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Applications of Distributions to Constant Coefficient Operators

Consider the polynomial P (ξ) =
∑
α aαξ

α whose coefficients aα are all constant. We have previously
established that

P̂ (∂)u(ξ) = P (iξ)û(ξ).

Definition 1. P̂ (ξ) = P (iξ) is called the symbol of P (∂).

• If q is a symbol, its associated differential operator is

q(D) = q(−i∂) =: Q(∂),

where D = −i∂, so that
Q̂(ξ) = q(−i · iξ) = q(ξ).

• The principal symbol Pm is the homogeneous polynomial

P̂m(ξ) =
∑
|α|=m

aα(iξ)α, (1)

with m equal to the degree of P . So the principal symbol of P (D) is

Pm(ξ) =
∑
|α|=m

aαξ
α.

Solvability of P (D)u = f

• In D ′ it is proven (independently) by Malgrange and Ehrenpreis in 1953.

• In S ′ is its proven by Hörmander, Lojasiewicz and Bernstein.

The idea comes from the fact

P (ξ)û(ξ) = f̂(ξ) by the Fourier transform

Def: Z = {ξ : P (ξ) = 0}

r(ξ) =
f̂(ξ)

P (ξ)
, ξ ∈ Rn\Z,

where we can assume f̂ ∈ C(Rn), |f̂(ξ)| < C(1 + |ξ|)N . Keeping this definition of r in mind we define
the following notion.

Definition 2. r̃ ∈ S ′ is called a regularization of r if

〈r̃, ϕ〉 = 〈r, ϕ〉 , ∀ϕ ∈ D(Rn\Z). (2)

• If r ∈ L1
loc then its regularization is straightforward.
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• If Z is discrete and |P (ξ)| ≥ Cdist(ξ, Z)b, we can regularize r following the procedure we have
used to establish generalized Laurent series.

• In general we can write

Z =
⋃
k

Zk, dim Zk = k,

we have to prove |P (ξ)| ≥ Cdist(ξ, Zk)b.

—

Hypoellipticity

Definition 3. P (D) is called elliptic if the principal part Pm(ξ) 6= 0 for ξ 6= 0.

• Petrowsky proved in 1937 that ellipticity ⇐⇒ analytic-hypoellipticty.

• Hörmander in 1955 proved the following theorem:

Theorem 1. P (D) is hypoelliptic if and only if

P (ζ) = 0, |ζ| → 0 =⇒ |Imζ| → ∞.

Proof. Let Ω ⊂ Rn be a bounded open domain. Define

S = {u ∈ L2(Ω) : P (D)u = 0}.

We claim that S is closed in L2. Take uk ∈ S such that uk → u ∈ L2. Noting that P (−D) is the
adjoint of P (D) we have

〈P (D)u, ϕ〉 = 〈P (D)(u− uk), ϕ〉 = 〈u− uk, P (−D)ϕ〉 ≤ ‖u− uk‖L2‖P (−D)ϕ‖L2 .

Also, S ⊂ C∞(Ω). Consider G : S → R, defined by

G : u 7→ ∇u(0).

G is closed, uk → u, ∇uk(0) → a implies a = ∇u(0). Thus G is continuous by the closed graph
theorem and

|∇u(0)| ≤ C‖u‖L2 , u ∈ S. (∗)
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Now, take u(x) = eix·ζ , P (ζ) = 0. Then

P (D)u(x) = P (ζ)u(x) = 0.

and ∇u(0) = iζ while keeping in mind that ζ ∈ C. Now using (∗)

‖u‖L2 ≤ C1e
C2|Imζ| =⇒ |ζ| < C1e

C2|Imζ|

for now if |ζ| → ∞ then |Imζ| → ∞.

Conversely, we claim

∃a > 0, b s.t |η| ≤ |ξ|a =⇒ |P (ξ + iη)| ≥ |ξ|b

for ξ large. We prove this claim by considering the set

Σ = {t, s : t = |ξ|2, s ≥ |η|2 satisfying P (ξ + iη) = 0}.

Σ ⊂ R2n+2 is semi-algebraic. By Seidenberg-Tarski, the projection Σ′ of Σ onto the (t, s)-plane is
semi-algebraic. Also, s→∞ as t→∞. Define

φ(t) = min{s : (t, s) ∈ Σ′},

then for large t, we have φ(t) = atb(1 + o(1)) and thus P (ξ + iη) = 0

=⇒ |η| ≥
√
a|ξ|b(1 + o(1))
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for large ξ. Now define
T = {t = |ξ|2, |η|2α ≤ tβ , s ≥ |P (ξ + iη)|2}

α, β ∈ N such that s 6= 0 for sufficiently large t. T ′ is semi-algebraic and thus define

ψ(t) = inf{s : (t, s) ∈ T ′} =⇒ |P (ξ + iη)|2 ≥ a+ c|ξ|2b(1 + o(1)).

We aim to show hypoellipticity. This will be done by constructing a fundamental solution having
C∞ regularity in Rn\{0}. Formally,

E(x) = (2π)−n
∫
Rn

e−ξ·x

P (ξ)
dξ.

Without loss of generality, assume

P (ξ) = ξm1 + l.o.t(in ξ1), m = deg P.

It is our aim to integrate into the complex plane as to avoid the poles. There exists A > 0 such that
P (ξ) 6= 0 for |ξ| ≥ A. Define

Γ1 = Rn\[−A,A]n

Γ2 = ζ2, ..., ζn ∈ Rn, Reζ ∈ [−A,A]n

Figure 1: Dots corresponds to zeros of ζ1 7→ P (ζ1, ..., ζn)

Define

〈E,ϕ〉 = (2π)−n
∫

Γ1+Γ2

˜̂ϕ(ζ)

P (ζ)
dζ
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Paley-Wiener tells us |˜̂ϕ(ζ)| ≤ C(1 + |ζ|)−N for |Imζ| bounded. Also,

1

|P (ζ)|
≤ C|Reζ|b.

To check if this defines a fundamental solution we carry out the following calculation

〈E,P (−D)ϕ〉 = (2π)−n
∫

Γ1+Γ2

P (ζ)˜̂ϕ(ζ)

P (ζ)
dζ = (2π)−n

∫
Γ1+Γ2

˜̂ϕ(ζ) dζ = (2π)−n
∫
Rn

˜̂ϕ(ζ) dζ = ϕ(0)

as required.
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