Lecture! 13

Applications of Distributions to Constant Coefficient Operators

Consider the polynomial P(§) =" aqn&* whose coefficients a, are all constant. We have previously
established that o
P0)u(§) = P(i§)u(s).

Definition 1. P(§) = P(i€) is called the symbol of P().
e If ¢ is a symbol, its associated differential operator is
q(D) = q(—id) =: Q(9),

where D = —i0, so that R
Q&) = q(—1-i&) = q(§).

e The principal symbol P,, is the homogeneous polynomial

ﬁm(&): Z aa(ig)av (1)

lor|=m

with m equal to the degree of P. So the principal symbol of P(D) is

Pm(g): Z aq&™.

lee|=m
Solvability of P(D)u = f
e In 2’ it is proven (independently) by Malgrange and Ehrenpreis in 1953.
e In &' is its proven by Hormander, Lojasiewicz and Bernstein.
The idea comes from the fact
P(&u¢) = ( ) by the Fourier transform
Def: Z ={¢: P(§) =0}

o-18, EeRNZ,

where we can assume f € C(R™), |f(€)] < C(1+ |¢])N. Keeping this definition of r in mind we define
the following notion.

Definition 2. 7 € &' is called a regularization of r if
Ty =(re), Vo€ I(RZ). (2)

e If r € L} _ then its regularization is straightforward.
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e If 7 is discrete and |P(¢)| > Cdist(¢, Z)®, we can regularize r following the procedure we have
used to establish generalized Laurent series.

e In general we can write
Z=\J2z, dimZ =k,
k

we have to prove |P(£)| > Cdist(€, Zx)®.

Hypoellipticity
Definition 3. P(D) is called elliptic if the principal part Pp,(§) # 0 for € #0.

e Petrowsky proved in 1937 that ellipticity <= analytic-hypoellipticty.

e Hormander in 1955 proved the following theorem:
Theorem 1. P(D) is hypoelliptic if and only if

P() =0, [¢| =0 = |Im(| — oc.
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Proof. Let Q C R™ be a bounded open domain. Define
S ={ueL*Q): P(D)u=0}.

We claim that S is closed in L?. Take uj, € S such that ux — u € L?. Noting that P(—D) is the
adjoint of P(D) we have

(P(D)u, ) = (P(D)(u — ug), o) = (u — up, P(=D) ) < |lu—ugl|2[|P(=D)epl| 2.
Also, S € C*°(Q). Consider G : S — R, defined by
G : uw Vu(0).

G is closed, up — u, Vug(0) — a implies a = Vu(0). Thus G is continuous by the closed graph
theorem and
Vu(0)| < Cllullzs, wes. )



Now, take u(z) = ¢*¢, P(¢) = 0. Then
P(D)u(z) = P({)u(z) = 0.
and Vu(0) = i¢ while keeping in mind that ¢ € C. Now using (*)
lullze < Cre®el = ] < GrecItme

for now if || — oo then [Im({| — co.
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Conversely, we claim
3a >0, bst|n < [E* = |[PE+in)] > [¢
for £ large. We prove this claim by considering the set
Y= {t,s:t=|¢? s> |n|? satisfying P(¢ + in) = 0}.

¥ C R?"*2 is semi-algebraic. By Seidenberg-Tarski, the projection ¥’ of ¥ onto the (t,s)-plane is
semi-algebraic. Also, s — oo as t — 0o. Define

é(t) = min{s : (¢,5) € ¥'},
then for large ¢, we have ¢(t) = at’(1 + o(1)) and thus P(¢ +in) =0

= |n| = Val¢’(1+ 0(1))



for large £&. Now define
T={t=[s > <’ s> [P +in)*}
a, B € N such that s # 0 for sufficiently large ¢. T” is semi-algebraic and thus define

Y(t) =inf{s: (t,5) € T'} = |P(E+in)|* > a+ /¢’ (1 + o(1)).
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We aim to show hypoellipticity. This will be done by constructing a fundamental solution having
C* regularity in R™\{0}. Formally,

e~¢®

re P(§)

E(z)=(2m)™" dg.

Without loss of generality, assume

It is our aim to integrate into the complex plane as to avoid the poles. There exists A > 0 such that
P(§) #0 for |¢] > A. Define

Ty =R\ [~ A, A]"
o =¢,....,¢n €R",  Re(€[-A A"

Define



Paley-Wiener tells us |é(()| < C(1+[¢])~N for |[Im¢| bounded. Also,
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To check if this defines a fundamental solution we carry out the following calculation

< C|ReC]’.

(5. P(-D)¢) = m) " [ P(ﬁ,)godczmrn | 3@ c=em [ 30 dc= w0

1+ 1+ R™

as required.



