
HARMONIC FUNCTIONS

TSOGTGEREL GANTUMUR

Abstract. In these notes, we explore the fundamental properties of harmonic functions by
using relatively elementary methods.
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1. Introduction

Newton’s law of universal gravitation, first published in his Principia in 1687, asserts that
the force exerted on a point mass Q at x ∈ R3 by the system of finitely many point masses qi
at yi ∈ R3, (i = 1, . . . ,m), is equal to

F =

m∑
i=1

CqiQ

|x− yi|2
x− yi
|x− yi|

∈ R3, (1)

with a constant C < 0 (like masses attract). Here Q and qi are understood as real numbers
that measure how much mass the corresponding points have, and |a| =

√
a2

1 + a2
2 + a2

3 is the
Euclidean length of the vector a ∈ R3. The same law of interaction between point charges was
discovered experimentally by Charles Augustin de Coulomb and announced in 1785, now with
C > 0 (like charges repel). Note that the numerical value of the constant C depends on the
unit system one is using to measure force, mass (or charge), and distance.

It is convenient to view the force F = F (x) as a vector function of x, that is, a vector field.
This means that we fix the configuration of the point masses {qi}, and think of Q as a test
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Q
q1

q2

F

(a) Electrostatic force acting on Q by the
two charges q1 and q2, cf. (1).

(b) Contour lines of the potential produced by
a charged wire, cf. Example 2.

Figure 1. Electrostatic (or gravitational) force and potential.

mass, that can be placed at any point in space to “probe the field.” After the introduction of
the function

u(x) =
m∑
i=1

Cqi
|x− yi|

, (2)

into the theory of gravitation by Daniel Bernoulli in 1748, Joseph-Louis Lagrange noticed in
1773 that

F (x) = −Q∇u(x), at points x 6= yi, (3)
where ∇u = (∂1u, ∂2u, ∂3u) is the gradient of u. It is remarkable that the force field F can be
encoded in a scalar function u, which is called the potential function, or simply the potential.
We see that the potential u and therefore the vector field1 E = −∇u do not depend on the test
mass Q, and hence can be thought of as preexisting entities that characterize the gravitational
(or electric) field generated by the point masses {qi}. In fact, we call E the gravitational field
(or the electric field).

For a continuous distribution of mass (or charge) with density ρ, vanishing outside some
bounded set, the formula (2) becomes

u(x) = C

∫
R3

ρ(y)dy

|x− y| . (4)

As observed by Pierre-Simon Laplace in 1782, whether it is given by (2) or by (4), the potential
satisfies

∆u = 0 in free space, (5)
where ∆ = ∂2

1 + ∂2
2 + ∂2

3 is the 3 dimensional Laplacian, and free space means a place where
there is no mass (or charge). In other words, the field E = −∇u is divergence free in free space.
The equation ∆u = 0 came to be known as the Laplace equation, and functions satisfying it
are called harmonic functions. It should however be noted that the same equation had been
considered by Lagrange in 1760 in connection with his study of fluid flow problems.

Exercise 1. Prove the statements in the observations of Lagrange and Laplace.

Example 2. Let us compute the potential produced by a uniformly charged straight line
segment in R3. Suppose that the line segment is lying along the x-axis, with its endpoints

1The minus sign in E = −∇u is by convention that E is the same as F with Q = +1.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Bernoulli_Daniel.html
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given by (x1, 0, 0) and (x2, 0, 0). Then the potential at (0, h, 0) is

u = c

∫ x2

x1

dx√
x2 + h2

= c log
(
x+

√
x2 + h2

)∣∣∣x2
x1

= c log
x2 + r2

x1 + r1
, (6)

where c is a constant that depends on the linear charge density of the wire and the unit system,
and ri =

√
x2
i + h2 for i = 1, 2. See Figure 1.

In this chapter, we will study some of the fundamental properties of harmonic functions.
To get a first impression about harmonic functions, let us consider harmonic functions that
are polynomials. In 1 dimension, all harmonic functions are simply linear functions. Likewise
in 2 dimensions, all linear and bilinear polynomials (i.e., axy + bx + cy + d) are harmonic.
However, there are more harmonic polynomials in R2, such as x2 − y2 and y3 − 3x2y. Playing
with some explicit examples will reveal that harmonic polynomials do not have any maximum
or minimum points; for example, polynomials such as x4 + y4 can never be harmonic. If the
gradient of a harmonic polynomial vanishes at some point, then this point is necessarily a
saddle point, like the point (0, 0) for x2 − y2. This is actually the tip of the iceberg known as
mean value property and maximum principles, which hold for general harmonic functions.

