
POISSON PROBLEMS

TSOGTGEREL GANTUMUR

Abstract. In these notes we will study the Poisson equation, that is the inhomogeneous
version of the Laplace equation. Our starting point is the variational method, which can
handle various boundary conditions and variable coefficients without any difficulty.
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1. Variational method

Consider the following Poisson problem{
∆u+ f = 0 in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ Rn is a bounded domain, and f is a given function. We begin by reformulating the
problem in the Sobolev space setting as follows. Assume f ∈ L2(Ω), and consider the problem
of finding u ∈ H1

0 (Ω) satisfying∫
Ω
∇u · ∇v =

∫
Ω
fv for all v ∈ H1

0 (Ω). (2)

Note that the homogeneous boundary condition is reflected in the requirement u ∈ H1
0 (Ω). We

call (2) the weak formulation (or the variational formulation) of (1).

Exercise 1. Show that if u ∈ C 2(Ω) satisfies (2) then ∆u+ f = 0 almost everywhere in Ω.

To get some insight on (2), we write it as

a(u, v) = F (v) for all v ∈ H1
0 (Ω), (3)

where a : H1
0 (Ω)×H1

0 (Ω)→ R is the bilinear form given by

a(u, v) =

∫
Ω
∇u · ∇v, u, v ∈ H1

0 (Ω), (4)
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and F : H1
0 (Ω)→ R is the linear functional defined by

F (v) =

∫
Ω
fv, v ∈ H1

0 (Ω). (5)

Both a and F are clearly continuous, because

|a(u, v)| ≤ ‖∇u‖L2‖∇v‖L2 ≤ ‖u‖H1‖v‖H1 , (6)

and
|F (v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 , (7)

by the Cauchy-Bunyakowsky-Schwarz inequality. This means in particular that F is an element
of the (topological) dual of H1

0 (Ω), which we denote by H−1(Ω) ≡ [H1
0 (Ω)]′. In addition to

continuity, the bilinear form a enjoys strict coercivity (also called H1
0 -ellipticity)

a(v, v) ≥ c‖v‖2H1 , for all v ∈ H1
0 (Ω), (8)

with some constant c > 0, which is immediate from the Friedrichs inequality. Since a is
symmetric, strict coercivity and continuity imply that a defines an inner product on H1

0 (Ω)
which induces an equivalent norm. With these preparations at hand, we can now interpret
the problem (3) in the following way: Given an element F from the dual space of H1

0 (Ω), can
we represent F as the inner product a(u, ·) with a fixed element u ∈ H1

0 (Ω)? The affirmative
answer to this question is precisely the content of the Riesz representation theorem1.

Theorem 2 (Riesz representation theorem). Let H be a (real) Hilbert space, and let H ′ be its
dual, defined as the space of continuous linear functionals on H. Then for any f ∈ H ′ there
exists a unique element z ∈ H such that f(x) = 〈z, x〉 for all x ∈ H, where 〈·, ·〉 denotes the
inner product of H.

Proof. We will use the variational method that has been applied in the existence arguments of
the preceding chapter. Let f ∈ H ′, and let

E(x) = 〈x, x〉 − 2f(x), x ∈ H, (9)

and consider the problem of finding a minimizer of E over H. We have

−∞ < µ := inf
x∈H

E(x) <∞, (10)

because E(0) = 0, and
E(x) ≥ ‖x‖2 − c‖x‖ = (‖x‖ − c)‖x‖, (11)

with some constant c, by boundedness of f . Let {xj} ⊂ H be a minimizing sequence, i.e., let

E(xj)→ µ. (12)

From the parallelogram law, we infer

〈xj − xk, xj − xk〉 = 2〈xj , xj〉+ 2〈xk, xk〉 − 4
〈xj + xk

2
,
xj + xk

2

〉
= 2E(xj) + 2E(xk)− 4E

(xj + xk
2

)
+ 4f(xj) + 4f(xk)− 8f

(xj + xk
2

)
= 2E(xj) + 2E(xk)− 4E

(xj + xk
2

)
≤ 2E(xj) + 2E(xk)− 4µ→ 0,

(13)

meaning that {xj} is a Cauchy sequence. Hence there is z ∈ H such that xj → z.

1There is another result called Riesz representation theorem that is about representing linear functionals
on a space of continuous functions as measures. The current version can be called the Riesz representation
theorem for Hilbert spaces.
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We need to show that E(z) = µ. To this end, we have

µ ≤ E(z) = E(xj) + 〈z, z〉 − 〈xj , xj〉+ 2f(xj)− 2f(z)

= E(xj) + 〈z + xj , z − xj〉+ 2f(xj − z)
≤ E(xj) + ‖z + xj‖‖z − xj‖+ c‖xj − z‖.

(14)

As j →∞, we have E(xj)→ µ and ‖xj − z‖ → 0. Moreover, we have ‖z + xj‖ ≤M for some
constant M , independent of j. This shows that E(z) = µ.

Next, we need 〈z, x〉 = f(x) for all x ∈ H. Fix x ∈ H, and for t ∈ R small, consider

E(z + tx) = 〈z, z〉+ 2t〈z, x〉+ t2〈x, x〉 − 2f(z + tx)

= E(z) + 2t
(
〈z, x〉 − f(x)

)
+ t2〈x, x〉.

(15)

If 〈z, x〉 − f(x) 6= 0, we can choose t small enough and with an appropriate sign, so that
E(z + tx) < E(z). Since this is impossible, we conclude that 〈z, x〉 = f(x).

Finally, let y ∈ H satisfy 〈y, x〉 = f(x) for all x ∈ H. Then 〈y − z, x〉 = 0 for all x ∈ H, in
particular, 〈y − z, y − z〉 = 0, and therefore y = z. This completes the proof. �

In light of the Riesz representation theorem, the following is immediate.

Theorem 3. In the above setting, there exists a unique u ∈ H1
0 (Ω) satisfying

a(u, v) = F (v) for all v ∈ H1
0 (Ω). (16)

In other words, the Poisson problem (1) has a unique weak solution.

We can also solve the same problem with an inhomogeneous Dirichlet condition without
much difficulty. We formulate the problem as follows. Let g ∈ H1(Ω) be given, and find
u ∈ {g}+H1

0 (Ω) satisfying

a(u, v) = F (v) for all v ∈ H1
0 (Ω). (17)

Recall that the (affine) set {g}+H1
0 (Ω) is by definition {g + v : v ∈ H1

0 (Ω)}.

Corollary 4. For any g ∈ H1(Ω), the preceding problem has a unique solution.

Proof. We will reformulate the problem as a problem with homogeneous Dirichlet condition,
therefore reducing it to the known case. Let w ∈ H1

0 (Ω) be the unique function satisfying

a(w, v) = F (v)− a(g, v) for all v ∈ H1
0 (Ω). (18)

Such a function exists because the map v 7→ F (v)− a(g, v) is in [H1
0 (Ω)]′ as can be seen from

|F (v)− a(g, v)| ≤ ‖f‖L2‖v‖H1 + ‖g‖H1‖v‖H1 . (19)

It is obvious that u = w + g ∈ {g} + H1
0 (Ω) and a(u, v) = F (v) for all v ∈ H1

0 (Ω). The
uniqueness part is left as an exercise. �

Exercise 5. Give a weak formulation of the problem{
−∆u+ tu = f in Ω,

u = g on ∂Ω,
(20)

and then show that a unique weak solution exists if t > c, where c < 0 is a constant.
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2. Essential and natural boundary conditions

Let f ∈ L2(Ω) and t ∈ R, and consider the problem of finding u ∈ H1(Ω) such that∫
Ω

(∇u · ∇v + tuv) =

∫
Ω
fv for all v ∈ H1(Ω). (21)

What we did is that we took the problem (2), added the term tuv inside the integral, and
replaced the space H1

0 (Ω) by H1(Ω). The bilinear form a : H1(Ω)×H1(Ω)→ R defined by

a(u, v) =

∫
Ω

(∇u · ∇v + tuv), (22)

is symmetric and continuous, and linear functional F : H1(Ω)→ R defined by

F (v) =

∫
Ω
fv, (23)

is continuous, meaning that F ∈ [H1(Ω)]′. Moreover, it is easy to see that if t > 0 then

a(u, u) ≥ min{1, t}‖u‖2H1 , u ∈ H1(Ω), (24)

i.e., a is strictly coercive in H1(Ω). Hence by the Riesz representation theorem, the problem
(21) has a unique solution u ∈ H1(Ω).

Let us try to identify the classical problem corresponding to (21). Since D(Ω) ⊂ H1(Ω), if
we assume u ∈ C 2(Ω), then taking arbitrary v ∈ D(Ω) in (21) implies that

−∆u+ tu = f a.e. in Ω. (25)

We see that replacing the space H1
0 (Ω) by H1(Ω) in the variational formulation has no effect

on the differential equation to be satisfied in the interior of the domain at the classical level.
If anything has changed, it must have something to do with the boundary condition. To
probe what is happening at the boundary, in addition to u ∈ C 2(Ω), suppose that Ω has a
C 1 boundary, and that u ∈ C 1(Ω̄). Then taking into account that C 1(Ω̄) ⊂ H1(Ω), for any
v ∈ C 1(Ω̄), we have

0 =

∫
Ω

(∇u · ∇v + tuv − fv) =

∫
∂Ω
v∂νu+

∫
Ω

(−∆u+ tu− f)v =

∫
∂Ω
v∂νu, (26)

where we have used (25), and ∂ν is the (outward) normal derivative at ∂Ω. It is not difficult
to conclude from here that ∂νu = 0 on ∂Ω. So we identify (21) as a weak (or variational)
formulation of the equation (25) with the homogeneous Neumann boundary condition.

Exercise 6. Show that if u ∈ C 1(Ω̄) satisfies∫
∂Ω
v∂νu = 0, (27)

for all v ∈ C 1(Ω̄) then ∂νu = 0 on ∂Ω.

