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1 Abstract

In this note, I will first recall basics of General Relativity and Einstein equa-
tion. We aimed at setting out the basic mathematical framework for general
relativity. Then we will briefly talk about Einstein equations and their so-
lutions, regular ellipticity and hyperbolicity, Cauchy problem for Einstein
equations and the decomposition of Einstein equations. Finally, if time per-
mitted, we will talk about in details of rough solutions of the Einstein Cons-
triant equations on compact manifold based on a nicely presented paper by
David Maxwell.

2 Basics

The theory of General relativity is a theory that unified space, time and
gravitation. Notice that our understanding of structure of space time has
been renovated by Albert Einstein and others in early 20th century contrary
to people’s intuitive notion of absolute space and time. Therefore, since
everything now is not absolute, it becomes more mathematically complicated.
At first , special relativity is introduced, but it treated only uniform motion
that we wish to develop a more advanced theory that could correct all logical
inconsistency of SR. That is General Relativity, since the large structure is
uncertain and locally, one may use SR. One naturally relates this to the
theory of manifold.

Definition 1 A spacetime manifold is a 4 dimensional oriented differen-
tiable manifold M , endowed with a Lorentzian metric g.
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Definition 2 A Lorentzian metric g is a continuous assignment of a non-
degenerate quadratic form gp, of index 1 , in TpM at each p of M , where
TpM is the tangent space of M at p and non-degenerate means g(X, Y ) =
0∀Y ∈ TpM ⇒ X = 0.

Definition 3 A quadratic form gp in TpM is called Lorentzian if there exists
a vector V ∈ TpM such that gp(V, V ) < 0 while setting

ΣV = {X; gp(X, V ) = 0},

gp|ΣV is positive definite.

Now I assume the reader have knowledge of tensors and differential forms.
We recall

Definition 4 The covariant derivative of vector V is given by

$µ∂µV
ν + Γν

µλV
λ.

While for a one form ,it is given by

$µων = ∂µων − Γλ
µνωλ.

In general, for a tensor, we have

$σT
µ1···µk
ν1···νl = ∂σT

µ1···µk
ν1···νl +

Γµ1
σλT

λµ2···µk
ν1···νl + Γ

µ2T
µ1λ···µk
ν1···νl

σλ + · · ·

−Γλ
σν1T

µ1···µk
λ···νl −−Γλ

σν2T
µ1···µk
ν1λ···νl − · · · .

where the Christoffel symbol is given as Γµ
αβ = 1

2g
µν(∂αgβν) + ∂βgαν − ∂νgαβ

Now we define Ricci tensors and scalars:

Rα
µλν = ∂λΓ

α
µν − ∂νΓ

α
µλ + Γα

βλΓ
β
µν − Γα

βνΓ
β
µλ (1)

Rµν = Rα
µαν = ∂αΓ

α
µν − ∂νΓ

α
µα + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα (2)

R = gµνRµν (3)
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The Einstein equation relates spacetime and matter. It interprets gravity as
curvature of spacetime which gives :

Gµν := Rµν −
1

2
gµνR = 2Tµν (4)

Here Tµν is the energy momentum tensor of matter, Gµν the Einstein tensor,
Rµν is the Ricci tensor and R the scalar curvature of the metric gµν . Also
from the Bianchi identity

$αRβγδε +$βRγαδε +$γRαβδε = 0 (5)

One obtains
$νGµν = 0 (6)

and the twice contracted Bianchi identity implies

$νTµν = 0 (7)

So the Einstein vacuum equations

Gµν = 0 (8)

correspond to Tµν = 0 which are equivalent to Rµν = 0.
Denoting by P.P the principal part which is the part containing the highest
derivatives of the metric , we get:

P.P{Rµν} =
1

2
gαβ(∂µ∂αgβν + ∂ν∂αgβµ − ∂µ∂νgαβ − ∂α∂βgµν). (9)

We shall now consider the symbol of an Einstein equation. The symbol is
defined by replacing in the principal part ∂µ∂νgαβ by ξµξν ˙gαβ. We then obtain
the symbol σξ at point p ∈ M and a covector ξ ∈ TpM∗, for given metric g:

(σξ, ġ)µν =
1

2
gαβ(ξµξαġβν + ξνξαġβµ − ξµξν ġαβ − ξαξβ ġµν). (10)

We will denote
(iξġ)ν = gαβξαġβν ,

(ξ, ξ) = gαβξαξβ,

(ξ ⊗ ζ)µν = ξµξν ,
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gαβ ġαβ = trġ.

