Lecture¹ 3

Cont'd Seminorm

Definition 1. A family of seminorms \mathcal{P} on X is called separating if

$$\forall x \in X \setminus \{0\}, \ \exists p \in \mathcal{P} \ s.t \ p(x) \neq 0.$$

Lemma 1. p seminorm.

- a) p(0) = 0.
- b) $|p(x) p(y)| \le p(x y).$
- c) $p(x) \ge 0$.
- d) $\{p(x) = 0\}$ is a subspace of X.
- e) $B = \{p(x) < 1\}$ is convex, absorbing, balanced.
- *Proof.* d) By a), $0 \in B$. For any $\alpha, \beta \in \mathbb{R}$ and $x, y \in B$

$$0 \le p(\alpha x + \beta y) \le |\alpha|p(x) + |\beta|p(y) = 0,$$

hence $\alpha x + \beta y \in B$. *e*) For convexity we have,

$$p(tx + (1 - t)y) \le tp(x) + (1 - t)p(y) < 1.$$

balanced: $|\alpha| < 1$. $p(\alpha x) = |\alpha|p(x) < 1$. Finally, to show absorbance choose s > p(y). $x = \frac{y}{s}$,

$$\implies p(x) = \frac{1}{s}p(y) < 1.$$

hence $x \in B$, thus every $x \in X$ may be scaled down to B. Considering the process in reverse yields the result required.

Theorem 1. [?][1.37] Let \mathcal{P} be a separating family of seminorms on X. Define

$$V(p,n) = \{x \in X : p(x) < \frac{1}{n}\} \quad p \in \mathcal{P}, n \in \mathbb{N}$$

$$\sigma = \{finite intersections of V(p,n)\}.$$

Then σ is a convex balanced local base for a topology τ on X, which turns X into a locally convex Hausdorff TVS such that

- a) $p \in \mathcal{P}$ continuous.
- b) $E \subset X$ bounded if and only if each $p \in \mathcal{P}$ is bounded on E.

Proof. $A \subset X$ open $\implies A$ is the union of translates of elements from σ .

i) translates of σ cover X.

ii) $A, B \in \text{translates of } \sigma \implies z \in A \cap B \exists C \text{ translate of } \sigma \text{ s.t } z \in C \subset A \cap B.$

$$p_1(z-x) < \delta, \ p_2(z-y) < \delta.$$

$$p_1(t-z) < \epsilon \implies p_1(t-x) < \delta$$

$$p_1(t-x) \le p_1(t-z) + \underbrace{p_1(x-z)}_{=r} \le \epsilon + r$$

 $\epsilon < \delta - r. \implies \tau$ is locally convex topology. Now, let $x \in X \setminus \{0\}, \exists p \in \mathcal{P} \ p(x) > 0 \ V(p, n)$ with $\frac{1}{n} < t$ is an open neighbourhood of 0 not including x. We aim to assert a); that is to show continuity. For addition: $+ : X \times X \to X$, choose $\mathcal{U} \in \mathcal{N}(0)$, such that

$$\mathcal{U} \supset V(p_1, n_1) \cap \cdots \cap V(p_k, n_k)$$

Now take

$$V = V(p_1, 2n_1) \cap \cdots \cap V(p_k, 2n_k)$$

Clearly if $x, y \in V$, then $x + y \in \mathcal{U}$ hence $V + V \subset \mathcal{U}$. More generally,

 $(x+V) + (y+V) \subset z + \mathcal{U} \implies + : \mathbb{R} \times X \to X \text{ continuous.}$

$$p: X \to \mathbb{R}. |p(x) - p(y)| < \epsilon$$

$$|p(x) - p(y)| \le p(x - y) < \epsilon$$

$$x \in y + V(p,n):$$
 with $\frac{1}{n} < \epsilon$

 $b) \implies bounded$

 $p \in \mathcal{P}$. $\exists t > 0 \ s.t \ E \subset tV(p, 1), \ x \in E : \ p(\frac{x}{t}) < 1 \Leftrightarrow p(x) < t.$

Example $X = \mathbb{R}^2$, $p_k(x) = |x_k|$.. $C(\Omega), \ \Omega \subset \mathbb{R}^n$ open, nonempty domain. K compactly embedded in Ω compact. $p_k(f) = \sup_{x \in K} |f(x)|$

$$K_1 \subset K_2 \subset \cdots \subset \Omega$$
 compact

¹Notes by Ibrahim Al Balushi

$$K_i \subset K_{i+1}, \qquad \bigcup_i K_i = \Omega.$$

$$K_i = \{x \in \Omega : dist(x, \partial \Omega) \ge \frac{1}{i}\} \bigcap \overline{B}_i(0)$$

$$p_i(f) = \sup_{x \in K_i} |f(x)|. \ \forall K, \ \exists K_i \supset K. \ p_k(f) \le p_i(f).$$

$$V(p_i, k)$$

Theorem 2. Suppose X is a TVS whose topology τ is generated by countable separable family of seminorms \mathcal{P} . Then X is a metrizable with metric

$$d(x,y) = \max_{i} \frac{\alpha_i p_i(x-y)}{1+p_i(x-y)},$$

 $(\alpha_i > 0, \ \alpha_i \to 0). \ \mathcal{P} = \{p_1, p_2, ...\}.$

Proof. d is a metric (exercise). Claim:

$$B_r = \{x \in X : d(0, x) < r\}$$
 induces a local base for τ .

Fix r > 0.

$$d(0,x) < r \Leftrightarrow \frac{p_i(x)}{1 + p_i(x)} < \frac{r}{\alpha_i}$$

for finitely many *i*. In other words, collect all *i* such that $\alpha_i > r$. If $\alpha_i \le r \implies \frac{\alpha_i b}{1+b} < r, \ \forall b \ge 0$

$$B_r = V(p_1, n_1) \cap \dots \cap V(p_k, n_k)$$

Example: $C(\Omega)$ is metrizable. Moreover, it is complete, locally convex (Frechet). A theorem tells us that: normable = LB + LC. $C(\Omega)$ is not LB hence not normable. $C^k(\Omega)$, $\mathcal{S}(\mathbb{R}^n)$, $\mathcal{O}(\Omega)$ -holomorphic functions on open sets.

Example: $C^{\infty}(\Omega) = \mathcal{E}(\Omega)$. $\mathcal{D}(K) = C_o^{\infty}(K)$. $\mathcal{D}_k = \{f \in C^{\infty}(\Omega) : supp \ f \subseteq K\}$ $p_n(f) = \max_{|\alpha| \le n} \sup_{x \in K_n} |\partial^{\alpha} f(x)|$

 $\mathcal{D}_k \subset \mathcal{E}(\Omega)$ subspace closed. $\mathcal{E}(\Omega)$ has the Heine-Borel property. We know: LB+HB $\implies dim < \infty \implies$ not LB and not normable.