MATH 580 FALL 2018 PRACTICE PROBLEMS

DECEMBER 7, 2018

1. Let u be a bounded harmonic function in an open set $\Omega \subset \mathbb{R}^{n}$. Show that

$$
\left|\partial^{\alpha} u(x)\right| \leq \frac{C_{\alpha}}{\operatorname{dist}(x, \partial \Omega)^{|\alpha|}},
$$

for all $x \in \Omega$ and all $\alpha \in \mathbb{N}_{0}^{n}$, where C_{α} is a constant that is allowed to depend only on α.
2. Suppose that $u \in C^{2}\left(\mathbb{R}_{+}^{n}\right) \cap C\left(\overline{\mathbb{R}}_{+}^{n}\right)$ be a bounded harmonic function in the upper half space $\mathbb{R}_{+}^{n}=\left\{x: \in \mathbb{R}^{n}: x_{n}>0\right\}$, satisfying $u \leq 0$ on $\partial \mathbb{R}_{+}^{n}$. Show that $u \leq 0$ in \mathbb{R}_{+}^{n}.
3. Let $\Omega \subsetneq \mathbb{R}^{2}$ be a domain, and let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a bounded harmonic function in Ω, such that $u \leq 0$ on $\partial \Omega$. Show that $u \leq 0$ in Ω. Is this result true in higher dimensions?
4. Is there a bounded harmonic function in \mathbb{D} that is not uniformly continuous in \mathbb{D} ?
5. Give an example of an unbounded harmonic function in $B=B_{1}$, satisfying

$$
|\nabla u(x)| \leq \frac{C}{1-|x|}, \quad x \in B
$$

for some constant C.
6. Let u be a harmonic function in \mathbb{D}, and suppose that $u(r, 0)=u(r \cos \alpha, r \sin \alpha)=0$ for all $0 \leq r<1$, where $0<\alpha \leq \pi$ is a constant. Show that if α is an irrational multiple of π, then $u \equiv 0$. What happens if α is a rational multiple of π ?
7. Give an example of a nontrivial entire harmonic function u in \mathbb{R}^{2}, satisfying $u(t, 1)=$ $u(t,-1)=0$ for all $t \in \mathbb{R}$. Show that such a function u cannot be a polynomial.
8. Let $\Omega \subset \mathbb{R}^{n}$ be a domain, let $\omega \subset \Omega$ be open, and let $K \subset \Omega$ be compact. Then for any $\varepsilon>0$, there exists $\delta>0$ such that if u is harmonic in Ω, satisfying $|u| \leq 1$ in Ω and $|u| \leq \delta$ in ω, then $|u| \leq \varepsilon$ on K.
9. Let $u \in C\left(\overline{\mathbb{R}}_{+}^{2}\right)$ be a bounded harmonic function in the upper half plane \mathbb{R}_{+}^{2}, satisfying $u(x, 0) \rightarrow \pi$ as $x \rightarrow \infty$ and $u(x, 0) \rightarrow 0$ as $x \rightarrow-\infty$. Compute the limit of $u(r \cos \theta, t \sin \theta)$ as $r \rightarrow \infty$, for each $0<\theta<\pi$.
10. A positive harmonic function in $\mathbb{R}^{2} \backslash\{0\}$ is constant.
11. Let $\Omega \subset \mathbb{R}^{3}$ be the unit ball with a line L going through the origin removed. In the context of the Dirichlet problem, is the origin regular for Ω ?
12. Let $\Omega \subset \mathbb{R}^{3}$ be the unit ball with the half plane $\left\{x_{2}>0, x_{3}=0\right\}$ removed. Is every point of $\partial \Omega$ regular?
13. Give an example of a bounded domain with C^{1} boundary that does not satisfy the exterior sphere condition at some of its boundary points.
14. Show that a domain with Lipschitz boundary satisfies the exterior cone condition at each of its boundary points.
15 . Let $\Omega \subset \mathbb{R}^{n}$ be an open set.
(a) Using Green's first identity, show that