Write

(σξ̇̇g) =
1

2
{ξ ⊗ iξġ + iξġ ⊗ ξ − trġξ ⊗ ξ − (ξ, ξ)ġ}. (11)

We introduce the notion of the symbol of a system of Euler-Lagrange equa-
tions. Let us denote x, the independent variables , xµ,m = 1, · · · , n by q,
the independent variables qα, a = 1, · · · ,m by v. Then for the Lagrangian
L = L(x, q, v)
We have a set of solution of the Euler Lagrange equations , if substituting

qa = ua(x),

vαµ =
∂ua

∂xµ
(x). ⇒

∂

∂xµ
(
∂L

∂vaµ
(x, u(x), ∂u(x)))− ∂L

∂qa
(x, u(x), ∂u(x)) = 0. (12)

Define pµa = ∂L
∂vaµ

, fa =
∂L
∂qa . Then , the Euler Lagrange equation become

∂pµa
∂xµ

= fα (13)

The principal part of the equation is

hµν
ab

∂2ub

∂xµ∂xν
(x, u(x), ∂u(x)),

where

hµν
ab =

∂2L

∂vaµ∂v
b
ν

(x, q, v).

The equation of variation, these are the linearized equations, has principal
part is

hµν
ab (x, u(x), ∂u(x))

∂2u̇b

∂xµxν

where we denote by u̇a, the variation of functions ua .
Consider the oscillatory solutions u̇a = ẇaeiψ of the equation of variation,
writing ψ

ε in place of ψ and substitute back into the linearized equations and
keeping only the leading terms as ε goes to zero, we obtain
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hµν
ab (x, u(x), ∂u(x))ẇ

b ∂ψ

∂xµ

∂ψ

∂xν
= 0 (14)

The left hand is the symbol σξ̇̇w where ξµ = ∂ψ
∂xµ . Hence the symbol of the

Euler Lagarange equations is in general given by

(σξ̇̇u)
a = hµν

ab ξµξν (̇u)
b = chiab(ξ)u̇

b (15)

where
χab(ξ) = hµν

ab ξµξν .

Globally, the xµ are the local coordinates on an n dimensional manifold
M and x denotes an arbitrary point , qa are local coordinates on an m
dimensional manifold N and q arbitrary point on N . The unknown u is a
mapping from M to N and the function (ua(x), a = 1, · · · ,m) describes the
mapping locally.

Definition 5 Let M be an n-dimensional manifold. The characteristic sub-
set C∗

x ⊂ T ∗
xM defined by

{C∗
x = {ξ (= 0 ∈ T ∗

x : nullsp(σξ) (= 0} = {ξ (= 0 ∈ T ∗
x : detχ(ξ) = 0.}

Example:
We see that the linear wave equation gµν $µ (∂νu) = 0 which arises from the
Lagrangian L = 1

2g
µνvµvν . The symbol is σξ̇̇u = (gµν)ξµξν and the character

is
C∗

x = {ξ (= 0 ∈ T ∗
xM : (ξ, ξ) = gµνξµξν = 0}

Now return to Einstein equations ,set

ġ = ζ ⊗ ξ + ξ ⊗ ζ (16)

for any ξ ∈ T ∗
xM , then

iξġ = (ζ, ξ)ξ + (ξ, ξ)ζ; trġ = 2(ζ, ξ) (17)

We have that σξ̇̇g = 0 Therefore the null space of σξ is nontrivial for every
covector ξ . The degeneracy is due to that the equation are generally covari-
ant. If g is a solution of the Einstein equation and f is a diffeomorphism
of the manifold onto itself, then X generates a 1-parameter group {ft} of

5



diffeomorphisms of M and LXg = d
dtf

∗
t g|t=0, the Lie derivative with respect

to X of g , is a solution of the linearized equations.
Note that the Lie derivative of g with respect to a vector field X is given by

(LXg)(Y, Z) = g($YX,Z) + g($ZX, Y ) (18)

Let Y = Eµ and Z = Eν , where {Eµ} is an arbitrary frame , write

(LXg)µν = $µXν +$νXµ (19)

here Xµ = gµλXλ. Now the symbol of a Lie derivative is given by

ġµν = ξµζν + ξνζµ (20)

where ζµ = Ẋµ. A simple analogue is given by Maxwell equations for the
electromagnetic field Fµν ,

$νFµν = gνλ $λ Fµν = 0, (21)

Recall that F = dA, Fµν = ∂µAν − ∂νAµ, where Aµ is the electromagnetic
potential , a 1-form. The Maxwell equations are the Euler Lagrange equations
of Lagrangian

