MATH 580 FALL 2018 PRACTICE PROBLEMS

DECEMBER 7, 2018

1. Let u be a bounded harmonic function in an open set $\Omega \subset \mathbb{R}^n$. Show that

$$|\partial^{\alpha} u(x)| \le \frac{C_{\alpha}}{\operatorname{dist}(x, \partial \Omega)^{|\alpha|}},$$

for all $x \in \Omega$ and all $\alpha \in \mathbb{N}_0^n$, where C_α is a constant that is allowed to depend only on α . 2. Suppose that $u \in C^2(\mathbb{R}^n_+) \cap C(\mathbb{R}^n_+)$ be a bounded harmonic function in the upper half space $\mathbb{R}^n_+ = \{x : \in \mathbb{R}^n : x_n > 0\}$, satisfying $u \leq 0$ on $\partial \mathbb{R}^n_+$. Show that $u \leq 0$ in \mathbb{R}^n_+ .

- 3. Let $\Omega \subseteq \mathbb{R}^2$ be a domain, and let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be a bounded harmonic function in Ω , such that u < 0 on $\partial\Omega$. Show that u < 0 in Ω . Is this result true in higher dimensions?
- 4. Is there a bounded harmonic function in \mathbb{D} that is not uniformly continuous in \mathbb{D} ?
- 5. Give an example of an unbounded harmonic function in $B = B_1$, satisfying

$$|\nabla u(x)| \le \frac{C}{1-|x|}, \qquad x \in B$$

for some constant C.

- 6. Let u be a harmonic function in \mathbb{D} , and suppose that $u(r,0) = u(r \cos \alpha, r \sin \alpha) = 0$ for all $0 \le r < 1$, where $0 < \alpha \le \pi$ is a constant. Show that if α is an irrational multiple of π , then $u \equiv 0$. What happens if α is a rational multiple of π ?
- 7. Give an example of a nontrivial entire harmonic function u in \mathbb{R}^2 , satisfying u(t,1) = u(t,-1) = 0 for all $t \in \mathbb{R}$. Show that such a function u cannot be a polynomial.
- 8. Let $\Omega \subset \mathbb{R}^n$ be a domain, let $\omega \subset \Omega$ be open, and let $K \subset \Omega$ be compact. Then for any $\varepsilon > 0$, there exists $\delta > 0$ such that if u is harmonic in Ω , satisfying $|u| \leq 1$ in Ω and $|u| \leq \delta$ in ω , then $|u| \leq \varepsilon$ on K.
- 9. Let $u \in C(\overline{\mathbb{R}^2_+})$ be a bounded harmonic function in the upper half plane \mathbb{R}^2_+ , satisfying $u(x,0) \to \pi$ as $x \to \infty$ and $u(x,0) \to 0$ as $x \to -\infty$. Compute the limit of $u(r\cos\theta, t\sin\theta)$ as $r \to \infty$, for each $0 < \theta < \pi$.
- 10. A positive harmonic function in $\mathbb{R}^2 \setminus \{0\}$ is constant.
- 11. Let $\Omega \subset \mathbb{R}^3$ be the unit ball with a line L going through the origin removed. In the context of the Dirichlet problem, is the origin regular for Ω ?
- 12. Let $\Omega \subset \mathbb{R}^3$ be the unit ball with the half plane $\{x_2 > 0, x_3 = 0\}$ removed. Is every point of $\partial\Omega$ regular?
- 13. Give an example of a bounded domain with C^1 boundary that does not satisfy the exterior sphere condition at some of its boundary points.
- 14. Show that a domain with Lipschitz boundary satisfies the exterior cone condition at each of its boundary points.
- 15. Let $\Omega \subset \mathbb{R}^n$ be an open set.
 - (a) Using Green's first identity, show that

$$\|\nabla u\|_{L^2(\Omega)}^2 \le \varepsilon \|\Delta u\|_{L^2(\Omega)}^2 + \frac{1}{4\varepsilon} \|u\|_{L^2(\Omega)}^2,$$

for any $\varepsilon > 0$ and $u \in H^2_0(\Omega)$, where $H^2_0(\Omega)$ is the closure of $\mathscr{D}(\Omega)$ in $H^2(\Omega)$.

(b) Under additional assumptions on Ω , and by employing an extension result, show that

$$\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq \varepsilon |u|_{H^{2}(\Omega)}^{2} + C\varepsilon^{-1} \|u\|_{L^{2}(\Omega)}^{2},$$

for any $\varepsilon > 0$ and $u \in H^2(\Omega)$, with C > 0 possibly depending on Ω .

- 16. Let I = (a, b). Prove the following.
 - (a) For any $\varepsilon > 0$, there exists a constant $C = C_{\varepsilon}$ such that

$$\|u'\|_{L^{2}(I)} \leq \varepsilon \|u''\|_{L^{2}(I)} + C\varepsilon^{-1} \|u\|_{L^{2}(I)}$$

for any $u \in C^{\infty}(I)$.