$$
\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq \varepsilon\|\Delta u\|_{L^{2}(\Omega)}^{2}+\frac{1}{4 \varepsilon}\|u\|_{L^{2}(\Omega)}^{2},
$$

for any $\varepsilon>0$ and $u \in H_{0}^{2}(\Omega)$, where $H_{0}^{2}(\Omega)$ is the closure of $\mathscr{D}(\Omega)$ in $H^{2}(\Omega)$.
(b) Under additional assumptions on Ω, and by employing an extension result, show that

$$
\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq \varepsilon|u|_{H^{2}(\Omega)}^{2}+C \varepsilon^{-1}\|u\|_{L^{2}(\Omega)}^{2},
$$

for any $\varepsilon>0$ and $u \in H^{2}(\Omega)$, with $C>0$ possibly depending on Ω.
16. Let $I=(a, b)$. Prove the following.
(a) For any $\varepsilon>0$, there exists a constant $C=C_{\varepsilon}$ such that

$$
\left\|u^{\prime}\right\|_{L^{2}(I)} \leq \varepsilon\left\|u^{\prime \prime}\right\|_{L^{2}(I)}+C \varepsilon^{-1}\|u\|_{L^{2}(I)},
$$

for any $u \in C^{\infty}(I)$.
(b) Let $u \in L^{2}(I)$, and suppose that $u^{\prime \prime} \in L^{2}(I)$ exists in the weak sense, i.e., there is $f \in L^{2}(I)$ such that

$$
\int_{I} u \varphi^{\prime \prime}=\int_{I} f \varphi \quad \text { for all } \quad \varphi \in \mathscr{D}(I) .
$$

Then $u^{\prime} \in L^{2}(I)$ exists in the weak sense.
17. We say that $f \in C^{\infty}(\Omega)$ is in the Gevrey class $G^{\alpha}(\Omega)$ with $\alpha \geq 1$, if for any ball B with $\bar{B} \subset \Omega$, there exist $\delta>0$ and $M<\infty$ such that

$$
\begin{equation*}
\|f\|_{C^{m}(B)} \leq M \frac{(m!)^{\alpha}}{\delta^{m}} \quad \text { for all } m \in \mathbb{N} \tag{1}
\end{equation*}
$$

We have $G^{\alpha}(\Omega) \subset G^{\beta}(\Omega)$ for $\alpha \leq \beta$, and $G^{1}(\Omega)=C^{\omega}(\Omega)$. Also, it makes sense to define $G^{\infty}=C^{\infty}$. Hence in some sense, the Gevrey classes fill the gap between C^{ω} and C^{∞}. Prove that if $f \in G^{\alpha}(\Omega)$ for some $\alpha \geq 1$ then any weak solution $u \in H_{\text {loc }}^{1}(\Omega)$ of $-\Delta u+t u=f$ satisfies $u \in G^{\alpha}(\Omega)$.
18. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1,0<y<x^{4}\right\}$.
(a) Exhibit a function $u \in H^{2}(\Omega)$ such that $u \notin L^{\infty}(\Omega)$.
(b) Is there a function $u \in H^{2}(\Omega) \cap C_{b}(\Omega)$, that cannot be extended to $u \in C(\bar{\Omega})$?
19. In each case, exhibit an unbounded function u in Ω, such that $u \in H^{k}(\Omega)$ for all $k \geq 0$.
(a) $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x>0,0<y<f(x)\right\}$, where $f \in C([0, \infty))$ is a nonincreasing positive function satisfying $f(x) \rightarrow 0$ as $x \rightarrow \infty$.
(b) $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1,0<y<e^{-1 / x}\right\}$.
20. Let $B \subset \mathbb{R}^{n}$ be an open ball.
(a) Let $0<k-\frac{n}{p}<1$, where $k \geq 0$ is an integer, and $1 \leq p<\infty$. Exhibit a function $u \in W^{k, p}(B)$ such that $u \notin C^{0, \alpha}(B)$ for any $\alpha>k-\frac{n}{p}$.
(b) Let $k-\frac{n}{p}=0$ and $p>1$. Exhibit a function $u \in W^{k, p}(B)$ such that $u \notin L^{\infty}(B)$.
(c) Let $k-\frac{n}{p}=1$ and $p>1$. Exhibit a function $u \in W^{k, p}(B)$ such that $u \notin C^{0,1}(B)$.
21. Let $I=(-1,1)$ and $u(x)=|x|$. Show that $u \in W^{1, \infty}(I)$ but u is not in the closure of $C^{1}(I) \cap W^{1, \infty}(I)$ in $W^{1, \infty}(I)$.
22. Let $u \in C^{\infty}(\Omega)$ be given in polar coordinates by $u(r, \theta)=r^{a} \sin (a \theta)$ with