L =
1

4
F µνFµν (22)

where F µν = gµκgνλFκλ. The symbol of these equation is

(σξ̇̇A)µ = gνλξλ(ξµȦν − ξνȦµ) (23)

That is ,
(σξȦ) = (ξ, Ȧ)ξ − (ξ, ξ)Ȧ (24)

By looking at the variation,
Ȧ = λξ.

for any real λ ⇒
σξ̇̇A = 0

we also have degeneracy here and the null space of σξ is nontrivial for all
ξ ∈ T ∗

xM . Notice that this is due to the gauge invariance of the Maxwell
equations. If A is a solution , so is

Ã = A+ df
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In fact, Ã is considered to be equivalent to A. By linearity, Ȧµ = ∂µf
is a solution of the linearized equations, for any function f . To remove
degeneracy, we shall factor out these trivial equations. At the level of the
symbol , the gauge transformation is

˙̃
µA = Ȧµ + ξµḟ (25)

we then obtain a relation Ȧ1 ∼ Ȧ2 if and only if

Ȧ2 = Ȧ1 + λξ.

Case.1 : (ξ, ξ) (= 0
σξȦ = 0 ⇒ Ȧ = λξ

where λ = (ξ,Ȧ)
(ξ,ξ) That is Ȧ ∼ 0

Case.2 (ξ, ξ) = 0 In this case ,we may find ξ̄ in the same component of the
null cone such that (ξ̄, ξ̄) = −2. Therefore there exist a unique representative
Ȧ in each equivalence class in Q such that

(ξ̄, Ȧ) = 0.

If we take another element Ȧ′ out of equivalence class of Ȧ, i.e Ȧ′ = Ȧ+ λξ
for some λ any real number. Then

0 = (ξ̄, Ȧ′) = (ξ, Ȧ)− 2λ.

so that Ȧ is the unique represntation of equivalent class with (ξ, Ȧ)?0 The
null space of σξ consist of the spacelike 2 dimensional plane, the g-orthogonal
complement of the timelike plane π spanned by ξ and ξ̄. So, π is the space
of the degrees of freedom of electromagnetic field at a point.
Come back to the symbol for Einstein equations, the symbol for the Lie
derivative

(LXg)µν = $µXν +$νXµ (26)

as
ξµẊν + ξνẊν , (27)

where Ẋµ are the component of an arbitrary covector. For the equivalence
relation ġ1 ∼ ġ2 implies that

ġ2 = ġ1 + ζ ⊗ ξ + ξ ⊗ ζ + xi⊗ ζ

7



which gives a quotient space.
Again we distinguish the two cases according as to answer whether the cov-
ector ξ satisfies (ξ, ξ) (= 0 or (ξ, ξ) = 0
Case.1 (ξ, ξ) (= 0 then σξ̇̇g = 0 implies that

ġ = ζ ⊗ ξ + ξ ⊗ ζ.

where ζ =
(iξ ġ− 1

2 trġξ)

(ξ,ξ) thus σξhas only trivial null space.

Case.2 (ξ, ξ) = 0
now we can choose ξ in the same component of the null cone N∗

x in T ∗
xM

such that (ξ, ξ) = −2. There is a unique representative ġ in each equivalence
class {ġ} such iξġ = 0. So,

σξ̇̇g = 0

implies thar
ξ ⊗ iξġ + iξġ ⊗ ξ − ξ ⊗ ξtrġ = 0

By taking inner product with ξ we see that (iξġ, ξ) = (iξġ, ξ) = 0, thus

−2iξġ + 2ξtrġ = 0.

Taking inner product again with ξ, we get

−4trġ = 0

That is trġ = 0, which yields iξġ = 0. Conversely, iξġ = 0 and trġ = 0
implies that ġ is in the null space of σξ. Therefore , if ξ ∈ N∗

x , then the null
space of trace-free quadratic forms on the 2 dimensional spacelike plane π,
the g-orthogonal complement of the linear span of ξ and ξ̄, which is the space
of gravitational degrees of freedom at a point .

