
Lecture1 3

Cont’d Seminorm

Definition 1. A family of seminorms P on X is called separating if

∀x ∈ X\{0}, ∃p ∈ P s.t p(x) 6= 0.

Lemma 1. p seminorm.

a) p(0) = 0.

b) |p(x)− p(y)| ≤ p(x− y).

c) p(x) ≥ 0.

d) {p(x) = 0} is a subspace of X.

e) B = {p(x) < 1} is convex, absorbing, balanced.

Proof. d) By a), 0 ∈ B. For any α, β ∈ R and x, y ∈ B

0 ≤ p(αx+ βy) ≤ |α|p(x) + |β|p(y) = 0,

hence αx+ βy ∈ B.
e) For convexity we have,

p(tx+ (1− t)y) ≤ tp(x) + (1− t)p(y) < 1.

balanced: |α| < 1. p(αx) = |α|p(x) < 1. Finally, to show absorbance choose s > p(y). x = y
s ,

=⇒ p(x) =
1

s
p(y) < 1.

hence x ∈ B, thus every x ∈ X may be scaled down to B. Considering the process in reverse yields
the result required.

Theorem 1. [?][1.37] Let P be a separating family of seminorms on X. Define

V (p, n) = {x ∈ X : p(x) <
1

n
} p ∈ P, n ∈ N.

σ = {finite intersections of V (p, n)}.

Then σ is a convex balanced local base for a topology τ on X, which turns X into a locally convex
Hausdorff TVS such that

a) p ∈ P continuous.

b) E ⊂ X bounded if and only if each p ∈ P is bounded on E.

Proof. A ⊂ X open =⇒ A is the union of translates of elements from σ.

i) translates of σ cover X.

1



ii) A,B ∈ translates of σ =⇒ z ∈ A ∩B ∃C translate of σ s.t z ∈ C ⊂ A ∩B.

p1(z − x) < δ, p2(z − y) < δ.

p1(t− z) < ε =⇒ p1(t− x) < δ

p1(t− x) ≤ p1(t− z) + p1(x− z)︸ ︷︷ ︸
=r

≤ ε+ r

ε < δ − r. =⇒ τ is locally convex topology. Now, let x ∈ X\{0},∃p ∈ P p(x) > 0 V (p, n)
with 1

n < t is an open neighbourhood of 0 not including x. We aim to assert a); that is to show
continuity. For addition: + : X ×X → X, choose U ∈ N (0), such that

U ⊃ V (p1, n1) ∩ · · · ∩ V (pk, nk)

Now take
V = V (p1, 2n1) ∩ · · · ∩ V (pk, 2nk)

Clearly if x, y ∈ V , then x+ y ∈ U hence V + V ⊂ U . More generally,

(x+ V ) + (y + V ) ⊂ z + U =⇒ + : R×X → X continuous.

p : X → R. |p(x)− p(y)| < ε
|p(x)− p(y)| ≤ p(x− y) < ε

x ∈ y + V (p, n) : with 1
n < ε

b)( =⇒ )bounded

p ∈ P. ∃t > 0 s.t E ⊂ tV (p, 1), x ∈ E : p(xt ) < 1⇔ p(x) < t.

Example X = R2, pk(x) = |xk|..
C(Ω), Ω ⊂ Rn open, nonempty domain. K compactly embedded in Ω compact. pk(f) = supx∈K |f(x)|

K1 ⊂ K2 ⊂ · · · ⊂ Ω compact

1Notes by Ibrahim Al Balushi
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Ki ⊂ Ki+1,
⋃
i

Ki = Ω.

Ki = {x ∈ Ω : dist(x, ∂Ω) ≥ 1

i
}
⋂
Bi(0)

pi(f) = supx∈Ki
|f(x)|. ∀K, ∃Ki ⊃ K. pk(f) ≤ pi(f).

V (pi, k)

Theorem 2. Suppose X is a TVS whose topology τ is generated by countable separable family of
seminorms P. Then X is a metrizable with metric

d(x, y) = max
i

αipi(x− y)

1 + pi(x− y)
,

(αi > 0, αi → 0). P = {p1, p2, ...}.

Proof. d is a metric (exercise). Claim:

Br = {x ∈ X : d(0, x) < r} induces a local base for τ.

Fix r > 0.

d(0, x) < r ⇔ pi(x)

1 + pi(x)
<

r

αi

for finitely many i. In other words, collect all i such that αi > r. If αi ≤ r =⇒ αib
1+b < r, ∀b ≥ 0

Br = V (p1, n1) ∩ · · · ∩ V (pk, nk)

Example: C(Ω) is metrizable. Moreover, it is complete, locally convex (Frechet). A theorem
tells us that: normable = LB + LC. C(Ω) is not LB hence not normable.
Ck(Ω), S(Rn), O(Ω)-holomorphic functions on open sets.

Example: C∞(Ω) = E(Ω). D(K) = C∞o (K).

Dk = {f ∈ C∞(Ω) : supp f ⊆ K}

pn(f) = max
|α|≤n

sup
x∈Kn

|∂αf(x)|

Dk ⊂ E(Ω) subspace closed. E(Ω) has the Heine-Borel property. We know: LB+HB =⇒ dim <
∞ =⇒ not LB and not normable.
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