$$
\Omega=\{(r, \theta): r<1,0<\theta<\pi / a\},
$$

where $a \geq \frac{1}{2}$ is a constant. Determine the values of $p \geq 1$ such that $u \in W^{2, p}(\Omega)$.
23 . Let $\Omega \subset \mathbb{R}^{n}$ be a bounded smooth domain, and consider the bilinear form

$$
a(u, v)=\int_{\Omega}\left(a_{i j} \partial_{i} u \partial_{j} v+c u v\right)
$$

where the repeated indices are summer over, and the coefficients $a_{i j}$ and c are smooth functions on $\bar{\Omega}$, with $a_{i j}$ satisfying the uniform ellipticity condition

$$
a_{i j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2}, \quad \xi \in \mathbb{R}^{n}, \quad x \in \bar{\Omega},
$$

for some constant $\lambda>0$.
(a) Show that the mapping $A: H_{0}^{1}(\Omega) \rightarrow\left[H_{0}^{1}(\Omega)\right]^{\prime}$, defined by $\langle A u, v\rangle=a(u, v)$, is bounded, where $\langle\cdot, \cdot\rangle$ is the duality pairing between $\left[H_{0}^{1}(\Omega)\right]^{\prime}$ and $H_{0}^{1}(\Omega)$.
(b) Show that if $c \geq 0$ then

$$
\langle A u, u\rangle \geq \alpha\|u\|_{H^{1}}^{2}, \quad u \in H_{0}^{1}(\Omega)
$$

for some constant $\alpha>0$. Show also that the inequality is still true (with possibly different $\alpha>0$) if c is slightly negative.
(c) Supposing that $c \geq 0$, show that given $f \in L^{2}(\Omega)$, there exists a unique function $u \in H_{0}^{1}(\Omega)$ satisfying $a(u, v)=\int_{\Omega} f v$ for all $v \in H_{0}^{1}(\Omega)$.
(d) Suppose that $u \in H_{0}^{1}(\Omega)$ is sufficiently smooth and satisfies $a(u, v)=\int_{\Omega} f v$ for all $v \in H_{0}^{1}(\Omega)$. What differential equation does u satisfy in Ω ? Is $u=0$ on $\partial \Omega$?
24. In the setting of the preceding problem, let $u \in H_{0}^{1}(\Omega)$ satisfy

$$
a(u, v)=\int_{\Omega} f v \quad \text { for all } v \in H_{0}^{1}(\Omega)
$$

where $f \in H^{k}(\Omega)$ with some $k \geq 0$.
(a) Show that $u \in H_{\text {loc }}^{k+2}(\Omega)$.
(b) Prove that $u \in H^{k+2}(\Omega)$.
25. Let $\Omega \subset \mathbb{R}^{n}$ be an open set such that the embedding $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact. Show that the first Neumann eigenvalue of Ω is $\lambda_{1}=0$, and the dimension of the eigenspace corresponding to this eigenvalue (i.e., the multiplicity of λ_{1}) is equal to the number of connected components of Ω. Can Ω have infinitely many connected components?
26. Prove that there exists a function $u \in H^{1}(\Omega)$ satisfying