2.1 Regular ellipticity and hyperbolicity

Continuing the notation as in the previous section, we have introduced the
quadratic form

hµν
ab =

∂2

∂vαµ∂v
b
ν

(x, q, v).

in general context of Lagrangian theory of mappings u : M → N . If u is
a background solution, x ∈ M , q = u(x) and let ξ ∈ T ∗

xM and Q ∈ TqN .
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Q is a variation in position. The corresponding variation in velocity v̇ is a
linear map from TxM to TqN . For any X ∈ TxM , the components of the
vector Q = v̇Ẋ ∈ TqN are Qa = v̇aµX

µ, where Xµare the component of X
and vµa component of of v̇. The space S2(L(TxM,TqN)) of quadratic forms
on L(TxM,TqN) splits into the direct sum:

S2 = S2+ ⊕ S2−

where S2+ consists of the even quadratic forms and S2− of odd quadratic
forms. Thus , a quadratic form h on L(TxM,TqN) decomposes into

h = h+ + h−,

where h+ and h− are , the even and odd part of h respectively. Component-
wise, we have

hµν
ab = hµν

+ab + hµν
−ab,

where
hνµ
ba = hµν

ab

and
hνµ
+ab = hµν

+ab = hµν
+ab,

hνµ
−ab = hµν

−ba = −hµν
−ab.

We begin by

Definition 6 Rank-1 elements of L(TxM,TqN) are the elements v̇ of the
form

v̇ = ξ ⊗Q, ξ ∈ T ∗
xM,Q ∈ TqN,

which means: v̇Ẋ = (ξẊ)Q for all X in TxM .

For now, we consider the quadratic form h(v̇, v̇) = hµν
ab v̇

a
µv̇

b
ν .

Regular ellipticity (Lengendre-Hadamard condition). A Lagrangian L is
called regular elliptic at (x, q, v) if the quadratic form h = ∂2L

∂v2 on L(TxM,TqN)
is positive definite on the set of rank-1-elements v̇aµ = ξµQα with ξ ∈ T ∗

xM
and Q ∈ TqN .
Notice that L and L′ two Lagrangians satisfy the same Lagrangian equation,
then the difference h − h′ of the corresponding quadratic forms is an odd
quadratic form. Also, the definition of regular ellipticity is independent of
the choice of Lagrangian for the same Euler -Lagrange equations because odd
quadratic forms is 0 on the set of rank-1-elements.

9



Definition 7 A Lagrangian L is called regularly hyperbolic at (x, q, v) if the
quadratic form h = ∂2L

∂v2 (x, q, v) on L(TxM,TqN) has the following property:

There exists a pair (ξ, X) in T ∗
xM × TxM with ξẊ > 0 such that 1.h is

negative definite on the space

Lξ = {ξ ⊗Q;Q ∈ TqN},

2. h is positive definite on the set of rank-1-elements of the subspace

ΣX = {v̇ ∈ L(TxM,TqN); v̇Ẋ = 0}.

Note that the definition is also independent of the choice of Lagrangian giving
rise to the same Euler-Lagrange equation.

Definition 8 For quadratic form h on L(TxM,TqN), and a pair (ξ, X) in
T ∗
xM × TxM with ξẊ > 0, we define a new quadratic form

m(ξ, X)(v̇1, v̇2) = (ξẊ)h(v̇1, v̇2)− h(ξ ⊗ v̇1Ẋ, v̇2)− h(v̇1, ξ ⊗ v̇2Ẋ).

We call this the Noether transform of h.

Proposition 9 A Langrangian L is regularly hyperbolic at (x, q, v) if and
only if there exists a pair (ξ, X) in T ∗

xM × TxM with ξẊ > 0 such that the
Noether transform m(ξ, X) of h corresponding to (ξ, X) is positive definite
on the following set

Rξ = {ξ ⊗ P + ζ ⊗Q : ∀ζ ∈ T ∗
xM, ∀P,Q ∈ TqN.}

Remark 10 If h an odd quadratic form, then the Noether transform of h
vanishes on Rξ

Given h and a nonzero ξ, we define

χ(ξ)(Q1, Q2) = h(ξ ×Q1, ξ ⊗Q2).

i.e
χab(ξ) = hµν

ab ξµξν .

Then the characteristic subset C∗
x of T ∗

xM is defined by

C∗
x = {ξ (= 0 ∈ T ∗

xM : χ(ξ)singular} (28)
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We can also define:

ψ(Q)(ξ1, ξ2) = h(ξ1 ⊗Q, ξ2 ⊗Q) (29)

i.e
ψµν(Q) = hµν

abQ
aQb.

Next we define,

Λ(ξ) = {ψ(Q)ξ̇ : Q (= 0 ∈ nullsp(χ(ξ))}.

a subset of
Σξ = {X ∈ TxM : ξẊ = 0}

so that we can consider ψ(Q) a linear map of T ∗
xM → TxM

ξµ → ψµν(Q)ξν .