Remark 7. Note that the boundary term that arises from integration by parts in (26) naturally
has lead us to the Neumann boundary condition. In variational terminology, such boundary
conditions are called natural boundary conditions. If we were dealing with the Dirichlet
boundary condition as in the previous section, on the contrary, the boundary term in (26)
would be 0 because of the restriction v ∈ H1

0 (Ω) as opposed to v ∈ H1(Ω). In this case, the
boundary term vanishes by design of the underlying Hilbert space H1

0 (Ω), and the associated
boundary conditions are called essential boundary conditions. Finally, we remark that the
correspondences natural – Neumann and essential – Dirichlet do not always hold. For instance,
in some formulations the Dirichlet boundary condition arises as the natural boundary condition.



POISSON PROBLEMS 5

3. Weak, strong, and classical solutions

In all cases considered so far, we have functions u ∈ H1(Ω) and f ∈ L2(Ω) satisfying∫
Ω

(∇u · ∇v + tuv) =

∫
Ω
fv for all v ∈ D(Ω). (28)

Note that if (28) holds, then it holds also for all v ∈ H1
0 (Ω) by density. The differential equation

associated to this is −∆u+ tu = f in Ω. As for the boundary condition, it is determined by
the following additional information:

• For the homogeneous Dirichlet condition, we have the requirement u ∈ H1
0 (Ω).

• For the homogeneous Neumann condition, (28) holds also for all v ∈ H1(Ω) \H1
0 (Ω).

We have encountered at least two different notions of solutions: Weak and classical. Here we
want to formalize those concepts and introduce one more notion of a solution.

Definition 8. A classical solution of −∆u+ tu = f in Ω is a function u ∈ C 2(Ω) that satisfies
the same equation pointwise in Ω. In particular, this would imply that f ∈ C (Ω).

Bear in mind that in the preceding definition we are concerned with only the differential
equation, that is (supposed to be) satisfied at each point of the interior of the domain. When
we are solving the boundary value problem, i.e., at the stage where we want to establish
the existence of a solution, it is necessary to consider both the differential equation and the
boundary condition at the same time. However, once the existence is known, when we want to
study the properties of solutions, it is often possible and convenient to separate the two. Here
we would like to consider conditions that are generalizations of the differential equation alone.
In doing so, it is preferable to avoid global conditions, such as u ∈ H1(Ω), which requires in
particular the square integrability of u over Ω. Therefore it would be ideal if we replace H1 by
its local version, the same way C (Ω) is the local version of the space of bounded continuous
functions on Ω. To this end, we let H1

loc(Ω) = {u ∈ L2(Ω) : φu ∈ H1(Ω), ∀φ ∈ D(Ω)}.

Definition 9. We call u ∈ H1
loc(Ω) a weak solution of −∆u+ tu = f in Ω if u satisfies (28).

This notion makes sense even for f ∈ L2
loc(Ω).

It is always true that classical solutions are weak. Moreover, under the assumption that
u ∈ C 2(Ω) and f ∈ C (Ω), u is a classical solution if and only if it is a weak solution.

Now we generalize the definition of Sobolev spaces to higher order cases. We let

Hk(Ω) = {u ∈ L2(Ω) : ∂αu ∈ L2(Ω), |α| ≤ k}, (29)

equipped with the norm

‖u‖Hk =
( ∑
|α|≤k

‖∂αu‖2L2

) 1
2
, (30)

and the seminorm

|u|Hk =
( ∑
|α|=k

‖∂αu‖2L2

) 1
2
. (31)

Furthermore, we define Hk
loc(Ω) = {u ∈ L2(Ω) : φu ∈ Hk(Ω), ∀φ ∈ D(Ω)}.

Definition 10. We call u ∈ H2
loc(Ω) a strong L2 solution of −∆u+ tu = f in Ω if the same

equation is satisfied as an equality in the space L2
loc(Ω).

It is obvious that classical solutions are strong, and strong solutions are weak. Moreover,
under the assumption that u ∈ C 2(Ω) and f ∈ C (Ω), u is a classical solution if and only if it
is a strong solution. Similarly, under the assumption that u ∈ H2

loc(Ω) and f ∈ L2
loc(Ω), u is a

strong solution if and only if it is a weak solution.
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The above discussion leads to the question if and when we can guarantee that a weak solution
u, initially only known to be in H1

loc(Ω), is indeed in H2
loc(Ω) or even in C 2(Ω), so that the

weak solutions we have constructed in the previous sections are in fact strong or even classical.
To see that it is not a completely absurd hope, think of the ordinary differential equation
y′′ = f , which has the property that if f ∈ C k then y ∈ C k+2. Now if we assume that the
equation ∆u = f has a similar property, and that its weak formulation inherits enough of its
structure, then it is reasonable to expect that f ∈ Hk

loc(Ω) implies u ∈ Hk+2
loc (Ω), and that

f ∈ C k(Ω) implies u ∈ C k+2(Ω), for a weak solution u ∈ H1
loc(Ω). In what follows we will show

that this expectation is realized for the Hk spaces. However, it turns out that the statement in
the C k spaces is not true. We interpret this fact as the C k spaces not being well suited for
studying the Laplace operator. What we can establish are conditions on f (that are slightly
stronger than f ∈ C k) that imply u ∈ C k+2.

4. Finite differences

In this section, we will establish a convenient criterion for determining whether a function is
in a Sobolev space, which will then be used in the upcoming sections to study the Sobolev
regularity of weak solutions to (28). Let Ω ⊂ Rn be an open set and let f be a function defined
on Ω. Then we define the finite difference operator ∆h for h ∈ Rn by

∆hf(x) = f(x+ h)− f(x), (32)

where we assume that [x, x+h] ⊂ Ω, with [x, x+h] denoting the line segment connecting x and
x+h. Hence ∆h maps functions on Ω to functions on the subset Ωh = {x ∈ Ω : [x, x+h] ⊂ Ω}.
It is clear that

• f is uniformly continuous in Ω if and only if ‖∆hf‖L∞(Ωh) → 0 as h→ 0.
• f is Lipschitz continuous if and only if ‖∆hf‖L∞(Ωh) ≤ c|h| ∀h, with some constant c.
• If ‖∆hf‖L∞(Ωh) = o(h) as h→ 0 then f is constant.

Since C (Ω)∩Lp(Ω) is dense in Lp(Ω) for 1 ≤ p <∞, and we have ‖∆hf‖Lp(Ωh) ≤ 2‖f‖Lp(Ω)

for f ∈ C (Ω) ∩ Lp(Ω), the difference operator ∆h can be uniquely extended to a continuous
operator ∆h : Lp(Ω) → Lp(Ωh). Alternatively, and with the same result, we can define
∆hf = f ◦ τh − f for f ∈ Lp(Ω), where τh is the translation operator given by τh(x) = x+ h.

It will turn out that the condition ‖∆hf‖L2(Ωh) = O(h) characterizes the Sobolev space
H1(Ω). Hence in a certain sense, H1(Ω) is the L2-equivalent of the Lipschitz space C 0,1(Ω).
For generality, we will prove this characterization in the Lp setting.

Definition 11. We define W k,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), |α| ≤ k}, for 1 ≤ p ≤ ∞
and k ∈ N0.

Note that we have Hk(Ω) = W k,2(Ω) and Lp(Ω) = W 0,p(Ω).

Lemma 12. If f ∈W 1,p(Ω) with 1 ≤ p <∞, then ‖∆hf‖Lp(Ωh) ≤ |h|‖∇f‖Lp(Ω) for h ∈ Rn.

Proof. For η ∈ Sn−1 and f ∈ C 1(Ω), by the fundamental theorem of calculus, we have

|f(x+ ηt)− f(x)| ≤
∫ t

0
|∇f(x+ ηs)|ds ≤ t1−

1
p

(∫ t

0
|∇f(x+ ηs)|pds

) 1
p

. (33)

Taking the p-th power and integrating, we get

‖∆ηtf‖pLp ≤ t
p−1

∫
Ωηt

∫ t

0
|∇f(x+ ηs)|pdsdx ≤ tp−1

∫ t

0

∫
Ω
|∇f(y)|pdyds, (34)

which immediately leads us to the claim. �
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In the converse direction, for p > 1, the decay condition ‖∆eitf‖Lp = O(t) implies the
existence of ∂if and the membership ∂if ∈ Lp(Ω). Here ei is the i-th standard unit vector.

Theorem 13. Let f ∈ Lp(Ω) with 1 < p <∞, and assume that ‖∆eitf‖Lp(Ωh) ≤ Mt for all
small t > 0. Then the weak derivative ∂if exists and it satisfies ‖∂if‖Lp(Ω) ≤M .

Proof. Let K ⊂ Ω be a compact set, and let ϕ ∈ DK , where DK = {φ ∈ D(Ω) : suppφ ⊂ K}.
Then we have ∫

Ω
∆eitfϕ =

∫
Ω

(f(x+ eit)ϕ(x)− f(x)ϕ(x))dx = −
∫

Ω
f∆eitϕ, (35)

for sufficiently small t > 0, which implies∣∣ ∫
Ω
f∂iϕ

∣∣ ≤ ∣∣ ∫
Ω

∆eitf

t
ϕ
∣∣+
∣∣ ∫

Ω
f
(∆eitϕ

t
− ∂iϕ

)∣∣
≤ t−1‖∆eitf‖Lp(K)‖ϕ‖Lq(K) + ‖f‖L1

∥∥∆eitϕ

t
− ∂iϕ

∥∥
L∞
,

(36)

where q is the Hölder conjugate of p, i.e., it is given by 1
p + 1

q = 1. Now by using the bound
‖∆eitf‖Lp ≤Mt and sending t→ 0, we obtain∣∣ ∫

Ω
f∂iϕ

∣∣ ≤M‖ϕ‖Lq(K). (37)

It shows that if we define the linear map T : DK → R by

Tϕ =

∫
Ω
f∂iϕ, (38)

then it is bounded in the Lq-norm: |Tϕ| ≤M‖ϕ‖Lq(K). Since DK is dense in Lq(K), the map
T extends2 uniquely to a continuous map T : Lq(K) → R. Moreover, the resulting map is
linear, and satisfies the same bound |Tϕ| ≤M‖ϕ‖Lq(K) for ϕ ∈ Lq(K). In other words, T is
in the topological dual of Lq(K), and from the duality between Lp and Lq, we conclude that
there exists g ∈ Lp(K) with ‖g‖Lp ≤M such that∫

K
gϕ = Tϕ =

∫
Ω
f∂iϕ, for all ϕ ∈ DK . (39)

Hence, −g is the weak derivative of f in the interior of K. In order to turn it into a global
result, let K1 ⊂ K2 ⊂ . . . ⊂ Ω be a sequence of compact sets such that

⋃
mKm = Ω. Let

gm = ∂if in the interior of Km, and suppose that we extended gm by 0 outside Km. Moreover,
let us work with an arbitrary but fixed representative of gm ∈ Lp(Ω), for each m. Then by
uniqueness of the weak derivative it is clear that gm agrees almost everywhere in Km with all
gk with k > m, and hence the pointwise limit g = lim gm exists almost everywhere in Ω, which
of course represents the weak derivative ∂if in Ω. Finally, since ‖gm‖Lp ≤ M for all m, the
monotone convergence theorem guarantees that ‖g‖Lp ≤M . �

Remark 14. This proof would not work for p = 1, because L1(Ω) is not a dual space.

