
0.1 Sobolev Space Hs(Rn)

Last lecture have talked about the solvability of the Cauchy problem for the system ut = P (Dx)u, or

the single equation ∂mt u =
∑m−1
k=0 Pk(Dx)∂kt u. In this lecture we will formally present the idea more

precisely. Note that the PDE may also be written in the following forms:

• P (Dx, ∂t) =
∑m
k=0 Pk(Dx)∂mt u = 0 — “hybrid” form.

• P̂ (Dx, Dt) =
∑m
k=0 Pk(Dx)(iDt)

mu = 0 — the full symbol.

The polynomials are related through

• P (ξ, τ) = P̂ (ξ,−iτ) and P̂ (ξ, τ) = P (ξ, iτ).

So for instance, that the real part of λ satisfying P (ξ, λ) = 0 is bounded from above is equivalent

to saying that the imaginary part of τ satisfying P̂ (ξ, τ) = 0 is bounded from below.

Definition 1. The Sobolev space (or the Bessel potential space) Hs = Hs(Rn) is defined to be
the space of tempered distributions whose Sobolev norm defined to be

‖u‖2Hs =

∫
Rn

(1 + |ξ|2)s|û(ξ)|2 dξ, s ∈ R (1)

is finite.

The space Hs is a Hilbert space with respect to the inner product:

〈u, v〉Hs =

∫
Rn

(1 + |ξ|2)sû(ξ)v̂(ξ) dξ. (2)

It is useful to use the notation 〈ξ〉 =
√

1 + |ξ|2 for convenience.

Definition 2. Let us define CkαH
s ≡ Ckα([0,∞), Hs(Rn)) by

CkαH
s =

{
u : R+ → Hs(Rn) : u ∈ Ck, sup

t≥0
(1 + t)me−αt‖u(t)‖Hs <∞

}
, (3)

for some m ∈ R.

Note that in order to have the Banach space property the norm must contain t-derivatives of u,
however for the purposes of this study we will not concern ourselves with it. The spaces CkαH

s will
be used merely to abbreviate statements that would otherwise be unnecessarily long.

0.2 Petrovsky Well-Posedness Condition

Suppose u ∈ CkαHs satisfies the system ∂tu = P (Dx)u for k ≥ 1. Then by taking the Fourier transform
in x

∂tû = P (ξ)û,
[
P (ξ, ∂t)û = 0 for single equations

]
in a weighted L2 sense, i.e “CkαL

2
s”. So

∂tû(ξ, t) = P (ξ)û(ξ, t), for a.e ξ ∈ Rn.
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Suppose λ0(ξ), ..., λm−1(ξ) be the eigenvalues of P (ξ), ie. the roots of P (ξ, λ) = 0, ordered so that

Re λ0(ξ) ≤ · · · ≤ Re λr−1(ξ) ≤ α < · · ·

corresponding to eigenvectors e0(ξ), ..., em−1(ξ). Define

Qα(ξ) = span{e0(ξ), ..., er−1(ξ)}.

Since u ∈ CkαH
s, we must have û(ξ, 0) ∈ Qα(ξ) for almost every ξ. In particular, in order for the

Cauchy problem to have a solution in CkαH
s with some α and s, for any initial data in

H−∞ =
⋃
s

Hs,

we must satisfy the following criterion:

∃ c ∈ R such that Re λm−1(ξ) ≤ c, for a.e ξ ∈ Rn,

otherwise known as the Petrovsky Well-Posedness Condition abbreviated PWP.

Definition 3. If PWP is satisfied, P is called Petrovsky well-posed.

We have proved for PWP problems, a unique solution exists in some CkαH
s for any given initial

data in H−∞.

Example: Consider the Laplace equation. It is known that the Cauchy problem for the Laplace
equation generally has no solution. This was established by verifying that the Green’s function which
solves the Cauchy problem. From the Sobolev theory we may draw similar conclusion. The Laplace
equation ∂2t −D2

xu = 0, where the negative sign rises from using this notation. We have

P (ξ, λ) = −ξ2 + λ2 =⇒ λ = ±ξ

where we note that λ is not bounded independently of ξ. It follows that the Laplace equation is not
PWP.

0.3 α-Regularity

Let us focus on the single equation case P (Dx, ∂t)u = 0.

Definition 4. We say that P is α-regular of order r if r(ξ) = r almost everywhere, i.e., λr−1(ξ) ≤
α < λr(ξ) for almost every ξ ∈ Rn.

Example: The Laplacian is 0-regular of order 1.

Consider the boundary condition:

Bj(Dx, ∂t)u =

mj∑
k=0

Bjk(Dx)∂kt u = gj , j = 0, ..., l − 1 at {t = 0}.

Suppose for any gj ∈ H−∞, the problem has a unique solution, u ∈
⋃
s C

k
αH

s. This means û(ξ, 0) ∈
Qα(ξ) for all gj . From the Fourier perspective the boundary condition gives

Bj(ξ, ∂t)û(ξ, t) = ĝj(ξ), at {t = 0}.
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Combining this with

û(ξ, t) =
∑

Re λk≤α

Ckt
βkeλkt ~ek

gives
r(ξ)−1∑
k=0

B′ik(ξ)Ck(ξ) = ĝj(ξ),

where B′ik(ξ) is a matrix uniquely determined by Bjk and {λk}. From uniqueness the system may not
be underdetermined and hence may have at least l boundary conditions satisfying l ≥ r. Meanwhile
we require sufficiently many eigen-basis r to span the solution space and thus r ≥ l which implies
r = l. It follows that P is α-regular of order l. In addition to the previous requirement, we need
det[B′jk(ξ)] 6= 0 for almost every ξ. This is an instance of the so-called Lopatinsky-Shapiro condi-
tions.

Conversely, if P is α-regular of order l and det[B′jk(ξ)] 6= 0 for all ξ ∈ Rn, then for any gj ∈ H−∞,
there exists a unique solution in ∪sCkαHs.

Proof sketch. By Seidenberg-Tarski, ‖B′(ξ)‖−1 ≤ (1 + |ξ|)a. From that we may conclude |û(ξ, 0)| ≤
(1 + |ξ|)a

∑
j |ĝj(ξ)|.

Example: Referring to the Laplace equation with

• Dirichlet boundary problem B(Dx, ∂t)u = u.

• Neumann : B(Dx, ∂t)u = ∂tu =⇒ B(ξ, λ) = λ.

û(ξ, t) = C(ξ)e−ξt{
∂t = g at {t = 0}
∂tû(ξ, 0) = ĝ(ξ)

−ξC(ξ) = ĝ(ξ)

where in this case the factor −ξ defines the matrix B′. It follows that if c = 0 then we would
not have invertibility. If we consider the perturbed Neumann problem boundary condition
∂tu+ εu = g for some ε 6= 0 then we have solvability.

• The backward heat equation is not regular.

• Schrödinger equation ∂tu = i∆u. The roots are purely imaginary and thus α-regular for all
α ≥ 0.

• The wave equation with strong friction ∂2t u = ∆u+ ∂t∆u.

=⇒ P (ξ, λ) = λ2 + ξ2 + ξ2λ = λ2 + ξ2λ+ ξ2

=⇒ λ1,2 = −ξ
2

2
±
√
ξ4

4
− ξ2 =⇒ Re λ1,2 ≤ 0

and thus Petrovsky well posed.
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