Note Λ(ξ) is a positive cone in Σξ. This means for X ∈ Λ(ξ), λ > 0, λX lies
in Λξ . Also,

Λ(µξ) = Λ(ξ), ∀µ > 0.

For a regular point ξ of C∗
x, the null space of χ(ξ) has dimension 1 and Λ(ξ)

is a ray. Else, the maximal dimension of Λ(ξ) is dimΣξ = n− 1.

Definition 11 The characteristic subset Cx of TxM is defined:

Cx =
⋃

ξ∈C∗
x

Λ(ξ)

3 Cauchy Problem

We will now explore, Cauchy problem for Einstein equations: local in time
, existence and uniqueness of solutions. We shall discuss some work of
Y.Choquet Bruhat, which based on reduction of Einstein equation to wave
equations.

Definition 12 Let (M, g) be a Riemannian manifold, a function is called
harmonic if

∆gΦ =0

where ∆gΦ = gµν $µ (∂νΦ).
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Now our problem is : Given a coordinate chart (U, x) with x = (x0, x1, x2, x3),
aimed at finding functions Φµ, µ = 0, 1, 2, 3 , each of which is a solution of
the wave equation in U ,

∆gΦ = 0

in U , and such that, setting

x̄µ = Φµ(x0, x1, x2, x3).

so that we get a diffeomorphism of the range V in R4 onto another domain
V̄ in R4. We thus have another chart (U, x̄) with domain U , another system
of local coordinates. The equation ∆gΦ = 0 in an arbitrary system of local
coordinates:

∆gΦ = gµν(
∂2Φ

∂xµ∂xν
− Γα

µν

∂Φ

∂xα
) = 0 (30)

Suppose now that we use the function (x̄0, x̄1, x̄2, x̄3) as local coordinates in
U .That is we express thins locally in new coordinate chart. Setting Φ equal
to each one of the x̄β, β = 0, 1, 2, 3, we have a solution of above equation .
Since
Dropping the bars we say that the system of local coordinates is harmonic if
and only if the connection coefficients in these coordinates satisfy the condi-
tion.

Γα := gµνΓα
µν = 0 (31)

Let us set Γα := gαβΓβ. Thus , we can write

Γµ = gαβ∂αgβµ −
1

2
gαβ∂µgαβ.

Consider the principal part of ∂µΓν + ∂νΓµ, which is :

P.P{∂µΓν + ∂νΓµ} = gαβ{∂α∂µgβν + ∂α∂νgβν − ∂µ∂νgαβ}

We will define

Hµν = Rµν −
1

2
∂µΓν + ∂νΓµ (32)

with the principal part

P.P{Hµν} = −1

2
gαβ∂α∂βgµν .
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and now

Hµν = −1

2
gαβgµν +Bαβκλρσ

µν ∂αgκλ∂βgρσ. (33)

where B is a rational function of the metric g of degree -2, the ratio of a
homogeneous polynomial in g of degree 6. Replacing the Einstein equations

Rµν = 0. ⇒ Hµν = 0

which is a system of non-linear wave equations for the metric component gµν .
Choquet-Bruhat studied the Cauchy problem for these reduced equations.
By writing

Rµν = Hµν +
1

2
Sµν .

Sµν = ∂µν = ∂µΓν + ∂νΓµ.

We have

Rµν −
1

2
gµνR = Hµν −

1

2
gµνH +

1

2
(Sµν −

1

2
gµνS), (34)

and

$ν(Sµν −
1

2
gµνS) = gνλ $λ Ŝµν . (35)

Once we have a solution of the reduced equations, then by twice contracting
Bianchi identities.

$ν(Rµν −
1

2
gµνR) = 0 (36)

and the solution also satisfies

$νŜµν = 0 (37)

Since S = 2∂νΓν ,
Ŝµν = ∂µΓν + ∂νΓµ − gµν∂

λΓλ.

Also,

P.P{$νŜµν} = ∂µ(∂
νΓν) + ∂ν∂νΓµ − ∂µ(∂

λΓλ) = gαβ∂α∂βΓµ.