Exercise 15. Show that if ‖∆hf‖Lp = o(h) then f is a constant function.

Lemma 12 and Theorem 13 give the following characterization of W 1,p.

Corollary 16. For 1 < p <∞, we have f ∈W 1,p(Ω) if and only if ‖∆hf‖Lp = O(h).

2Alternatively, we can use the Hahn-Banach theorem to extend T .
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Remark 17. If we define the generalized Lipschitz spaces

Lip(α,Lp(Ω)) = {f ∈ Lp(Ω) : sup
h6=0
|h|−α‖∆hf‖Lp <∞}, (40)

then the preceding theorem says that in fact W 1,p(Ω) = Lip(1, Lp(Ω)) for 1 < p <∞. Hence
informally speaking, the Sobolev spaces are Lp-versions of Lipschitz spaces. The spaces
Lip(α,Lp(Ω)) with 0 < α < 1 are examples of Nikolsky spaces, which in some sense fill up the
gap between Lp and W 1,p. Nikolsky spaces themselves are special cases of Besov spaces.

5. Interior regularity

Now we start tackling the regularity problem for the equation (28) head on. To illustrate
the main ideas clearly, we begin with a very simple case. Let Ω ⊂ Rn be an open set, and
recall that the support of a function u ∈ L1

loc(Ω) is defined as

suppu = Ω \
⋃
{ω ⊂ Ω open : u|ω = 0}. (41)

In particular, suppu is a relatively closed set in Ω, and u = 0 almost everywhere in Ω \ suppu.
For a compact set K ⊂ Ω, let us introduce the space H1

K = {u ∈ H1(Ω) : suppu ⊂ K}. We
have H1

K ⊂ H1
0 (Ω) because for u ∈ H1

K and for all small ε > 0, the mollified function uε will
have a compact support in Ω. Suppose that u ∈ H1

K and f ∈ L2(Ω) satisfy∫
Ω
∇u · ∇v =

∫
Ω
fv for all v ∈ H1

0 (Ω). (42)

Recall that with τh defined by τh(x) = x + h, we have ∆hu = τ∗hu − u, where τ∗hu = u ◦ τh
is the pull-back of u by τh. With K ′ ⊂ Ω a compact set containing K in its interior, since
τ∗hv ∈ H1

0 (Ω) for v ∈ HK′ and for all small h ∈ Rn, it is easy to see that∫
Ω
∇τ∗hu · ∇v =

∫
Ω
∇u · ∇τ∗−hv =

∫
Ω
fτ∗−hv for all v ∈ HK′ . (43)

Combining this with (42) gives∫
Ω
∇∆hu · ∇v =

∫
Ω
f∆−hv for all v ∈ HK′ . (44)

Then upon applying Lemma 12, we have∣∣ ∫
Ω
∇∆hu · ∇v

∣∣ ≤ ‖f‖L2(Ω)‖∆−hv‖L2(Ω) ≤ |h|‖f‖L2(Ω)‖∇v‖L2(Ω), (45)

for all small h and for all v ∈ HK′ . Now we put v = ∆hu, which is justified because ∆hu ∈ H1
K′

for small h, and get
‖∇∆hu‖L2(Ω) ≤ |h|‖f‖L2(Ω). (46)

This in particular implies that

‖∆eit∂ju‖L2(Ω) ≤ t‖f‖L2(Ω), (47)

for all small t > 0, which means by Theorem 13 that the weak derivative ∂i∂ju exists and

‖∂i∂ju‖L2(Ω) ≤ ‖f‖L2(Ω), (48)

for all i, j. To conclude, if u ∈ H1
K and f ∈ L2(Ω) satisfy (42), then we have u ∈ H2(Ω) with

|u|H2(Ω) ≤ n‖f‖L2(Ω). This is not fully satisfactory as it involves the unreasonable assumption
u ∈ H1

K , but the result can easily be generalized as follows.
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Lemma 18. Let u ∈ H1
loc(Ω) and f ∈ L2

loc(Ω) satisfy∫
Ω
∇u · ∇v =

∫
Ω
fv for all v ∈ D(Ω), (49)

and let η ∈ D(Ω). Then we have∫
Ω
∇(ηu) · ∇v =

∫
Ω

(ηf − 2∇η · ∇u− u∆η)v for all v ∈ H1
0 (Ω). (50)

Hence the result we have established just before this lemma shows that ηu ∈ H2(Ω), and

|∇(ηu)|H2 ≤ n‖ηf‖L2 + 2n‖∇η · ∇u‖L2 + n‖u∆η‖L2 . (51)

In particular, we have u ∈ H2
loc(Ω).

Proof. We have ∇(uη) = u∇η + η∇u in the weak sense because∫
Ω
ηu∂iϕ =

∫
Ω
u∂i(ηϕ)−

∫
Ω
uϕ∂iη, ϕ ∈ D(Ω). (52)

Thus for v ∈ D(Ω), we can write∫
Ω
∇(ηu) · ∇v =

∫
Ω

(u∇η + η∇u) · ∇v =

∫
Ω
u∇η · ∇v +∇u · (∇(ηv)− v∇η)

=

∫
Ω
u∇η · ∇v + fηv − v∇u · ∇η,

(53)

where we have used the formula η∇v = ∇(ηv)− v∇η in the second equality, and (49) in the
last line. The reasoning (52) with η replaced by ∂iη leads to ∂i(u∂iη) = u∂2

i η + ∂iη∂iu in the
weak sense, which then implies that∫

Ω
u∇η · ∇v = −

∫
Ω

(u∆η +∇η · ∇u)v. (54)

Plugging this into (53) establishes (50) for v ∈ D(Ω). Since the both sides of (50) are continuous
in the H1(Ω) norm as functions of v, it is clear that (50) holds for all v ∈ H1

0 (Ω). �

Now we establish a higher regularity result. It shows that at least in the Hk scale, the
solution is as regular as it is allowed by the right hand side f .

Theorem 19. Let u ∈ H1
loc(Ω) and f ∈ Hk

loc(Ω) satisfy∫
Ω

(∇u · ∇v + tuv) =

∫
Ω
fv for all v ∈ D(Ω), (55)

where t ∈ R is a constant. Then u ∈ Hk+2
loc (Ω), and we have the recursive estimate

|u|Hk+2(B) ≤ |f |Hk(B′) + c r−1|u|Hk+1(B′) + c r−2|u|Hk(B′), (56)

where B = BR(x) and B′ = BR+r(x) with R > 0 and B̄′ ⊂ Ω, and c is a constant that depends
only on n and t.

Proof. Testing in (55) with ∂αv instead of v, we write∫
Ω
∇u · ∇∂αv =

∫
Ω

(f − tu)∂αv for all v ∈ D(Ω). (57)

If we temporarily assume that u ∈ Hj+1
loc (Ω) for some j ≤ k, then for all multi-indices α with

|α| ≤ j, we have ∂αu ∈ H1
loc(Ω), and∫

Ω
f∂αv = (−1)|α|

∫
Ω

(∂αf)v, and
∫

Ω
∇u · ∇∂αv = (−1)|α|

∫
Ω
∇∂αu · ∇v, (58)
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hence ∫
Ω
∇∂αu · ∇v =

∫
Ω

(∂αf − t∂αu)v for all v ∈ D(Ω). (59)

Now Lemma 18 implies that ∂αu ∈ H2
loc(Ω), that is, u ∈ Hj+2

loc (Ω), and repeated applications
of this argument with j = 0, . . . , k implies u ∈ Hk+2

loc (Ω).
For the estimate (56), consider a function η ∈ D(B′) such that 0 ≤ η ≤ 1 everywhere, η ≡ 1

in B, and r‖∇η‖L∞ + r2‖∆η‖L∞ ≤ C for some constant C that does not depend on any of R
and r. Then an application of (51) finishes the proof. �

6. Sobolev’s lemma

In the previous section, we have established an Hk regularity result, i.e., that f ∈ Hk
loc

implies u ∈ Hk+2
loc , for weak solutions of −∆u + tu = f . In this section, we would like to

investigate what this result implies in terms of the C k regularity of u, i.e., if and when we have
embeddings of the sort Hk

loc(Ω) ⊂ Cm(Ω). We first look at the case m = 0 and a special class
of domains, called cones.

Lemma 20. Let ω be an open subset of the unit sphere Sn−1, and let

Q = Q(ω, h) = {ξt : ξ ∈ ω, 0 < t < h} ⊂ Rn, (60)

with some h > 0. Suppose that k > n
2 . Then we have

|u(0)| ≤ c‖u‖Hk(Q), for all u ∈ C∞(Q̄), (61)

where c = c(k, n, |ω|, h).

