \mathcal{E}'(\Omega) \end{array}$

¹Notes by Ibrahim Al Balushi

LF-spaces [Treves]

X vector space, $X = \bigcup_{n=1}^{\infty} X_n$, $X_n - Frechet$, $X_1 \subset X_2 \subset \cdots$, the topology of X_n is induced by the one on X_{n+1} , $\forall n$. Define a family of subsets of X, by a convex open sets. $A \subset X$ is in σ if and only if $\forall n, A \cap X_n$ is an open neighbourhood of 0 in X_n .

Equipped with the topology τ generated by σ , X is called the **countable strict inductive limit** of $\{X_n\}$, and written as $X = ind \lim X_n$. Moreover X is called an LF-space, and $\{X_n\}$ a **defining sequenc** of X.

Fact: In the above setting, X is a complete Hausdorff LCTVS. Moreover, the topology of each X_n coincides with the subspace topology of X_n induced by the embedding $X_n \subset X$.

Theorem 2. Let X be an LF-space with the defining sequence $\{X_n\}$, and Y LCTVS, $f : X \to Y$ linear. f is continuous if and only if for $\forall n$,

$$f|_{X_n}: X_n \to Y$$

is continuous.

Proof. (\Rightarrow) $f : X \to Y$ continuous, $V \in \mathcal{N}(0)$ convex in Y. $\exists \mathcal{U} \in \mathcal{N}(0)$ convex in X such that $f(\mathcal{U}) \subset V$. $\mathcal{U}_n = \mathcal{U} \cap X_n \in \mathcal{N}(0)$ in X_n .

$$f|_{X_n}(\mathcal{U}_n) = f(\mathcal{U}_n) = f(\mathcal{U} \cap X_n) \subset f(\mathcal{U}) \subset V.$$

(⇐) $f|_{X_n} : X_n \to Y$ continuous. $V \in \mathcal{N}(0)$ convex in Y. $f^{-1}(V) \subset V$ convex. $f^{-1}(V) \cap X_n = (f|_{X_n})^{-1}(V) \in \mathcal{N}(0)$ in X_n . \Box

Corollary 2. The same as above but Y normed, each X_n is associated to a separating family \mathcal{P}_n of seminorms. f is continuous if and only if

$$\forall n, \exists p_n \in \mathcal{P}_n, \exists C_n > 0 \ s.t \ \|f(x)\|_Y \le C_n p_n(X) \quad \forall x \in X_n.$$

Examples: $\mathcal{D}(\Omega) = C_o^{\infty}(\Omega). \ C_o^k(\Omega), \ L_c^p(\Omega).$

$$f \in L^1_{loc}(\Omega).$$
 $T_f(\phi) = \int_{\Omega} f\phi \quad \phi \in \mathcal{D}(\Omega)$

$$\underbrace{ \quad \quad }_{ \quad "p_n(\phi)"} \underbrace{ \quad \quad }_{ \quad "C_n''}$$

$$\implies T_f \in \mathcal{D}'(\Omega).$$

Consider

$$\partial^{\alpha}: \mathcal{D} \to \mathcal{D}(\Omega).$$

 $\forall n. K_n. \phi \in \mathcal{D}(K_n)$

$$\|\partial^{\alpha}\phi\|_{C^{m}(K_{n})} \leq \underbrace{\|\phi\|_{C^{m+|\alpha|}(K_{n})}}_{"p_{n}(\phi)"}$$

 $\partial^{\alpha}\phi \in \mathcal{D}(K_n) \subset D(\Omega).$

X sequentially complete \implies if X is metrizable \implies X is Baire. $X = \bigcup_n X_n \implies X_n$ has nonempty interior $\implies X = X_n$. $S_n = \{x_n, x_{n+1}, ...\} x_n \rightarrow x \Leftrightarrow \forall \mathcal{U} \in \mathcal{N}(x) \exists n \ S_n \subset \mathcal{U}. x_n$ cauchy if $\forall \mathcal{U} \in \mathcal{N}(0) \exists n \ S_n - S_n \subset \mathcal{U}.$