Lecture 1

Schwartz Class \(S(\mathbb{R}^n) \)

Definition 1. We define the **Schwartz class** functions \(S = S(\mathbb{R}^n) \) by the set
\[
\{ \varphi \in C^\infty(\mathbb{R}^n) : P_{\alpha,\beta}(\varphi) < \infty, \forall \alpha, \beta \}
\]
where
\[
P_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |x^\alpha \partial^\beta \varphi(x)|
\]
defines a family of separating seminorms.

Another way to view the definition above is to consider the space of \(C^\infty \) functions \(\varphi(x) \) satisfying
\[
\left| \frac{\partial^k \varphi(x)}{\partial x^k} \right| \leq C_{m,k} (1 + |x|)^{-m}
\]
for any \(k \) and any positive integer \(m \). As a direct consequence of this definition, Schwartz class functions are \(C^\infty \) functions whose derivatives decay faster than any polynomial. The topology on \(S \) generated by the family of seminorms \(\{P_{\alpha,\beta}\} \) is a Frechet topology. Moreover, the following topological embedding holds
\[
\mathcal{D} \subset S \subset L^1.
\]
In particular, any sequence \(\varphi_n \in \mathcal{D} \) convergent in the topology of \(\mathcal{D} \) is also convergent in the topology of \(S \). Also, \(\mathcal{D} \) is dense in \(S \). This can be easily shown by considering a cut off function \(\chi(x/n) \) to construct a sequence of compactly supported \(C^\infty \) functions converging to a target \(C^\infty \) function which lies in \(S \).

The Fourier Transform

Definition 2. Let \(u \in L^1(\mathbb{R}^n) \). The Fourier transform is defined by
\[
\hat{u}(\xi) = (\mathcal{F}u)(\xi) = \int e^{-i\xi \cdot x} u(x) \, dx.
\]
- If \(u \) is continuous then its transform \(\hat{u} \in C_0(\mathbb{R})^n \), due to the Riemann-Lebesgue Lemma.
- If \(\hat{u} \in L^1 \) then,
\[
u(x) = (2\pi)^{-n} \int e^{i\xi \cdot x} \hat{u}(\xi) \, d\xi.
\]

Theorem 1. The map \(\mathcal{F} : S \to S \) is an isomorphism with \(\mathcal{F}^{-1} \) given by
\[
\mathcal{F}^{-1} \psi = (2\pi)^{-n} \hat{\varphi}.
\]
moreover, we have
\[
\hat{\partial^\alpha \varphi}(\xi) = (i\xi)^\alpha \hat{\varphi}(\xi) \text{ and } \hat{x^\alpha \varphi} = (i\partial)^\alpha \hat{\varphi}
\]

\(^1\)Notes by Ibrahim Al Balushi
Proof. The proof of this theorem is strictly computational.

\[\partial^\alpha \hat{\varphi}(\xi) = \int e^{-i\xi \cdot x} (-ix)^\alpha \varphi(x) \, dx \implies \hat{\varphi} \in C^\infty \]

\[\Rightarrow (-ix)^\alpha = \partial^\alpha \hat{\varphi} \]

\[\int e^{i\xi \cdot x} \psi(\xi) \hat{\varphi}(\xi) \, d\xi = \int \varphi(y) \, dy \int e^{-i\xi(y-x)} \psi(\xi) \, d\xi \]

\[= \int \varphi(y) \hat{\psi}(y-x) \, dy = \int \hat{\psi}(y) \varphi(x+y) \, dy. \]

we notice if \(x = 0 \):

\[\int \hat{\psi} \hat{\varphi} = \int \hat{\psi} \varphi. \]

Now consider the transformation \(\psi(\xi) \mapsto \psi(ex) \) so that \(\hat{\psi}(y) \mapsto e^{-n} \hat{\psi}(y/e) \).

\[\int e^{-i\xi \cdot x} \psi(ex) \hat{\varphi}(\xi) \, d\xi = \int e^{-n} \hat{\psi}(y/e) \varphi(x+y) \, dy = \int \hat{\psi}(y) \varphi(x+\epsilon) \, dy. \]

Sending \(\epsilon \to 0 \) we obtain

\[\psi(0) \int e^{-i\xi \cdot x} \hat{\varphi}(\xi) \, d\xi = \varphi(x) \int \hat{\psi}(y) \, dy. \]

Take \(\psi(x) = e^{-|x|^2} \) we obtain the constant \((2\pi)^{-n}\). This rises from the Gaussian integral.