(b) Let $u \in L^2(I)$, and suppose that $u'' \in L^2(I)$ exists in the weak sense, i.e., there is $f \in L^2(I)$ such that

$$\int_{I} u\varphi'' = \int_{I} f\varphi \quad \text{for all} \quad \varphi \in \mathscr{D}(I)$$

Then $u' \in L^2(I)$ exists in the weak sense.

17. We say that $f \in C^{\infty}(\Omega)$ is in the Gevrey class $G^{\alpha}(\Omega)$ with $\alpha \geq 1$, if for any ball B with $B \subset \Omega$, there exist $\delta > 0$ and $M < \infty$ such that

$$||f||_{C^m(B)} \le M \frac{(m!)^{\alpha}}{\delta^m} \quad \text{for all } m \in \mathbb{N}.$$
(1)

We have $G^{\alpha}(\Omega) \subset G^{\beta}(\Omega)$ for $\alpha \leq \beta$, and $G^{1}(\Omega) = C^{\omega}(\Omega)$. Also, it makes sense to define $G^{\infty} = C^{\infty}$. Hence in some sense, the Gevrey classes fill the gap between C^{ω} and C^{∞} . Prove that if $f \in G^{\alpha}(\Omega)$ for some $\alpha \geq 1$ then any weak solution $u \in H^1_{loc}(\Omega)$ of $-\Delta u + tu = f$ satisfies $u \in G^{\alpha}(\Omega)$.

- 18. Let $\Omega = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < x^4\}.$
 - (a) Exhibit a function $u \in H^2(\Omega)$ such that $u \notin L^{\infty}(\Omega)$.
 - (b) Is there a function $u \in H^2(\Omega) \cap C_b(\Omega)$, that cannot be extended to $u \in C(\overline{\Omega})$?
- 19. In each case, exhibit an unbounded function u in Ω , such that $u \in H^k(\Omega)$ for all $k \geq 0$.
 - (a) $\Omega = \{(x, y) \in \mathbb{R}^2 : x > 0, 0 < y < f(x)\}, \text{ where } f \in C([0, \infty)) \text{ is a nonincreasing }$ positive function satisfying $f(x) \to 0$ as $x \to \infty$.
 - (b) $\Omega = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < e^{-1/x} \}.$
- 20. Let $B \subset \mathbb{R}^n$ be an open ball.
 - (a) Let $0 < k \frac{n}{p} < 1$, where $k \ge 0$ is an integer, and $1 \le p < \infty$. Exhibit a function $u \in W^{k,p}(B)$ such that $u \notin C^{0,\alpha}(B)$ for any $\alpha > k - \frac{n}{p}$.
 - (b) Let $k \frac{n}{p} = 0$ and p > 1. Exhibit a function $u \in W^{k,p}(B)$ such that $u \notin L^{\infty}(B)$. (c) Let $k \frac{n}{p} = 1$ and p > 1. Exhibit a function $u \in W^{k,p}(B)$ such that $u \notin C^{0,1}(B)$.
- 21. Let I = (-1, 1) and u(x) = |x|. Show that $u \in W^{1,\infty}(I)$ but u is not in the closure of $C^1(I) \cap W^{1,\infty}(I)$ in $W^{1,\infty}(I)$.
- 22. Let $u \in C^{\infty}(\Omega)$ be given in polar coordinates by $u(r, \theta) = r^a \sin(a\theta)$ with

$$\Omega = \{ (r, \theta) : r < 1, \, 0 < \theta < \pi/a \},\$$

where $a \geq \frac{1}{2}$ is a constant. Determine the values of $p \geq 1$ such that $u \in W^{2,p}(\Omega)$. 23. Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain, and consider the bilinear form

$$a(u,v) = \int_{\Omega} (a_{ij}\partial_i u\partial_j v + cuv),$$

where the repeated indices are summer over, and the coefficients a_{ij} and c are smooth functions on $\overline{\Omega}$, with a_{ij} satisfying the uniform ellipticity condition

$$a_{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2, \qquad \xi \in \mathbb{R}^n, \quad x \in \overline{\Omega},$$

for some constant $\lambda > 0$.

(a) Show that the mapping $A : H_0^1(\Omega) \to [H_0^1(\Omega)]'$, defined by $\langle Au, v \rangle = a(u, v)$, is bounded, where $\langle \cdot, \cdot \rangle$ is the duality pairing between $[H_0^1(\Omega)]'$ and $H_0^1(\Omega)$.

(b) Show that if $c \ge 0$ then

$$\langle Au, u \rangle \ge \alpha \|u\|_{H^1}^2, \qquad u \in H^1_0(\Omega),$$

for some constant $\alpha > 0$. Show also that the inequality is still true (with possibly different $\alpha > 0$) if c is slightly negative.