In fact,
$νŜµν = gαβ∂α∂βΓµ + Ȧαβ

µ ∂αΓβ.
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for A some linear form in ∂g which are homogeneous functions of g . There-
fore the equations

$νŜµν = 0

contains a systemof homogeneous linear wave equations for Γµ. Consequently,
Γµ vanish identically provided the initial condition vanish, i.e

Γµ|Σ0 = 0

∂0gµν |Σ0 = 0

where Σ0 is the initial hypersurface x0 = 0. Given now initial data for the
Einstein equations

Rµν = 0 = R̂µν .

here R̂µν = Rµν − 1
2gµνR, we will construct initial data gµν |Σ0 and ∂0gµν |Σ0

for the reduced equations Hµν = 0 such that

Γµ|Σ0 = 0

∂0gµν |Σ0 = 0

are satisfied. According to above, the gµν of the Cauchy problem for the
reduced equations also satisfy the condition Γµ = 0 ,therefore shall be the
solution of the original Einstein equation .
Initial data for the Einstein equation consist of a pair (ḡij, kij), where ḡij
is a Riemman metric and kij a 2 covariant symmetric tensor field on the 3
manifold M̄ , which is to be identified with the initial data hypersurface Σ0.
Once we have a solution (M, g) with M = [0, T ]×Σ0 and Σ0 = M̄ . Then ḡij
and kij will be the first and second fundamental form of Σ0 = {0} × Σ0 in
(M, g). That is ,

ḡij = gij|Σ0

for i, j = 1, 2, 3.
We choose the coordinates to be Gaussian normal along Σ0, that is

gi0|Σ0 = 0 (38)

g00|Σ0 = −1 (39)

Then
∂0gij|Σ0 = 2kij (40)
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We then choose ∂0g0i|Σ0 ,∂0g00|Σ0 so that the condition below is satisfied.

Γµ|Σ0 = 0.

A short calculation will show that

∂0g0i|Σ0 = Γ̄i.

and
∂0g00|Σ2tr(k)

where Γ̄i induced by metric gij. Note that tr(k) = ḡijkij. This is all about
specification of initial data for the reduced equations. Now we wish to con-
sider that for a solution of the reduced equations,

R̂0i|Σ =
1

2
Ŝ0i|Σ0 =

1

2
{∂0Γi + ∂iΓ0 − g0i∂

λΓλ|Σ0} =
1

2
∂0Γi|Σ0 .

and

R̂00|Σ00 =
1

2
Ŝ00|Σ0 =

1

2
{2∂0Γ0 − g00∂

λΓλ|Σ0} =
1

2
∂0Γ0|Σ0

Then, if the initial data (ḡij, kij) verify the constraint equations.

R̂0i|Σ0 = 0 (41)

R̂00|Σ0 = 0 (42)

then the conditions ∂0Γµ|Σ0 = 0 are also satisfied.
In the original work of Choquet-Bruhat, a local problem was posed and the
initial data is given on a domain Ω ⊂ Σ0. The first step is to extend the initial
condition to the whole plane in such way that it becomes trivial outside a
larger domain Ω′ containing Ω, with compact closure in R3

The next step in construct a solution is based on the domain of dependence
theorem, to be formulated below. Let (M, g) be the known spacetime, where
M = [0, T ]× Σ0.

Definition 13 The domain of dependence of Ω in the spacetime (M, g) is
the subset of M for which Ω is a (incomplete) Cauchy hypersurface, denoted
by D(Ω).
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The domain D(Ω) of M is the set of points p ∈ M such that each past
directed casual curve in M through p intersects Ω. In D(Ω), the solution
depends only on the initial data in Ω. In particular, since the constraint
equations are satisfied in Ω, we have that Γµ and ∂0Γµ all vanish in Ω. By
the domain of dependence theorem applied to the (linear homogeneous) wave
equations for Γµ, it vanish throughout D(Ω). Therefore, the solution of the
reduced equations is a solution of the Einstein equations

Rµν = 0

in D(Ω). If the 3-manifold M̄ is compact, one can cover M̄ with a finite
number of coordinate charts and construct a local time solution by combining
together the local solutions. For , suppose Ω1 and Ω2 are two such coordinate
charts with Ω1 ∩ Ω2 (= 0. Note that we are given initial data (ḡ, k) on
the whole 3-manifold M̄ , the representations of these data given by two
charts, are related by the diffeomorphism in the overlap. Thus there exists
diffeomorphism f of Ω1 ∩ Ω2 onto itself such that

ḡ2 = f ∗ḡ1, k2 = f ∗k1.

After the transformation, we may assume that the initial data coincide in Ω1∩
Ω2. For g1 and g2 are the two solutions of reduced equations, corresponding
to the initial conditions in Ω1 and Ω2 respectively, the domain the domain
of dependence theorem asserts that g1 and g2 coincide in the domain of
dependence of Ω1 ∩ Ω2 relative to either g1 or g2.
We can then extend either solution (D(Ω1, g1) , (DΩ2 , g2) to the union , the
domain of dependence of Ω1 ∪ Ω2.

