Lecture¹ 13

Applications of Distributions to Constant Coefficient Operators

Consider the polynomial $P(\xi) = \sum_{\alpha} a_{\alpha} \xi^{\alpha}$ whose coefficients a_{α} are all constant. We have previously established that

$$P(\partial)u(\xi) = P(i\xi)\widehat{u}(\xi)$$

Definition 1. $\hat{P}(\xi) = P(i\xi)$ is called the symbol of $P(\partial)$.

• If q is a symbol, its associated differential operator is

$$q(D) = q(-i\partial) =: Q(\partial),$$

where $D = -i\partial$, so that

$$\widehat{Q}(\xi) = q(-i \cdot i\xi) = q(\xi).$$

• The principal symbol P_m is the homogeneous polynomial

$$\widehat{P}_m(\xi) = \sum_{|\alpha|=m} a_\alpha (i\xi)^\alpha,\tag{1}$$

with m equal to the degree of P. So the principal symbol of P(D) is

$$P_m(\xi) = \sum_{|\alpha|=m} a_\alpha \xi^\alpha.$$

Solvability of P(D)u = f

- In \mathscr{D}' it is proven (independently) by Malgrange and Ehrenpreis in 1953.
- In \mathcal{S}' is its proven by Hörmander, Lojasiewicz and Bernstein.

The idea comes from the fact

$$P(\xi)\widehat{u}(\xi) = \widehat{f}(\xi) \quad \text{by the Fourier transform}$$

Def: $Z = \{\xi : P(\xi) = 0\}$
 $r(\xi) = \frac{\widehat{f}(\xi)}{P(\xi)}, \qquad \xi \in \mathbb{R}^n \backslash Z,$

where we can assume $\hat{f} \in C(\mathbb{R}^n)$, $|\hat{f}(\xi)| < C(1+|\xi|)^N$. Keeping this definition of r in mind we define the following notion.

Definition 2. $\tilde{r} \in S'$ is called a *regularization* of r if

$$\langle \tilde{r}, \varphi \rangle = \langle r, \varphi \rangle, \quad \forall \varphi \in \mathscr{D}(\mathbb{R}^n \backslash Z).$$
 (2)

• If $r \in L^1_{loc}$ then its regularization is straightforward.

 $^{^1\}mathrm{Notes}$ by Ibrahim Al Balushi

- If Z is discrete and $|P(\xi)| \ge C \operatorname{dist}(\xi, Z)^b$, we can regularize r following the procedure we have used to establish generalized Laurent series.
- In general we can write

$$Z = \bigcup_{k} Z_k, \qquad \dim Z_k = k,$$

we have to prove $|P(\xi)| \ge C \operatorname{dist}(\xi, Z_k)^b$.

Hypoellipticity

Definition 3. P(D) is called *elliptic* if the principal part $P_m(\xi) \neq 0$ for $\xi \neq 0$.

- Petrowsky proved in 1937 that ellipticity \iff analytic-hypoellipticty.
- Hörmander in 1955 proved the following theorem:

Theorem 1. P(D) is hypoelliptic if and only if

$$P(\zeta) = 0, \ |\zeta| \to 0 \implies |Im\zeta| \to \infty.$$

Proof. Let $\Omega \subset \mathbb{R}^n$ be a bounded open domain. Define

$$S = \{ u \in L^{2}(\Omega) : P(D)u = 0 \}.$$

We claim that S is closed in L^2 . Take $u_k \in S$ such that $u_k \to u \in L^2$. Noting that P(-D) is the adjoint of P(D) we have

$$\langle P(D)u,\varphi\rangle = \langle P(D)(u-u_k),\varphi\rangle = \langle u-u_k,P(-D)\varphi\rangle \leq \|u-u_k\|_{L^2}\|P(-D)\varphi\|_{L^2}$$

Also, $S \subset C^{\infty}(\Omega)$. Consider $G: S \to \mathbb{R}$, defined by

$$G: u \mapsto \nabla u(0).$$

G is closed, $u_k \to u$, $\nabla u_k(0) \to a$ implies $a = \nabla u(0)$. Thus G is continuous by the closed graph theorem and

$$|\nabla u(0)| \le C ||u||_{L^2}, \quad u \in S.$$
 (*)

Now, take $u(x) = e^{ix \cdot \zeta}$, $P(\zeta) = 0$. Then

$$P(D)u(x) = P(\zeta)u(x) = 0.$$

and $\nabla u(0) = i\zeta$ while keeping in mind that $\zeta \in \mathbb{C}$. Now using (*)

$$\|u\|_{L^2} \le C_1 e^{C_2 |\operatorname{Im}\zeta|} \implies |\zeta| < C_1 e^{C_2 |\operatorname{Im}\zeta|}$$

for now if $|\zeta| \to \infty$ then $|\text{Im}\zeta| \to \infty$.