Proof. First, let us derive the Cauchy formula for repeated integration in one dimension. Suppose
that f ∈ C∞(R) is a function satisfying f(h) = f ′(h) = . . . = f (k−1)(h) = 0. Then by repeated
integration by parts, we have

f(0) = −
∫ h

0
f ′(t)dt =

∫ h

0
f ′′(t)tdt = −1

2

∫ h

0
f ′′′(t)t2dt = . . .

=
(−1)k

(k − 1)!

∫ h

0
f (k)(t)tk−1dt,

(62)

which is the claimed formula.
Now we pick φ ∈ D(Bh) with φ(0) = 1, and set v = φu. Moreover, fix ξ ∈ ω and put

f(t) = v(ξt) for t ∈ [0, h]. We estimate f (k)(t) as

|f (k)(t)| =
∣∣[(ξ1∂1 + . . .+ ξn∂n)kv](ξt)

∣∣ ≤ nk max
|α|=k

|∂αv(ξt)|, (63)

and by the Cauchy formula, we get

|u(0)| = |f(0)| ≤ 1

(k − 1)!

∫ h

0
|f (k)(t)|tk−1dt ≤

∫ h

0
gk(ξt)t

k−1dt, (64)

where

gk(x) =
nk

(k − 1)!
max
|α|=k

|∂αv(x)|, x ∈ Q. (65)

Then integrating over ξ ∈ ω and changing the integration variable from (ξ, t) ∈ ω × (0, h) to
x = ξt ∈ Q, we infer

|u(0)| ≤ 1

|ω|

∫
ω

∫ h

0
gk(ξt)t

k−1dtdn−1ξ ≤ 1

|ω|

∫
Q
gk(x)|x|k−ndx

≤ 1

|ω|
‖gk‖L2(Q)

(∫
Q
|x|2(k−n)dx

) 1
2

,

(66)
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where the last integral is finite since 2k > n. Namely, we have

|u(0)| ≤ c|v|Hk(Q) = c|φu|Hk(Q), (67)

with c = c(k, n, |ω|, h), concluding the proof. �

Now arbitrary m and a quite general class of domains can be treated with ease.

Definition 21. A domain Ω ⊂ Rn is said to have the cone property if there exists a cone
Q = Q(ω, h) as in the preceding lemma, such that each x ∈ Ω is a vertex of a cone Qx ⊂ Ω
congruent to Q (in other words, one can place Q in Ω by moving its vertex to x and by suitably
rotating around x).

Theorem 22. Let Ω ⊂ Rn be a domain having the cone property, and let k > n
2 +m. Then

we have
‖u‖Cm(Ω) ≤ c‖u‖Hk(Ω) for u ∈ Cm(Ω) ∩Hk(Ω), (68)

where c = c(k−m,n, |ω|, h). In particular, Hk(Ω) ↪→ Cm
b (Ω), the latter is the space of functions

whose derivatives of order up to m are continuous and bounded in Ω.

Proof. Let u ∈ Cm(Ω) ∩Hk(Ω). Then for x ∈ Ω and for α satisfying |α| ≤ m, we have

|∂αu(x)| ≤ c‖∂αu‖Hk−m(Qx) ≤ c‖∂αu‖Hk−m(Ω) ≤ c‖u‖Hk(Ω), (69)

with c = c(k −m,n, |ω|, h), which implies (68).
Now suppose that u ∈ Hk(Ω), and let {uj} ⊂ C∞(Ω) ∩ Hk(Ω) be a sequence satisfying

uj → u in Hk(Ω) as j → ∞. Then an application of (68) to the difference uj − um implies
that {uj} is a Cauchy sequence in Cm

b (Ω). Hence by the completeness of Cm
b (Ω) there is

w ∈ Cm
b (Ω) such that uj → w in Cm

b (Ω). In particular, we have u = w almost everywhere. �

Corollary 23. If f ∈ Hk−2
loc (Ω) with k > n

2 +m and k ≥ 2 then any weak solution u ∈ H1
loc(Ω)

of −∆u+ tu = f satisfies u ∈ Cm(Ω). In particular, f ∈ C∞(Ω) implies u ∈ C∞(Ω).

Note that an element of Cm
b (Ω) does not necessarily have a continuous extension to Ω̄. As

such a property is important in classically satisfying a boundary condition, before closing the
section, we present a sufficient condition for the embedding Hk(Ω) ⊂ Cm(Ω̄) to hold. Here
Cm(Ω̄) is the space of Cm(Ω) functions whose derivatives of order up to m have continuous
extensions to Ω̄.

Definition 24. A domain Ω ⊂ Rn is said to have the strong cone property if there exist a cone
Q = Q(ω, h) and constants λ > 0 and µ ≥ 1, such that each pair y, z ∈ Ω with |y − z| < h

2µ is
the vertices of the cones Qy ⊂ Ω and Qz ⊂ Ω congruent to Q, and

|Qy ∩Qz ∩Br(y) ∩Br(z)| ≥ λ|y − z|n, (70)

where r = µ|y − z|.
Theorem 25. Let Ω ⊂ Rn be a domain having the strong cone property, and let k > n

2 +m.
Then we have Hk(Ω) ↪→ Cm(Ω̄).

Proof. We will prove the case m = 0 only. Without loss of generality, assume that y = 0, and
that Q = Qy. Let Q′ = Q∩Br(y), and Q′z = Qz ∩Br(z). Then for u smooth and x ∈ Q′ ∩Q′z,
we have

|u(0)− u(z)| ≤ |u(0)− u(x)|+ |u(x)− u(z)|, (71)
and integrating this over Q′ ∩Q′z, we get

|Q′ ∩Q′z||u(0)− u(z)| ≤
∫
Q′∩Q′z

|u(0)− u(x)|dx+

∫
Q′∩Q′z

|u(x)− u(z)|dx

≤
∫
Q′
|u(0)− u(x)|dx+

∫
Q′z

|u(x)− u(z)|dx.
(72)
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We pick φ ∈ D(Bh) with φ ≡ 1 in Bh/2, and set v = φu. Moreover, put f(t) = v(ξt) for ξ ∈ ω
and t ∈ [0, h]. Then the first integral on the right side of (72) may be estimated as∫

Q′
|u(0)− u(x)|dx ≤

∫
ω

∫ r

0

∫ ρ

0
|f ′(t)|ρn−1dtdρdn−1ξ ≤ rn

n

∫
ω

∫ r

0
|f ′(t)|dtdn−1ξ. (73)

Now from the Cauchy formula

|f ′(t)| ≤ 1

(k − 2)!

∫ h

t
|f (k)(s)|(s− t)k−1dt ≤ 1

(k − 2)!

∫ h

t
|f (k)(s)|sk−1dt, (74)

we infer ∫ r

0
|f ′(t)|dt ≤ 1

(k − 2)!

∫ r

0
|f (k)(t)|tk−1dt+

r

(k − 2)!

∫ h

r
|f (k)(t)|tk−2dt, (75)

and plugging this into (73) we get∫
Q′
|u(0)− u(x)|dx ≤ crn

∫
Q′
gk(x)|x|k−ndx+ crn+1

∫
Q\Q′

gk(x)|x|k−n−1dx, (76)

where c = (k, n) is a constant and gk(x) = max
|α|=k

|∂αv(x)| for x ∈ Q. For the first term on the

right hand side, we have∫
Q′
gk(x)|x|k−ndx ≤ ‖gk‖L2(Q′)

(∫
Q
|x|2(k−n)dx

) 1
2

≤ crk−n/2‖gk‖L2(Q) (77)

provided that k − n
2 > 0, where c = c(k, n, |ω|) is a constant. For the other term, we have

∫
Q\Q′

gk(x)|x|k−n−1dx ≤ ‖gk‖L2(Q)

(∫
Q\Q′

|x|2(k−n−1)dx

) 1
2

≤ crk−1−n/2‖gk‖L2(Q), (78)

if k − n
2 < 1, and ∫

Q\Q′
gk(x)|x|k−n−1dx ≤ c log

h

r
‖gk‖L2(Q), (79)

if k − n
2 = 1, where in both cases c = c(k, n, |ω|) is a constant.

The second integral on the right hand side of (72) can be estimated in the same way, and
we conclude for y, z ∈ Ω with |y − z| < h

2µ , that

|u(y)− u(z)| ≤ c|y − z|
1
2 ‖u‖Hk(Ω), (80)

if n is odd and k = [n2 ] + 1, and

|u(y)− u(z)| ≤ c|y − z| log
h

|y − z|
‖u‖Hk(Ω), (81)

if n is even and k = n
2 + 1, with c = c(n, |ω|, λ). In any case, this implies that Hk functions

are uniformly continuous, and hence can be extended continuously to the closure of Ω. �

Remark 26. The preceding proof shows that Hk(Ω) ↪→ C k−[n
2

]−1,α(Ω), for α = 1
2 when n is

odd, and for any α < 1 when n is even.
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7. Analyticity

We know from Corollary 23 that if f ∈ C∞(Ω) then any weak solution u ∈ H1
loc(Ω) of

−∆u+ tu = f satisfies u ∈ C∞(Ω). In this section, we want to investigate the question whether
or not f ∈ Cω(Ω) would imply u ∈ C ω(Ω). As before, let Ω ⊂ Rn be a domain. Recall that a
function f ∈ C∞(Ω) is called (real) analytic in Ω, and written f ∈ C ω(Ω), if for any y ∈ Ω the
Taylor series

f(x) =
∑
α

∂αf(y)

α!
(x− y)α, (82)

converges in an open set containing y. We need some preliminary results to characterize
analyticity by local growth estimates on derivatives.

Lemma 27. A function f is real analytic in Ω if and only if for any point y ∈ Ω there exist a
ball B = Br(y) with r > 0 and B̄ ⊂ Ω, and constants δ > 0 and M <∞ such that

‖f‖Cm(B) ≤M
m!