Definition 14 Given initial data (Ω, ḡ, k) , where completeness is not re-
quired , we say that a space time (U, g) is a development of this data, if Ω is
a Cauchy hypersurface for U . So Ω is the past boundary of U and ḡ and k
are respectively the first and second fundamental forms of the hypersurfaces
Ω in (U, g). Moreover, g satisfies the Einstein equations

Rµν = 0.

Simlarly, if U1 and U2 are development of the initial data, then we can define
a development with domain U1 ∪U2 which extends the corresponding metric
g1 and g2. Hence, the union of all developments of given initial data is also
a development of the same data, the maximal development of that data.
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Theorem 15 (Y.Choquet-Bruhat, R. Geroch) Any initial data set (M̄, ḡ, k)
where completeness is not assumed, satisfying the constraint equations, gives
to a unique maximal development.

We shall now give an give a presentation of domain of independence theorem
in general Lagragian setting. Recall the Lagrangian of mapping u : M →
N . Given a background solution u0, we define the quadratic form h =
∂2L
∂v2 (v0) with h(v̇, v̇) = hµν

ab v̇
a
µv̇

b
ν and v0 = du0(x). Let us denote by {L}, the

equivalence class of Lagrangians giving the same Euler-Lagrange equations

Definition 16 We call {L} regularly hyperbolic at v0 if the quadratic form
h satisfy: 1.There is a covector ξ ∈ T ∗

xM such that h is negative definite on

Lξ := {ξ ⊗Q : Q ∈ TqN} ⊂ L(TxM,TqN).

that is , the elements of the form v̇aµ = ξµQa.

2. There is a vector X ∈ TxM with ξẊ > 0 such that h is positive definite
on the set Σ1

X of rank -1 -elements of the subspace

ΣX = {v̇ ∈ L(TxM,TqN) : v̇Ẋ = 0}

That is , the elements of the form v̇aµ = ζµP a where ζµXµ = 0.

Definition 17 Let h be regularly hyperbolic. Set

I∗x = {ξ ∈ T ∗
xM : hnegative definite onLξ}

and
Jx = {X ∈ TxM : hpositive definite onΣ1

X}

Proposition 18 I∗x and Jx are open cones each of which has two components
I∗x = I∗+x ∪I∗−x and Jx = J+

x ∪J−
x . where I∗−x and J−

x are the sets of opposites
of elements in I∗+x and J+

x . Further each component is convex. The boundary
∂I∗x is a component (the inner component) of C∗

x, the characteristic in T ∗
xM

and ∂Jx is a component (the inner component) if Cx, the characteristic in
TxM .

Recall the definition of Noether transform m(ξ, X) if h corresponding to a
pair (ξ, X) ∈ T ∗

x (M)× TxM with ξ · Ẋ > 0:

m(ξ, X)(v̇1, v̇2) = (ξ, X)h(v̇1, v̇2)− h(ξ ⊗ v̇1 ·X, v̇2)− h(v̇1, ξ ⊗ v̇2Ẋ).
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Proposition 19 Let U+
x ⊂ T ∗

xM × TxM be given such that

U+
x = {(ξ, X) : ξ ·X > 0}

Consider the subset of U+
x contains of those (ξ, X) with m(ξ, X) positive

definite on Rξ = {ξ⊗P + ζ ⊗Q : ∀ζ ∈ T ∗
xM, forallP,Q ∈ TqN} . Then this

subset is given by
(I∗+x × J+

x ) ∪ (I∗−x × J−
x ).

Furthermore, on the boundary of this set m(ξ, X) has nullity.

We will now quickly discuss the idea of variation of a mapping u0 : M → N .
A variation of u0, namely u̇ is a section of u∗

0TN , (the pullback by u0 of
TN). Generally, for B a bundle over N and u0 : M → N , denote by u∗

0B,
the pullback bundle, namely the following bundle over M :

u∗
0B =

⋃

x∈M

{x}× Bu0(x),

where Bq is the fibre of B over q ∈ N .
Hence, a variation u̇ maps x ∈ M → u̇(x) ∈ Tu0(x)N . Now given x ∈ M ,
u̇(x) is the tangent vector at u0(x) of the curve t → ut(x) in N , where ut is a
differentiable 1-parameter family of mappings ut : M → N , u̇(x) = dut(x)

dt |t=0.
For Jx ⊂ TxM : Jx is the set of possible values at x ∈ M of a vector field
X on M such that the reduced equations form a regular elliptic system. On
the other hand , the subsets I∗x ⊂ T ∗

xM defines a spacelike hypersurface.