- (c) Supposing that $c \ge 0$, show that given $f \in L^2(\Omega)$, there exists a unique function $u \in H_0^1(\Omega)$ satisfying $a(u, v) = \int_{\Omega} fv$ for all $v \in H_0^1(\Omega)$.
- (d) Suppose that $u \in H_0^1(\Omega)$ is sufficiently smooth and satisfies $a(u, v) = \int_{\Omega} f v$ for all $v \in H_0^1(\Omega)$. What differential equation does u satisfy in Ω ? Is u = 0 on $\partial \Omega$?
- 24. In the setting of the preceding problem, let $u \in H_0^1(\Omega)$ satisfy

$$a(u,v) = \int_{\Omega} fv$$
 for all $v \in H_0^1(\Omega)$

where $f \in H^k(\Omega)$ with some $k \ge 0$.

- (a) Show that $u \in H^{k+2}_{\text{loc}}(\Omega)$.
- (b) Prove that $u \in H^{k+2}(\Omega)$.
- 25. Let $\Omega \subset \mathbb{R}^n$ be an open set such that the embedding $H^1(\Omega) \hookrightarrow L^2(\Omega)$ is compact. Show that the first Neumann eigenvalue of Ω is $\lambda_1 = 0$, and the dimension of the eigenspace corresponding to this eigenvalue (i.e., the multiplicity of λ_1) is equal to the number of connected components of Ω . Can Ω have infinitely many connected components?
- 26. Prove that there exists a function $u \in H^1(\Omega)$ satisfying

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v \quad \text{for all } v \in H^{1}(\Omega),$$

if and only if $\int f = 0$. Show that such a function is unique up to an additive constant. 7 Design a weak formulation of the Pohin problem

27. Design a weak formulation of the Robin problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ \partial_{\nu} u + u = g & \text{on } \partial \Omega \end{cases}$$

where Ω is a bounded domain with C^1 boundary, and f and g are given functions. Prove that a unique weak solution exists, under suitable conditions on the data.

- 28. Let $L^2_{\text{per}}(\mathbb{R}) = \{f \in L^2_{\text{loc}}(\mathbb{R}) : \tau^*_{2\pi}f = f\}$, where τ_h is the translation operator $\tau_h(x) = x + h$, and let $H^k_{\text{per}}(\mathbb{R}) = H^k_{\text{loc}}(\mathbb{R}) \cap L^2_{\text{per}}(\mathbb{R})$. Prove the following.
 - (a) $H^k_{\text{per}}(\mathbb{R})$ is a Hilbert space for each $k \ge 0$, with $H^0_{\text{per}}(\mathbb{R}) = L^2_{\text{per}}(\mathbb{R})$, and that

$$\langle u, v \rangle_{L^2} = \int_a^b uv, \quad \text{and} \quad \langle u, v \rangle_{H^k} = \int_a^b \left(uv + u^{(k)} v^{(k)} \right), \quad (2)$$

are inner products in $L^2_{\text{per}}(\mathbb{R})$ and in $H^k_{\text{per}}(\mathbb{R})$, respectively, whenever $b-a \ge 2\pi$.

- (b) $C_{\text{per}}^{\infty}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : f(x) = f(x + 2\pi) \}$ is dense in $H_{\text{per}}^{k}(\mathbb{R})$ for each $k \ge 0$.
- (c) The embedding $H^1_{\text{per}}(\mathbb{R}) \hookrightarrow L^2_{\text{per}}(\mathbb{R})$ is compact.
- 29. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, and let $V = H_0^1(\Omega)$ or $V = H^1(\Omega)$, depending on the type of boundary condition we wish to impose. Assume that the Laplacian $\Delta : V \to V'$ has a compact resolvent in $L^2(\Omega)$, and denote by $\lambda_1 \leq \lambda_2 \leq \ldots$ the eigenvalues of $-\Delta$. Show that

$$\lambda_k = \max_{X \in \Phi_{k-1}} \inf_{u \in X^\perp} \frac{\|\nabla u\|_{L^2(\Omega)^2}}{\|u\|_{L^2(\Omega)^2}},\tag{3}$$

where $\Phi_m = \{X \subset V \text{ linear subspace} : \dim X = m\}$ is the *m*-th Grassmannian of *V*, and X^{\perp} is understood as $\{u \in V : u \perp_{L^2} X\}$.

30. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with a C^2 boundary. By using Hopf's boundary point lemma, prove that the solution $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ of the Neumann problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ \partial_{\nu} u = g & \text{on } \partial \Omega, \end{cases}$$

is unique up to an additive constant.

- 31. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, such that $P(\Omega) = \Omega$, where $P: (x', x_n) \mapsto (x', -x_n)$ is the reflection through the hyperplane $\{x_n = 0\}$.
 - (a) Show that the first Dirichlet eigenfunction of Ω is symmetric with respect to $\{x_n = 0\}$.
 - (b) If Ω is a ball, show that the first Dirichlet eigenfunction is spherically symmetric.