δm
for all m ∈ N. (83)

Proof. The “if” part has already been proved in the notes on harmonic functions.
For the other direction, we start by assuming that f ∈ C ω(Ω). Hence for any given y ∈ Ω,

the Taylor series (82) converges in a neighbourhood of y. In particular, this means that for
some δ = δ(y) > 0 possibly depending on y, the mentioned series converges for x given by
x = y + (δ, δ, . . . , δ), and since each term of a convergent series must be bounded, there exists
a constant M <∞ such that

|∂αf(y)| ≤Mδ−|α|α! for all α. (84)

This is almost what we want, but we need to remove the possible dependence of δ on y. To
address this issue, we consider the power series

f(z) =
∑
α

∂αf(y)

α!
(z − y)α, (85)

for z ∈ Cn, which is just (82) extended to the complex domain. Now because of the estimate
(84), the complex power series (85) converges (absolutely and uniformly) in an open set
containing the closure of the polydisk Dr(y) = Dr(y1) × . . . ×Dr(yn) ⊂ Cn for some r > 0,
where Dr(yk) ∈ C is the disk of radius r centred at yk. This means that for each k ∈ {1, . . . , n}
and for each fixed

(ζ1, . . . , ζk−1, ζk+1, . . . , ζn) ∈ D̄r(y1)× . . .×D̄r(yk−1)×D̄r(yk+1)× . . .×D̄r(yn) ⊂ Cn−1, (86)

the function ζk 7→ f(ζ) is complex analytic in a neighbourhood containing D̄r(yk). Let Cr(yk)
be the boundary of Dr(yk), positively oriented. Then Cauchy’s formula gives

f(z) =
1

2πi

∫
Cr(yk)

f(z1, . . . , zk−1, ζk, zk+1, . . . , zn)

ζk − zk
dζk, (87)

for any z ∈ D̄r(y1) × . . . × D̄r(yk−1) × Dr(yk) × Dr(yk+1) × . . . × D̄r(yn). Hence for any
z ∈ Dr(y), we have

f(z) =
1

2πi

∫
Cr(yn)

f(z1, . . . , zn−1, ζn)

ζn − zn
dζn, (88)

and by applying the formula (87) recursively, we derive

f(z) =
1

(2πi)n

∫
Cr(yn)

· · ·
∫
Cr(y1)

f(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn. (89)
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Since z is in the interior of Dr(y), and so the integrand is analytic in an open set containing
∂Dr(y), we can differentiate under the integral sign and get

∂αz f(z) =
1

(2πi)n

∫
Cr(yn)

· · ·
∫
Cr(y1)

f(ζ)

(ζ − z)α+1
dζ1 · · · dζn, (90)

where α+ 1 = (α1 + 1, . . . , αn + 1). If zk ∈ Dr/2(yk) and ζk ∈ Cr(yk), then |ζk − zk| ≥ r/2, so
we have the estimate

|∂αz f(z)| ≤ 2nα!(2/r)|α|‖f‖L∞(Dr(y)), (91)

for z ∈ Dr/2(y). Restricting z to Rn, we get the desired estimate. �

The next step is to characterize analyticity by the growth of local Sobolev norms.

Lemma 28. A function f is real analytic in Ω if and only if for any point y ∈ Ω there exist a
ball B = Br(y) with r > 0 and B̄ ⊂ Ω, and constants δ > 0 and M <∞ such that

‖f‖Hk(B) ≤M
k!

δk
for all k ∈ N. (92)

Proof. If f ∈ C ω(Ω) then by the previous lemma we have for any point y ∈ Ω there exist a
ball B = Br(y) with r > 0 and B̄ ⊂ Ω, and constants δ > 0 and M <∞ such that

‖f‖Cm(B) ≤M
m!

δm
for all m ∈ N. (93)

Now by using the trivial estimate

‖f‖Hm(B) ≤ ‖f‖Cm(B) · |B|
1
2 , (94)

we get the “only if” part of the lemma.
To prove the other direction, suppose that we have (92). The ball B clearly satisfies the

cone property, and the parameters |ω| and h depend only on the size of the ball B. Hence for
any m ∈ N, Sobolev’s lemma gives

‖f‖Cm(B) ≤ c‖f‖Hm+p(B) ≤ cM(m+ p)!δ−m−p, (95)

where p = [n2 ] + 1 and c is a constant that depends only on p, n, and the size of the ball B.
For m ≤ p we have

(m+ p)! ≤ (2p)! ≤ 2pp2p, (96)
and for m > p we have

(m+ p)! ≤ m!(2m)p ≤ ppemm!, (97)
which imply that

‖f‖Cm(B) ≤ cMδ−p2pp2pm!(δ/e)−m, (98)
establishing the lemma. �

Finally, we present here the analytic regularity theorem.

Theorem 29. Let u ∈ H1
loc(Ω) be a weak solution of −∆u + tu = f , where t ∈ R and

f ∈ C ω(Ω). Then u ∈ C ω(Ω).

Proof. By Theorem 19, we have u ∈ C∞(Ω), so we only need to derive suitable estimates on
the local Sobolev norms. Let B = BR(y) and B′ = BR+ρ(y) with R > 0, ρ > 0 and B̄′ ⊂ Ω.
Let K` = BR+`r(y) for ` = 0, . . . , k with r = ρ/k. Note that K0 = B and Kk = B′. Then the
estimate (56) from Theorem 19 yields

|u|Hk−`(K`) ≤ |f |Hk−`−2(K`+1) + (cr)−1|u|Hk−`−1(K`+1) + (cr)−2|u|Hk−`−2(K`+1), (99)



POISSON PROBLEMS 15

for ` = 0, . . . , k − 1, where c is a constant that depends only on n and t. We infer

|u|Hk(B) ≤ (cr)−k‖u‖H1(B′) +
k−2∑
`=0

(cr)`−k+2|f |H`(B′)

≤ (cr)−k‖u‖H1(B′) +
k−2∑
`=0

(cr)`−k+2M
`!

δ`
,

(100)

by analyticity of f . Now by noting that kj ≤ j!ek for any j ∈ N, we have

|u|Hk(B) ≤ (cρ)−kekk!‖u‖H1(B′) +
k−2∑
`=0

(cρ)`−k+2ek−`(k − `)!M `!

δ`

≤ (cρ)−kekk!‖u‖H1(B′) + Ck!(δ′)−k,

(101)

for some constants C and δ′ > 0, which completes the proof. �

8. Regularity up to the boundary

So far we have been concerned with regularity results that are valid in compact subsets of the
domain Ω. One of the most fundamental theorems in this direction is the fact that f ∈ L2

loc(Ω)
implies u ∈ H2

loc(Ω). Such results are called interior regularity results, and they depend neither
on the smoothness of the boundary nor on the boundary condition. In this section, we want to
study the Hk regularity of u in sets of the form Ω ∩B where B is a ball centred at a point of
∂Ω. A typical result we would like to have is the implication f ∈ L2(Ω∩B) ⇒ u ∈ H2(Ω∩B),
although it will turn out that one needs to impose some smoothness conditions on ∂Ω.

We start with the half-space case. Note that the Dirichlet and Neumann boundary conditions
are treated simultaneously.

Lemma 30. Let Rn+ = {x ∈ Rn : xn > 0}, and let V be either H1
0 (Rn+) or H1(Rn+). Suppose

that u ∈ V and f ∈ L2(Rn+) satisfy∫
Rn+
∇u · ∇v =

∫
Rn+
fv for all v ∈ V. (102)

Then we have u ∈ H2(Rn+) and |u|H2(Rn+) ≤ 2n‖f‖L2(Rn+).

Proof. Since τ∗hv ∈ V for v ∈ V and for all h ∈ Rn with hn = 0, we have∫
Rn+
∇τ∗hu · ∇v =

∫
Rn+
∇u · ∇τ∗−hv =

∫
Rn+
fτ∗−hv for all v ∈ V, (103)

and therefore ∫
Rn+
∇∆hu · ∇v =

∫
Rn+
f∆−hv for all v ∈ V. (104)

Then it follows from Lemma 12 that∣∣ ∫
Rn+
∇∆hu · ∇v

∣∣ ≤ ‖f‖L2(Rn+)‖∆−hv‖L2(Rn+) ≤ |h|‖f‖L2(Rn+)‖∇v‖L2(Rn+), (105)

for all h with hn = 0 and for all v ∈ V . Now we put v = ∆hu, which is justified because
∆hu ∈ V when hn = 0, and get

‖∇∆hu‖L2(Rn+) ≤ |h|‖f‖L2(Rn+). (106)

This in particular implies that

‖∆eit∂ju‖L2(Rn+) ≤ t‖f‖L2(Rn+), (107)
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for t > 0, i = 1, . . . , n − 1, and j = 1, . . . , n, which means by Theorem 13 that the weak
derivative ∂i∂ju exists and

‖∂i∂ju‖L2(Rn+) ≤ ‖f‖L2(Rn+), (108)

for i = 1, . . . , n− 1, and j = 1, . . . , n.
In order to make the conclusion u ∈ H2(Rn+), the only missing ingredient at this point

is to show that ∂2
nu ∈ L2(Rn+). Arguing formally, the equation −∆u = f implies −∂2

nu =

f +
∑n−1

i=1 ∂
2
i u, so if all ∂2

i u for i = 1, . . . , n− 1 are in L2, then ∂2
nu ought to be in L2. We can

make sense of this formal argument as follows. The equation (102) implies∫
Rn+
∂nu · ∂nv =

∫
Rn+
fv −

n−1∑
i=1

∫
Rn+
∂iu · ∂iv for all v ∈ D(Rn+). (109)

Then since ∂iu ∈ H1(Rn+), by definition of the weak derivative we have∫
Rn+
∂iu · ∂iv = −

∫
Rn+
∂2
i u · v, (110)

and therefore ∫
Rn+
∂nu · ∂nv =

∫
Rn+

(
f +

n−1∑
i=1

∂2
i u
)
v for all v ∈ D(Rn+). (111)

By definition, this means that ∂2
nu exists in the weak sense and equal to the expression in the

brackets (up to a sign). Since the expression in the brackets is in L2(Rn+), we conclude that
∂2
nu ∈ L2(Rn+), and thus u ∈ H2(Rn+). �

Remark 31. We observe that the translation invariance of the space V (which is H1
0 or H1)

along the boundary ∂Rn+ was important in making the finite difference argument work.