Definition 20 A hypersufrace H in M is called spacelike , if at each x ∈ H,
the double ray {λξ : λ (= 0 ∈ R} , defined by hyperplane TxH in TxM .,

is contained in I∗x

Definition 21 Īx, the casual subset of TxM , is the set of all vectors X ∈
TxX such that ξ ·X (= 0 for all ξ ∈ I∗x

Īx is a closed subset of TxM with Ī+x ∪ Ī−x , where Ī−x is the set of opposites
of the elements in Ī+x . One can see easily that each component is convex.
If X ∈ ∂Īx, then there isa a covector ξ ∈ ∂I∗x such that ξ ·X = 0. It follows
that each component I∗+x and I∗−x lies to one side of the plane

ΠX = {ξ ∈ T ∗
xM : ξ ·X = 0}.

and it contains a ray of ∂I∗+x and ∂I∗−x respectively.
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Definition 22 A causal curve γ in M is a curve in M whose tangent vector
γ̇(t) at each point of γ(t) belongs to Īγ(t).

The following statements are valid for the future and past components of Īx
and Jx separately. Generally, Jx ⊂ Īx.

Definition 23 Let R be a domian in M in which a solution u of the Euler
Lagrange equations is defined. Consider a domain D ⊂ R and a hypersurface
Σ in R, which is spacelike relative to du. 1. We say that D is a development
of Σ if we can express D = ∪t∈[0,T ]Σt, where {∪t∈[0,T ]Σt} is a foliation and
where each Σt is a spacelike hypersurface in R homologous to Σ0 = Σ. In
particular, ∂Σt = ∂Σ for all t ∈ [0, T ].
2.D is a development of Σ if each causal curve in R through any point of D
intersects Σ at a single point.

One can show that if D1 and D2 are developments of Σ then D1∪D2 is also a
development. So given a domain of definition R and a spacelike hypersurface
Σ, we can define the domain of dependence of Σ in R relative to du to be
the maximal development.
To state the domain of dependence theorem in a precise manner, first we
formulate rigourously the general Lagragian setup. Consider maps u : M →
N and the configuration space C = M×N . The velocity space V is a bundle
over C :

V = ∪(x,q)∈CL(TxM,TqN).

we have a projection
π : V → C.

v ∈ L(TxM,TqN) → (x, q) ∈ C,

where we write πV,M for π1 ◦ π : V → C → M and we write πV,N for
π2 ◦ π : V → C → N .
The notation will be: TM : tangent bundle ΓrM : bundle of (fully antisym-
metric) r-forms on M S2M : bundle of quadratic (symmetric bilinear) forms
on M ΓnM : bundle of top-degree-forms,
So, ΓnM is a bundle over M and :

πV,M : V → M

the projection from above. Then the pullback bundle is

π∗
V,MΓnM,
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a bundle over V . An element of this is ω ∈ (ΓnM)x with x ∈ M and ω
is attached to an element v ∈ L(TxM,TqN). The Lagragian Lis a smooth
section of π∗

V,MΓnM over V . Thus, the map v → L(v) ∈ (ΓnM)x. It is

L(v)(Y1, · · · , Yn)

with Y1, · · · , Yn ∈ TxM a n-linear fully antisymmetric form on TxM .

Definition 24 The action of a map u will be defined in a domain R in M ,
corresponding to a subdomain D ⊂ R is

A[u;D] =

∫

D

L ◦ du

L◦du is a section of ΓnM over R. Notice that (L◦du) = L(du(x)) ∈ (ΓnM)x.
dimM = n, dimN = m, dimC = n+m, dimV = n+m+mn. Suppose that
M is oriented and ε is a smooth volume form on M . Then given a smooth
function L∗ on V , we define the corresponding Lagrangian L by:

L(v)(Y1, · · · , Yn) = L∗(V )ε(Y1, · · · , Yn)

with v ∈ L(TxM,TqN) and Y1, · · · , Yn in TxM .

Finally, we state the domain of dependence theorem.

Theorem 25 Let u0 be a C2 solutiom of the Euler-Lagrange equations cor-
responding to a smooth Lagrangian L; and u0 defined in a domain R in M .
Let Σ be a hypersurface in R, which is spacelike relative to du0. Then let
u1 be another solution of the Euler-Lagrange equations defined and C1 on R.
Suppose that

du0|Σ = du1|Σ.

Then u1 coincides with u0 in the domain of dependence of Σ in R relative to
du0.
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