Facts:

- Parseval’s Formula.
- \(\int u \overline{v} = (2\pi)^{-n} \int \hat{u} \hat{v} \).
- \(\hat{u} \overline{\hat{v}} = \hat{u} \cdot \hat{v} \).
- \(\hat{u} \cdot \hat{v} = (2\pi)^{-n} \hat{u} \star \hat{v} \).

Tempered Distributions \(S' \)

Definition 3. Linear continuous functional on Schwartz class \(S \) is called a **tempered distribution**. The linear space of tempered distributions is denoted by \(S' \).

We have seen the embedding relation between test functions \(\mathcal{D} \) and Schwartz class function \(S \). Thus any tempered distribution is also a linear continuous distribution on \(\mathcal{D} \). Particularly, since any \(\varphi_n \in \mathcal{D} \) and \(\varphi_n \to \varphi \) in \(\mathcal{D} \) implies that \(\varphi_n \to \varphi \) in \(S \), then if \(f_n(\varphi) \to f(\varphi) \) for all \(\varphi \in S \) implies \(f_n(\varphi_n) \to f(\varphi) \) for all \(\varphi \in \mathcal{D} \),

\[S' \subset \mathcal{D}'. \]

The definitions for differentiating tempered distributions and test functions coincide. Moreover, multiplication of element of \(S' \) with smooth functions in the performed similarly as in \(\mathcal{D} \), with the one exception that \(a \in C^\infty \) must also satisfy

\[\left| \frac{\partial^k a(x)}{dx^k} \right| \leq C_k (1 + |x|)^n_k, \quad \forall k. \]
Recall that distributions may be represented locally as some derivative of a bounded function. A similar theorem holds for tempered distributions.

Theorem 2. Any \(f \in S' \) can be represented in the following form:

\[
f = \sum_{|\alpha|=0}^{m_1} \partial_\alpha f_\alpha
\]

where \(f_\alpha \) are regular functionals in \(S' \) corresponding to continuous functions \(f_\alpha(x) \) satisfying the estimates

\[
|f_\alpha(x)| \leq C_\alpha (1 + |x|)^{m_2}
\]

where \(m_1 \) and \(m_2 \) are integers.

We define the Fourier transform for tempered distributions:

Definition 4. If \(u \in S' \) then define

\[
\langle \widehat{u}, \varphi \rangle = \langle u, \widehat{\varphi} \rangle, \quad \forall \varphi \in S.
\]

Theorem 3. The map \(\mathcal{F} : S' \to S' \) is an isomorphism. Moreover,

\[
\widehat{\widehat{u}} = (2\pi)^{-n} \delta, \quad u \in S'
\]

Proof. Let \(\varphi \in S \). Then,

\[
\langle \widehat{\widehat{u}}, \varphi \rangle = \langle u, \widehat{\varphi} \rangle = (2\pi)^{-n} \langle u, \widehat{\varphi} \rangle = (2\pi)^{-n} \langle \widehat{u}, \varphi \rangle.
\]

\[
\Box
\]

Example 1. Consider the following computation: For any \(\varphi \in S \),

\[
\langle \delta, \varphi \rangle = \langle \delta, \varphi \rangle = \varphi(0) = \int \varphi(x) \, dx = \langle 1, \varphi \rangle
\]

\[
\implies \widehat{\delta} = 1.
\]

Example 2. \(\partial^\alpha \delta(\xi) = (i\xi)^\alpha \).

Simple application: Generalized Liouville’s theorem

Suppose \(P(\xi) \neq 0 \) if \(\xi \neq 0 \). For example this holds for the Laplacian or the heat operator. Let \(u \in S' \) that satisfies \(P(\partial)u = 0 \). Then

\[
P(i\xi)\widehat{u}(\xi) = 0
\]

\[
supp \widehat{u} \subset \{0\}
\]

\[
\implies \widehat{u} = \sum_\alpha \partial^\alpha \delta, \quad |\alpha| < \infty
\]

\(u \) is a polynomial.