Next, we would like to extend the result to domains with curved boundaries. To this end,
we consider a domain whose boundary is given by the graph of a function.

Theorem 32. Let φ ∈ C 2
b (Rn−1), and let Ω = {x ∈ Rn : xn > φ(x1, . . . , xn−1)}. Let V be

either H1
0 (Ω) or H1(Ω). Suppose that u ∈ V and f ∈ L2(Ω) satisfy∫

Ω
∇u · ∇v =

∫
Ω
fv for all v ∈ V. (112)

Then we have u ∈ H2(Ω).

Proof. Under the coordinate transformation{
yi = xi, i = 1, . . . , n− 1,

yn = xn − φ(x1, . . . , xn−1),
(113)

our domain becomes the upper half space Rn+. However, we cannot apply Lemma 30 directly,
because the equation (112) might change under the transform (113). Indeed, the computation{

∂xiu = ∂yiu− ∂ynu · ∂xiφ, i = 1, . . . , n− 1,

∂xnu = ∂ynu,
(114)

shows that the situation is not completely trivial. Let us write it as

∇xu = B∇yu ≡
(
I −∇φ
0 1

)
∇yu, (115)
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where ∇x and ∇y designate gradients with respect to the x and y coordinates, respectively,
and ∇φ = (∂1φ, . . . , ∂n−1φ). All gradients are understood as column vectors. Note that we
have the explicit formula

B−1 =

(
I ∇φ
0 1

)
. (116)

For smooth functions u and v, we have

∇xu · ∇xv = (∇yu)TA∇xv ≡
∑
i,k

aik∂yiu · ∂ykv, (117)

where aik (i, k = 1, . . . , n) are the elements of the matrix

A = BTB =

(
I −∇φ

−(∇φ)T 1

)
. (118)

Since the Jacobian determinant of the transformation (113) is 1, we infer∫
Ω
∇xu · ∇xv =

∫
Rn+

(∇yu)TA∇yv. (119)

This in particular implies that

α

∫
Ω
|∇yu|2 ≤

∫
Rn+
|∇xu|2 ≤ β

∫
Ω
|∇yu|2, (120)

for some constants α > 0 and β <∞, because

ξTAξ = |Bξ|2 ≤ β|ξ|2 for ξ ∈ Rn, (121)

and
|ξ|2 = |B−1Bξ|2 ≤ β′|Bξ|2 = β′ξTAξ, for ξ ∈ Rn, (122)

where the constants β and β′ depend only on ‖∇φ‖L∞(Rn−1). Hence, a function u is in
H1(Ω) with respect to the x coordinates if and only if u is in H1(Rn+) with respect to the
y coordinates, and an analogous statement holds for the H1

0 spaces. In other words, the
pull-back map corresponding to the transformation (113) extends uniquely and continuously
to an isomorphism between Sobolev spaces. We are going to reuse the letter V to also denote
the same space with Ω replaced by Rn+. Then we have∑

i,k

∫
Rn+
aik∂iu · ∂kv =

∫
Rn+
fv for all v ∈ V. (123)

From this point we proceed similarly to the proof of Lemma 30. Let h ∈ Rn be an arbitrary
vector with hn = 0. Since τ∗hv ∈ V for v ∈ V , we have∑

i,k

∫
Rn+
τ∗h(aik∂iu)∂kv =

∑
i,k

∫
Rn+
aik∂iu · ∂kτ∗−hv =

∫
Rn+
fτ∗−hv for all v ∈ V, (124)

and therefore ∑
i,k

∫
Rn+

∆h(aik∂iu)∂kv =

∫
Rn+
f∆−hv for all v ∈ V. (125)

Now taking into account that

∆h(aik∂iu) = aik∂i∆hu+ ∆haik · ∂iτ∗hu, (126)

we infer∑
i,k

∫
Rn+
aik∂i∆hu · ∂kv =

∫
Rn+
f∆−hv −

∑
i,k

∫
Rn+

∆haik · ∂iτ∗hu · ∂kv for all v ∈ V. (127)
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Then Lemma 12 implies∣∣∑
i,k

∫
Rn+
aik∂i∆hu · ∂kv

∣∣ ≤ |h|‖f‖L2(Rn+)‖∇v‖L2(Rn+) +M |h|‖∇u‖L2(Rn+)‖∇v‖L2(Rn+), (128)

for all v ∈ V , where M depends on the Lipschitz norm of aik. We put v = ∆hu, which is
justified because ∆hu ∈ V , and get

α‖∇∆hu‖L2(Rn+) ≤ |h|‖f‖L2(Rn+) +M |h|‖∇u‖L2(Rn+), (129)

with α > 0 a constant. Since h ∈ Rn is an arbitrary vector with hn = 0, we conclude by
Theorem 13 that the weak derivative ∂i∂ju exists and

α‖∂i∂ju‖L2(Rn+) ≤ ‖f‖L2(Rn+) +M‖∇u‖L2(Rn+), (130)

for i = 1, . . . , n− 1, and j = 1, . . . , n.
Next, we shall show that ∂2

nu ∈ L2(Rn+). The equation (123) implies∫
Rn+
ann∂nu · ∂nv =

∫
Rn+
fv −

∑
i+k<2n

∫
Rn+
aik∂iu · ∂kv for all v ∈ D(Rn+). (131)

Recall that ann = 1. Since ∂i∂ku ∈ L2(Rn+), we have∫
Rn+
aik∂iu · ∂kv = −

∫
Rn+

(∂kaik · ∂iu+ aik∂i∂ku)v, (132)

and therefore∫
Rn+
∂nu · ∂nv =

∫
Rn+

(
f +

∑
i+k<2n

(∂kaik · ∂iu+ aik∂i∂ku)
)
v for all v ∈ D(Rn+). (133)

By definition, this means that ∂2
nu exists in the weak sense and equal to the expression in the

brackets (up to a sign). Since the expression in the brackets is in L2(Rn+), we conclude that
∂2
nu ∈ L2(Rn+), and thus u ∈ H2(Rn+). �

Exercise 33. Complete the proof by showing that u ∈ H2(Rn+) in the y-coordinates implies
u ∈ H2(Ω) in the x-coordinates.

9. The Newtonian potential

Roughly speaking, what we have learned from the regularity theory so far is that by solving
the Poisson equation ∆u = f , we gain exactly 2 orders of regularity in the Hk scale: f ∈ Hk

implies u ∈ Hk+2. A primitive form of such a phenomenon is the following fact for ordinary
differential equations: If y solves y′′ = f and f ∈ C k then y ∈ C k+2. Now if we want to obtain
a regularity result for the Poisson equation in the C k scale, as we already saw, one way is to
use Sobolev’s lemma to trade Sobolev regularity for classical regularity. Schematically, it would
work as follows.

f ∈ C k ⇒ f ∈ Hk ⇒ u ∈ Hk+2 ⇒ u ∈ Cm. (134)

However, this trade is not very efficient, as we need k+2 > m+ n
2 in order to have Hk+2 ⊂ Cm.

For instance, if we want to guarantee u ∈ C 2, then we would need f ∈ C k with k > n
2 . Already

for n = 2 it means k > 1, and it gets worse as n increases. So the route through Sobolev’s
lemma in general does not allow any gain of regularity in the C k scale, and in fact it even loses
regularity in higher dimensions.

In this section, we will study the C k regularity question by a direct approach that does not
rely on the Hk regularity results. As we will see, the answer turns out to be a bit subtle. The
subtlety is caused by the fact that in general we do not gain 2 orders of regularity in the C k
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scale. It is illustrated by the following example which shows that there is a continuous function
f for which the equation ∆u = f has no C 2 solution in any neighbourhood of 0.

Example 34 (Gilbarg-Trudinger). Let p(x) = x1x2, so that we have ∆p = 0 and ∂1∂2p = 1 in
R2. In addition, let η be a smooth nonnegative function such that η ≡ 1 in B1 and supp η ⊂ B2,
and let {ck} be a sequence satisfying

∑
k ck =∞ and ck → 0 as k →∞. Define

u(x) =
∞∑
k=0

ck2
−2kg(2kx), (135)

where g = ηp. It is easy to see that u ∈ C 1(R2)∩C∞(R2 \{0}), but u is not in C 2(R2) because

∂1∂2u(x) =

∞∑
k=0

ck(∂1∂2g)(2kx) =

∞∑
k=0

ck, (136)

blows up at x = 0. Moreover, we have

f(x) := ∆u(x) =
∞∑
k=0

ck(∆g)(2kx) =:

∞∑
k=0

fk(x), (137)

for x 6= 0. We see that the term fk is supported in the annulus {2−k ≤ |x| < 21−k}, and
‖fk‖L∞ → 0 as k →∞. Hence f ∈ C (Rn). Now assume that v ∈ C 2(Bε) satisfies ∆v = f in
Bε, for some ε > 0. Then u− v ∈ C 2(Bε \ {0}) is harmonic in Bε \ {0}. Obviously u− v is
bounded in a neighbourhood of 0, which means by the removable singularity theorem that
u = v in Bε. However, u 6∈ C 2, and so no such v exists.

In retrospect, Example 34 is not so surprising because the condition ∆u = f ∈ C means
only that a particular combination of the second derivatives of u is continuous, while u ∈ C 2

means that each second derivative of u is continuous. To see that solving a partial differential
equation does not always gain regularity, consider the equation ∂2

xu = f in R2. Clearly this
equation does not gain any regularity in the y-direction, because, intuitively speaking, it does
not mix things up in the y-direction. That being said, the equations ∆u = f and ∂2

xu = f are
completely different in nature (when n ≥ 2). The equation ∆u = f does indeed mix things
up in all directions, and this is the reason why we have good regularity properties in Sobolev
spaces. To contrast, the equation ∂2

xu = f in R2 does not gain regularity in the Sobolev scale
(except the obvious smoothing only in the x-direcion). So one could argue that the real surprise
is the Sobolev regularity properties of the Poisson equation. In fact, even in the C k scale the
situation is not so bad. We need to impose on f a condition that is only slightly stronger than
f ∈ C k in order to get u ∈ C k+2. Moreover, this slight flaw can be “rectified” by working in
Hölder spaces: If f ∈ C k,α with 0 < α < 1 then u ∈ C k+2,α.

