1 Fundamental Matrix Solution e /¢4t
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Motivation

The term e”(P=)t f or (€t f appears often. These terms essentially defines a notation to express the
solution of systems of differential equation. The notation is motivated by the following:

Consider the Cauchy problem for the ODE for scalar function u : R — R,

{Cf#:au teR

1

u(0) =c M)
Then the solution has the form u(t) = e**c. Analogously, we write the solution of the Cauchy problem
for the linear system of ODEs for a vector valued function u : R — R™,

{Z(g)iug Sol: u(t) = eAtg (2)

However although e“? is not ‘defined’ by taking m x m matrix as an exponent, it however possesses
the following properties, and can be manipulated in a manner described below.

Definition 1. The matriz exponential et of a A € M, 5., (C) is an m xm matriz defined formally

by the series

A2t2 A3t3 Antn
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The reason for this definition is motivated not only by the structure resemblance indicated in (2),

but also since this holds for all ¢ € R by virtue of the absolute convergence of the Taylor series for e%!

on the entire real line.

e =T+ At + +- (3)

1.1 Properties

e The absolute convergence of e for all square matrices A and all ¢t € R justifies

d At At
P e (4)

which can be verified by differentiation each term in the series definition of e?.
e The matrix exponential e shares technical similarities with scalar e®:
(eAt)fl _ efAt and eA(tJrs) _ eAtest (5)

The verification for those are possible, however complicated (especially for the inverse) as they
require using the series definition. Note that eA’e!P = e(A+B)t «— AB = BA.
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Fundamental Matrix Solution e?

Consider the following for constant vector g € R™ and A € M, % (C), a simple computation reveals
if u = eAg then

d
U= %emg = Aettyg = Au.

It follows that e“’g solves the system of ODEs @ = Au.

Consider the following

eAtg — e(A—)\I)teAIg (6)
2_[2t2

A%t?
= [1+)\t+2|+-~-}g=e’\tg

It follows that

M (A=At

ety = eMel g. (7)

It is important to note that the factor e on the left is a scalar function which comes up when solving
ODEs of the form @ = Au for scalar and matrix A. It is left to examine e(A=*tg,

From linear algebra if g satisfies (A — AI)Pg = 0 for some positive integer p, then (4 — IN)P*lg =0
for all [ > 0. In particular, suppose this for some p, then by Definition (1) the series terminates after
the first p terms:

tr—1
Al =g+ A= Mg o g (A =AD" g,
eAtg o e)\te(Af)\I)tg
N tP—1 1
=e g+t(A—M)g+---+(p_l),(A—M)p_9 €C™. ®)

Where we note that g is an eigenvector of A with eigenvalue .

Theorem 1. [BRAUN] Let U(t) be a fundamental matriz solution of a differential equation
u = Au. Then,
et =Ut)G(0), (9)

equivalently, we can consider U(t) as solution vector
U(t) = eMG(0). (10)

In other words, the product of any fundamental matriz solution of 4 = Au with inverse at t = 0 must
yield et

It is easy to see now that ¢”(©)! defines the fundamental matrix solution described
above for the ODE system (in Fourier space) in a more general setting, meanwhile
eP’(P=)t defines the Fourier inverse of the solution e?(¢)t,



1.2 Canonical Examples

e Not diagonalized/Jordan Canonical form/ Repeated roots:

A1 0 1t
A=[0 X 1| = etg=eM[0 1
0 0 A 0 0

e Non defected matrix/no repeated roots:

A O eMt 0 10 0 0
A(ol A2> ﬁe“g(o e*2t>gem(0 0>9+6A2t<0 1>9

(Recall Spectral Projectors.)
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