$$
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} f v \quad \text { for all } v \in H^{1}(\Omega)
$$

if and only if $\int f=0$. Show that such a function is unique up to an additive constant.
27. Design a weak formulation of the Robin problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \\ \partial_{\nu} u+u=g & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain with C^{1} boundary, and f and g are given functions. Prove that a unique weak solution exists, under suitable conditions on the data.
28. Let $L_{\mathrm{per}}^{2}(\mathbb{R})=\left\{f \in L_{\mathrm{loc}}^{2}(\mathbb{R}): \tau_{2 \pi}^{*} f=f\right\}$, where τ_{h} is the translation operator $\tau_{h}(x)=x+h$, and let $H_{\text {per }}^{k}(\mathbb{R})=H_{\text {loc }}^{k}(\mathbb{R}) \cap L_{\text {per }}^{2}(\mathbb{R})$. Prove the following.
(a) $H_{\mathrm{per}}^{k}(\mathbb{R})$ is a Hilbert space for each $k \geq 0$, with $H_{\mathrm{per}}^{0}(\mathbb{R})=L_{\mathrm{per}}^{2}(\mathbb{R})$, and that

$$
\begin{equation*}
\langle u, v\rangle_{L^{2}}=\int_{a}^{b} u v, \quad \text { and } \quad\langle u, v\rangle_{H^{k}}=\int_{a}^{b}\left(u v+u^{(k)} v^{(k)}\right) \tag{2}
\end{equation*}
$$

are inner products in $L_{\mathrm{per}}^{2}(\mathbb{R})$ and in $H_{\mathrm{per}}^{k}(\mathbb{R})$, respectively, whenever $b-a \geq 2 \pi$.
(b) $C_{\text {per }}^{\infty}(\mathbb{R})=\left\{f \in C^{\infty}(\mathbb{R}): f(x)=f(x+2 \pi)\right\}$ is dense in $H_{\text {per }}^{k}(\mathbb{R})$ for each $k \geq 0$.
(c) The embedding $H_{\mathrm{per}}^{1}(\mathbb{R}) \hookrightarrow L_{\mathrm{per}}^{2}(\mathbb{R})$ is compact.
29. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, and let $V=H_{0}^{1}(\Omega)$ or $V=H^{1}(\Omega)$, depending on the type of boundary condition we wish to impose. Assume that the Laplacian $\Delta: V \rightarrow V^{\prime}$ has a compact resolvent in $L^{2}(\Omega)$, and denote by $\lambda_{1} \leq \lambda_{2} \leq \ldots$ the eigenvalues of $-\Delta$. Show that

$$
\begin{equation*}
\lambda_{k}=\max _{X \in \Phi_{k-1}} \inf _{u \in X^{\perp}} \frac{\|\nabla u\|_{L^{2}(\Omega)^{2}}}{\|u\|_{L^{2}(\Omega)^{2}}}, \tag{3}
\end{equation*}
$$

where $\Phi_{m}=\{X \subset V$ linear subspace : $\operatorname{dim} X=m\}$ is the m-th Grassmannian of V, and X^{\perp} is understood as $\left\{u \in V: u \perp_{L^{2}} X\right\}$.
30. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with a C^{2} boundary. By using Hopf's boundary point lemma, prove that the solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ of the Neumann problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \\ \partial_{\nu} u=g & \text { on } \partial \Omega\end{cases}
$$

is unique up to an additive constant.
31. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, such that $P(\Omega)=\Omega$, where $P:\left(x^{\prime}, x_{n}\right) \mapsto\left(x^{\prime},-x_{n}\right)$ is the reflection through the hyperplane $\left\{x_{n}=0\right\}$.
(a) Show that the first Dirichlet eigenfunction of Ω is symmetric with respect to $\left\{x_{n}=0\right\}$.
(b) If Ω is a ball, show that the first Dirichlet eigenfunction is spherically symmetric.