Let u ∈ H1
loc(Ω) be a weak solution of ∆u = f in Ω. Then we observe that if v ∈ H1

loc(Ω)
is another weak solution of ∆v = f in Ω, which we explicitly construct or we know a great
deal about, then u − v is a weak solution of ∆(u − v) = 0 in Ω, hence by Weyl’s lemma
u− v ∈ C ω(Ω) and u− v is harmonic in the classical sense. So the regularity of u is as good
as that of v. A good candidate for v is the Newtonian potential of f :

v(x) =

∫
Ω
E(x− y)f(y)dy, (138)

where we recall that the fundamental solution E is given by

E(x) =

{
1

(2−n)|Sn−1| |x|
2−n if n 6= 2,

1
2π log |x| if n = 2.

(139)
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Remark 35. If we can show that the function v satisfies v ∈ C 2(Ω)∩C (Ω̄) and ∆v = f ∈ C (Ω),
then it gives a way to solve the Poisson problem{

∆u = f in Ω,

u = g on ∂Ω,
(140)

by Perron’s method. The idea is to solve the Dirichlet problem{
∆w = 0 in Ω,

w = g − v on ∂Ω,
(141)

first and then put u = w + v.

For convenience, if it is possible, we extend f continuously to a compactly supported function
in Rn. If it is not possible, we perform such an extension after restricting f to a ball whose
closure is contained in Ω. Hence in the following, we are going to assume that Ω = Rn, and fix
some f ∈ C (Rn) with compact support. Note that (138) becomes now

v(x) =

∫
Rn
E(x− y)f(y)dy = (E ∗ f)(x). (142)

We begin by making some simple observations.

Lemma 36. We have v ∈ C 1(Rn) and ∆v = f in Rn in the weak sense.

Proof. Since the statements are local, we only consider the restriction of v to a large ball Br.
So for x ∈ Br, we have

v(x) =

∫
Rn
E(x− y)f(y)dy =

∫
Rn
Ẽ(x− y)f(y)dy, (143)

where Ẽ(x) = ρ(x)E(x) with ρ ∈ D(B3r) satisfying ρ ≡ 1 in B2r and 0 ≤ ρ ≤ 1 everywhere.
This implies that

‖v‖L∞(Br) ≤ ‖Ẽ‖L1‖f‖L∞ ≤ cr2‖f‖L∞ , (144)

where c depends only on n. Now let us define Ẽε(x) = (1− ρ(rx/ε))Ẽ(x), so that Ẽε ≡ 0 in
B2ε and Ẽε ≡ Ẽ in Rn \ B̄3ε, and let vε = Ẽε ∗ f . Since Ẽε ∈ D(Rn), we have vε ∈ D(Rn).
Moreover, vε → v uniformly in Br because

‖v − vε‖L∞(Br) ≤ ‖Ẽ − Ẽε‖L1‖f‖L∞ ≤ cε2‖f‖L∞ , (145)

meaning that v ∈ C (Br). As r is arbitrary, we get v ∈ C (Rn).
As a preparation to showing that v is weakly differentiable, for ϕ ∈ D(Rn) we compute∫

Rn
Ẽ∂iϕ = lim

ε→0

∫
Rn\Bε

Ẽ(x)∂iϕ(x)dx

= − lim
ε→0

(∫
∂Bε

E(x)ϕ(x)
xi
|x|

dn−1x+

∫
Rn\Bε

∂iẼ(x)ϕ(x)dx
)

= −
∫
Rn
∂iẼ(x)ϕ(x)dx,

(146)
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where in the last step we have used the fact that ∂iẼ ∈ L1(Rn). Now for ϕ ∈ D(Br), we have∫
Br

v∂iϕ =

∫
Rn

(∫
Rn
Ẽ(x− y)f(y)dy

)
∂iϕ(x)dx

=

∫
Rn

(∫
Rn
Ẽ(x− y)∂iϕ(x)dx

)
f(y)dy

= −
∫
Rn

(∫
Rn
∂iẼ(x− y)ϕ(x)dx

)
f(y)dy

= −
∫
Br

(∫
Rn
∂iẼ(x− y)f(y)dy

)
ϕ(x)dx,

(147)

where the use of the Fubini theorem is easily justified, and we have used the computation (146)
in the third step. The expression

w(x) =

∫
Rn
∂iẼ(x− y)f(y)dy =

∫
Rn
∂iE(x− y)f(y)dy, (148)

defines a function w ∈ L∞(Br) because

‖w‖L∞(Br) ≤ ‖∂iẼ‖L1‖f‖L∞ ≤ cr‖f‖L∞ , (149)

where c depends only on n. Hence it follows from (147) that ∂iv = w in Br in the weak sense.
As r is arbitrary, the convolution (148) defines a locally bounded function w, and ∂iv = w in
Rn. Since ∂iẼ is locally integrable, the argument (145) can be adapted to show that w ∈ C (Rn)
and therefore that v ∈ C 1(Rn).

It remains to prove that ∆v = f in the weak sense. To this end, recall that∫
Rn
E(x− y)∆ϕ(x)dx = ϕ(y), (150)

for ϕ ∈ D(Rn) and y ∈ Rn. For ϕ ∈ D(Br) this implies that

−
∫
Br

∇v · ∇ϕ =

∫
Br

v∆ϕ =

∫
Rn

(∫
Rn
Ẽ(x− y)f(y)dy

)
∆ϕ(x)dx

=

∫
Rn

(∫
Rn
Ẽ(x− y)∆ϕ(x)dx

)
f(y)dy

=

∫
Rn

(∫
Rn
E(x− y)∆ϕ(x)dx

)
f(y)dy

=

∫
Br

ϕ(y)f(y)dy,

(151)

and since r is arbitrary, the proof is complete. �

We now start our investigation of the second derivatives of v.

Lemma 37. Let

wε(x) =

∫
Rn\Bε(x)

∂i∂jE(x− y)f(y)dy, x ∈ Rn, ε > 0, (152)

and suppose that wε → w in L1
loc(Rn) as ε→ 0. Then we have

∂i∂jv =
δij
n
f + w in the weak sense. (153)

Proof. Let us do some preparatory computations. For ϕ ∈ D(Rn) and ε > 0, we have

−
∫
Rn\Bε

∂iE(x)∂jϕ(x)dx =

∫
∂Bε

∂iE(x)ϕ(x)
xj
|x|

dn−1x+

∫
Rn\Bε

∂i∂jE(x)ϕ(x)dx. (154)
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Since ∂iE(x) = xi/(|Sn−1||x|n), the first term on the right hand side is∫
∂Bε

∂iE(x)ϕ(x)
xj
|x|

dn−1x =
1

|Sn−1|εn+1

∫
∂Bε

ϕ(x)xixjd
n−1x. (155)

We have ∫
∂Bε

xixjd
n−1x = 0, for i 6= j, (156)

by the mean value property of harmonic functions, and∫
∂Bε

x2
i d
n−1x =

1

n

∫
∂Bε

|x|2dn−1x =
|Sn−1|εn+1

n
. (157)

Therefore by using ϕ(x)− ϕ(0) = O(ε) for |x| = ε, we get∫
∂Bε

ϕ(x)xixjd
n−1x = ϕ(0)

∫
∂Bε

xixjd
n−1x+

∫
∂Bε

(ϕ(x)− ϕ(0))xixjd
n−1x

=
|Sn−1|εn+1

n
δijϕ(0) +O(εn+2),

(158)

leading to the formula

−
∫
Rn\Bε

∂iE(x)∂jϕ(x)dx =
δij
n
ϕ(0) +

∫
Rn\Bε

K(x)ϕ(x)dx+O(ε). (159)

Now we fix a ball Br with large radius, and let Ẽ be as in the proof of Lemma 36. Then for
ϕ ∈ D(Br) we have∫

Br

v∂i∂jϕ = −
∫
Br

∂iv · ∂jϕ = −
∫
Rn

(∫
Rn
∂iẼ(x− y)f(y)dy

)
∂jϕ(x)dx

= −
∫
Rn

(∫
Rn
∂iẼ(x− y)∂jϕ(x)dx

)
f(y)dy

= − lim
ε→0

∫
Rn

(∫
Rn\Bε(y)

∂iE(x− y)∂jϕ(x)dx
)
f(y)dy

=

∫
Rn

δij
n
ϕ(y)f(y)dy + lim

ε→0

∫
Rn

(∫
Rn\Bε(y)

K(x− y)ϕ(x)dx
)
f(y)dy

=
δij
n

∫
Rn
f(y)ϕ(y)dy + lim

ε→0

∫
Rn

(∫
Rn\Bε(x)

K(x− y)f(y)dy
)
ϕ(x)dx

=
δij
n

∫
Rn
f(y)ϕ(y)dy + lim

ε→0

∫
Rn
wε(x)ϕ(x)dx

=
δij
n

∫
Rn
f(y)ϕ(y)dy +

∫
Rn
w(x)ϕ(x)dx,

(160)

where we have used (159) in the fourth step. The lemma has been proven. �

We see that an important role is played by the kernel K ∈ C∞(Rn \ {0}) given by

K(x) = ∂i∂jE(x) ≡ δij |x|2 − nxixj
|x|n+2

. (161)

The following properties will be useful.
i) Bounds: |K(x)| ≤ c|x|−n and |∇K(x)| ≤ c|x|−n−1.
ii) Cancellation property:

∫
BR\Br K = 0 for any 0 < r < R <∞.
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Proving the bounds is straightforward, and the cancellation property may be shown by applying
the mean value property to the function δij |x|2 − nxixj .