Conversely, we claim

$$\exists a > 0, \ b \ s.t \ |\eta| \le |\xi|^a \implies |P(\xi + i\eta)| \ge |\xi|^b$$

for ξ large. We prove this claim by considering the set

$$\Sigma = \{t, s: t = |\xi|^2, \ s \ge |\eta|^2 \text{ satisfying } P(\xi + i\eta) = 0\}$$

 $\Sigma \subset \mathbb{R}^{2n+2}$ is semi-algebraic. By Seidenberg-Tarski, the projection Σ' of Σ onto the (t, s)-plane is semi-algebraic. Also, $s \to \infty$ as $t \to \infty$. Define

$$\phi(t) = \min\{s : (t, s) \in \Sigma'\},\$$

then for large t, we have $\phi(t) = at^b(1 + o(1))$ and thus $P(\xi + i\eta) = 0$
 $\implies |\eta| \ge \sqrt{a}|\xi|^b(1 + o(1))$

for large $\xi.$ Now define

$$T = \{t = |\xi|^2, \ |\eta|^{2\alpha} \le t^{\beta}, \ s \ge |P(\xi + i\eta)|^2\}$$

 $\alpha, \beta \in \mathbb{N}$ such that $s \neq 0$ for sufficiently large t. T' is semi-algebraic and thus define

$$\psi(t) = \inf\{s : (t,s) \in T'\} \implies |P(\xi + i\eta)|^2 \ge a + c|\xi|^{2b}(1 + o(1)).$$

We aim to show hypoellipticity. This will be done by constructing a fundamental solution having C^{∞} regularity in $\mathbb{R}^n \setminus \{0\}$. Formally,

$$E(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{e^{-\xi \cdot x}}{P(\xi)} d\xi$$

Without loss of generality, assume

$$P(\xi) = \xi_1^m + l.o.t(\text{in } \xi_1), \quad m = \deg P.$$

It is our aim to integrate into the complex plane as to avoid the poles. There exists A > 0 such that $P(\xi) \neq 0$ for $|\xi| \ge A$. Define

$$\Gamma_1 = \mathbb{R}^n \setminus [-A, A]^n$$

$$\Gamma_2 = \zeta_2, \dots, \zeta_n \in \mathbb{R}^n, \qquad \operatorname{Re} \zeta \in [-A, A]^n$$

Figure 1: Dots corresponds to zeros of $\zeta_1 \mapsto P(\zeta_1, ..., \zeta_n)$

Define

$$\langle E, \varphi \rangle = (2\pi)^{-n} \int_{\Gamma_1 + \Gamma_2} \frac{\widehat{\varphi}(\zeta)}{P(\zeta)} d\zeta$$

Paley-Wiener tells us $|\widetilde{\widehat{\varphi}}(\zeta)| \le C(1+|\zeta|)^{-N}$ for $|\mathrm{Im}\zeta|$ bounded. Also,

$$\frac{1}{|P(\zeta)|} \le C |\mathrm{Re}\zeta|^b.$$

To check if this defines a fundamental solution we carry out the following calculation

$$\langle E, P(-D)\varphi \rangle = (2\pi)^{-n} \int_{\Gamma_1 + \Gamma_2} \frac{P(\zeta)\widetilde{\widehat{\varphi}}(\zeta)}{P(\zeta)} \ d\zeta = (2\pi)^{-n} \int_{\Gamma_1 + \Gamma_2} \widetilde{\widehat{\varphi}}(\zeta) \ d\zeta = (2\pi)^{-n} \int_{\mathbb{R}^n} \widetilde{\widehat{\varphi}}(\zeta) \ d\zeta = \varphi(0)$$

as required.