We want to get some insight on when the function w from the preceding lemma is well-defined.
By a change of variables, we have

wε(x) =

∫
Rn\Bε(x)

K(x− y)f(y)dy =

∫
Rn\Bε

K(z)f(x− z)dz. (162)

As before, we confine x to a large fixed ball Br. If R > 0 is sufficiently large, it holds that∫
Rn\Bε

K(z)f(x− z)dz =

∫
BR\Bε

K(z)f(x− z)dz, (163)

and then the cancellation property implies that

wε(x) =

∫
BR\Bε

K(z)f(x− z)dz =

∫
BR\Bε

K(z)(f(x− z)− f(x))dz. (164)

Introducing the modulus of continuity

ω(f, t) = sup
|h|≤t
‖∆hf‖L∞(Rn) ≡ sup

|x−y|≤t
|f(x)− f(y)|, (t > 0), (165)

we get a control on |wε(x)| as

|wε(x)| ≤
∫
BR\Bε

|K(z)|ω(|z|)dz ≤ c
∫ R

ε
t−nω(f, t)tn−1dt = c

∫ R

ε

ω(f, t)

t
dt. (166)

So if ∫ 1

0

ω(f, t)

t
dt <∞. (167)

then the pointwise limit w(x) = lim
ε→0

wε(x) exists, and in addition, ‖wε‖L∞(Br) ≤ c with a

constant c = c(r) independent of ε > 0. Hence wε → w in L1
loc(Rn) as ε→ 0. The condition

(167) is called the Dini condition, and functions satisfying it are called Dini continuous. An
example of Dini continuity is Hölder continuity, where we have ω(r) = rα with α > 0.

Now that we have a function w ∈ L1
loc(Rn) satisfying ∂i∂jv = δijn

−1f + w, in order to get
v ∈ C 2 we need to show that w is continuous.

Theorem 38. Let f be Dini continuous and compactly supported in Rn. Then w ∈ C (Rn).

Proof. Let x, x′ ∈ Rn with δ = |x− x′| > 0 small. Then we have

|w(x)− w(x′)| ≤
∣∣ ∫
|z|<3δ

K(z)f(x− z)dz
∣∣+
∣∣ ∫
|z|<3δ

K(z)f(x′ − z)dz
∣∣

+
∣∣ ∫
|z|>3δ

K(z)(f(x− z)− f(x′ − z))dz
∣∣, (168)

and the first two terms on the right hand side are bounded by a constant multiple of∫ 3δ

0

ω(f, t)

t
dt, (169)

which goes to 0 as δ → 0. It remains to bound the second term, which we denote by I
henceforth:

I =

∫
|z|>3δ

K(z)(f(x− z)− f(x′ − z))dz. (170)
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By making use of the cancellation property of K, we derive∫
|z|>3δ

K(z)f(x− z)dz =

∫
|z|>3δ

K(z)(f(x− z)− f(x))dz

=

∫
Rn
Kδ(x− y)(f(y)− f(x))dy,

(171)

where Kδ(z) = K(z) for |z| > 3δ and Kδ(z) = 0 otherwise. The same argument gives∫
|z|>3δ

K(z)f(x′ − z)dz =

∫
|z|>3δ

K(z)(f(x′ − z)− f(x))dz

=

∫
Rn
Kδ(x

′ − y)(f(y)− f(x))dy,

(172)

and hence, with R > 0 is large enough so that suppf ⊂ BR,

I =

∫
Rn

(Kδ(x− y)−Kδ(x
′ − y))(f(y)− f(x))dy

=

∫
BR

(Kδ(x− y)−Kδ(x
′ − y))(f(y)− f(x))dy.

(173)

Observe that Kδ(x−y) = 0 and Kδ(x
′−y) = 0 when y ∈ B2δ(x), and that Kδ(x−y) = K(x−y)

and Kδ(x
′ − y) = K(x′ − y) when y 6∈ B4δ(x). So for y ∈ B4δ(x), we use the bound

|Kδ(x− y)−Kδ(x
′ − y)| ≤ |Kδ(x− y)|+ |Kδ(x

′ − y)| ≤ cδ−n, (174)

and for y 6∈ B4δ(x), we use

|Kδ(x− y)−Kδ(x
′ − y)| = |K(x− y)−K(x′ − y)| ≤ max

ξ∈[x,x′]
|∇K(ξ − y)| · |x− x′|

≤ cδ max
ξ∈[x,x′]

|ξ − y|−n−1 ≤ cδ|x− y|−n−1,
(175)

because |x− y| ≤ 4
3 |ξ − y| for ξ ∈ [x, x′] and y 6∈ B4δ(x). Note that we are using the letter c to

denote different constants at its different occurrences. The bounds we have yield

|I| ≤ cδ−n
∫
|x−y|<4δ

ω(f, |x− y|)dy + cδ

∫
4δ<|x−y|<R

ω(f, |x− y|)
|x− y|n+1

dy

≤ cδ−n
∫ 4δ

0
tn−1ω(f, t)dt+ cδ

∫ R

4δ

ω(f, t)

t2
dt

≤ c
∫ 4δ

0

ω(f, t)

t
dt+ cδ

∫ R

δ

ω(f, t)

t2
dt.

(176)

It is clear that the first term on the right hand side goes to 0 as δ → 0. To see that the second
term vanishes as δ → 0, write

δ

∫ R

δ

ω(f, t)

t2
dt ≤ δ

∫ ρ

δ

ω(f, t)

t2
dt+ δ

∫ R

ρ

ω(f, t)

t2
dt ≤

∫ ρ

0

ω(f, t)

t
dt+

δ

ρ

∫ R

ρ

ω(f, t)

t
dt, (177)

which is valid for any δ < ρ < R. For any given ε > 0, we choose ρ > 0 so small that the first
term on the right hand side is smaller than ε. Then we choose δ > 0 so small that the second
term is smaller than ε. The proof is established. �

Corollary 39. Let Ω ⊂ Rn be an open set, and let u ∈ H1
loc(Ω) be a weak solution of ∆u = f ,

where f is Dini continuous in Ω. Then u ∈ C 2(Ω).
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Proof. Let B be a (nontrivial) ball whose closure is contained in Ω, and let φ ∈ D(Ω) be such
that φ ≡ 1 in B. Then φf is a compactly supported Dini function because

ω(φf, t) ≤ ‖φ‖L∞(Rn)ω(f, t) + ‖f‖L∞(suppφ)ω(φ, t). (178)

Hence the Newtonian potential v = E ∗ (φf) satisfies v ∈ C 2(Rn) and ∆v = φf in Rn. In
particular, ∆v = f in B, which means that u− v is a weak solution to ∆(u− v) = 0 in B, and
so u− v is analytic in B. This shows that u|B ∈ C 2(B). As B is arbitrary, we conclude that
u ∈ C 2(Ω). �

10. Problems and exercises

1. Show that if u ∈ C 2(Ω) satisfies (2) then ∆u+ f = 0 almost everywhere in Ω.

2. Give a weak formulation of the problem{
−∆u+ tu = f in Ω,

u = g on ∂Ω,
(179)

and then show that a unique weak solution exists if t > c, where c < 0 is a constant.

3. Show that if u ∈ C 1(Ω̄) satisfies ∫
∂Ω
v∂νu = 0, (180)

for all v ∈ C 1(Ω̄) then ∂νu = 0 on ∂Ω.

4. Show that if ‖∆hf‖Lp = o(h) then f is a constant function.

5. Let Ω ⊂ Rn be a domain having the strong cone property, and let k > n
2 +m. Show that

Hk(Ω) ↪→ C k−[n
2

]−1,α(Ω), for α = 1
2 when n is odd, and for any α < 1 when n is even.

6. Recall that the Sobolev inequality

‖u‖Lq ≤ C‖u‖W 1,p , u ∈ D(Rn), (181)

with some constant C = C(p, q), is valid when 1 ≤ p ≤ q <∞, and 1
p ≤

1
q + 1

n .

a) By way of a counterexample, show that the inequality (181) fails whenever q < p.
b) Show that (181) fails when 1

p >
1
q + 1

n .
c) Show that (181) fails for p = n and q =∞ when n ≥ 2.
d) Derive sufficient conditions on the exponents p, q, k,m under which the inequality

‖u‖Wm,q ≤ C‖u‖Wk,p , u ∈ D(Rn),

is valid.

7 (Gevrey regularity). We say that f ∈ C∞(Ω) is in the Gevrey class Gα(Ω) with α ≥ 1, if for
any ball B with B̄ ⊂ Ω, there exist δ > 0 and M <∞ such that

‖f‖Cm(B) ≤M
(m!)α

δm
for all m ∈ N. (182)

We have Gα(Ω) ⊂ Gβ(Ω) for α ≤ β, and G1(Ω) = C ω(Ω). Also, it makes sense to define
G∞ = C∞. Hence in some sense, the Gevrey classes fill the gap between Cω and C∞. Prove
that if f ∈ Gα(Ω) for some α ≥ 1 then any weak solution u ∈ H1

loc(Ω) of −∆u+ tu = f satisfies
u ∈ Gα(Ω).

8. Complete the proof of Theorem 32 by showing that u ∈ H2(Rn+) in the y-coordinates implies
u ∈ H2(Ω) in the x-coordinates.
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9. Relax the condition φ ∈ C 2
b (Rn−1) in Theorem 32 to φ ∈ C 1,1(Rn−1). Recall that the

Hölder (or Hölder-Lipschitz) space C k,θ(D) on a domain D ⊂ Rd is defined as the space of
functions φ ∈ C k(D) for which

‖φ‖C k,θ(D) =
∑
|β|≤k

sup
x∈D
|∂βφ(x)|+

∑
|β|=k

sup
x,y∈D

|∂βφ(x)− ∂βφ(y)|
|x− y|θ

<∞.

10. Extension of Theorem 32 to higher regularity.

11 (Yudovich). Show that the function u ∈ C∞(D \ {0}) given by

u(x) = x1x1 log log |x|−2, (183)

satisfies u 6∈ C 2(D) and ∆u ∈ C (D).

12. Let p(x) = x3
1 − 3x1x

2
2 in R2, and let η and {ck} be as in Example 34. Let

f(x) =

∞∑
k=0

ck2
−k(∆g)(2kx), (184)

where g = ηp. Show that g ∈ C 1 but that ∆u = f does not have a C 2,1 solution in any
neighbourhood of 0.
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