A careful study of harmonic functions is invaluable in understanding the Laplace operator
and in solution of the Laplace equation under various conditions. Obviously, we do not need to
solve the Laplace equation if we know the distribution of charges: We would just use (2) or (4)
to calculate the field. However, there are important situations where the charge distribution
must be implied from some indirect information. For example, imagine a closed surface in
space, with some charges distributed inside and possibly also outside of it. Then we pose
the problem of replacing the charges inside the surface by charges at the surface, so that the
potential at the surface remains the same. This amounts to finding a function u satisfying
∆u = 0 inside the surface (as there is no charge there), that agrees with the old values of the
potential at the surface, leading to the Dirichlet problem.

Laplace’s result (5) was completed by his student Siméon Denis Poisson in 1813, when
Poisson showed that

∆u = −4πCρ in R3, (7)
for ρ smooth enough and vanishing outside some bounded set2. This equation is called the
Poisson equation, and is valid everywhere, as opposed to (5), which is only valid in free space.
Note that in terms of E, (7) is simply ∇ · E = 4πCρ, which is called the Gauss law in its
differential form.

Taking a slightly different viewpoint, if we started with the equation (7) for the unknown
function u, with ρ sufficiently “nice,” then the formula (4) gives a particular solution. Hence in a
certain sense, (4) inverts the Laplace operator. A generalization of (4) to arbitrary dimensions
leads to the concept of fundamental solutions.

The Poisson equation can also be formulated in a domain Ω ⊂ Rn. Note that the Poisson
equation includes the Laplace equation as a special case, and the difference between two
solutions (with the same ρ) of the Poisson equation is harmonic. There are tons of harmonic
functions, meaning that the solutions of the Poisson equation are far from unique. In order to
get uniqueness, i.e., as a convenient way of parameterizing the solution space of the Poisson
equation, one introduces boundary conditions, which are conditions on the behaviour of u at
the boundary ∂Ω of the domain. The common boundary conditions include

au+ b ∂νu = g, on ∂Ω, (8)

2In Gaussian type unit systems, one sets up the units so that C = ±1, and hence the Newtonian/Coulomb
potential (4) has a simple expression. In other systems such as SI, one has C = ± 1

4π
, meaning that the Poisson

equation (7) has a simple expression.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Poisson.html
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with various choices of the functions a and b on the boundary, where ∂ν is the outward normal
derivative at the boundary, cf. Figure 2. The case a ≡ 1 and b ≡ 0 is called the Dirichlet, a ≡ 0
and b ≡ 1 the Neumann, a ≡ 1 and b > 0 the Robin, and a ≡ 1 and b < 0 the Steklov boundary
conditions. If we couple one of these boundary conditions with the Laplace (or Poisson)
equation, we get the Dirichlet problem, the Neumann problem, the Robin problem, and the
Steklov problem3, respectively. Moreover, any of the aforementioned boundary conditions is
said to be homogeneous if g ≡ 0, and inhomogeneous otherwise.

2. Green’s identities

Let Ω ⊂ Rn be a nonempty bounded open set with C 1 boundary, and let F : Ω̄→ Rn be a
vector field that is continuously differentiable in Ω, with all its derivatives continuous up to the
boundary, i.e., each component of F is in C 1(Ω̄). Then the divergence theorem asserts that∫

Ω
∇ · F =

∫
∂Ω
F · ν, (9)

where ν is the outward pointing unit normal to the boundary ∂Ω, see Figure 2. This can be
thought of as an extension of the fundamental theorem of calculus to multidimensions. In
physics terms, it says that the flux of the vector field F through the boundary of Ω is equal
to the total divergence of F in Ω. We remark that the regularity condition on ∂Ω can be
considerably weakened, e.g., to include surfaces that consist of finitely many C 1 pieces. We
will not discuss those issues here, as they are not necessary for our purposes. The same holds
for the regularity conditions on F . The divergence theorem first appeared in Lagrange’s 1762
work, and was proved in a special case by Gauss in 1813. The general 3-dimensional case was
treated by Mikhail Vasilievich Ostrogradsky in 1826.

∂Ω

Ω

ν

ν

Figure 2. The setting of the divergence theorem.

Thinking of F as the electric (or gravitational) field, in view of the Gauss law ∇ ·F = 4πCρ,
this formula says that the flux of the electric field F through ∂Ω is equal to the total charge in
Ω multiplied by 4πC. Thus we obtain the integral form of the Gauss law.

In a preliminary section of his groundbreaking 1828 Essay, George Green proved several
reductions of 3-dimensional volume integrals to surface integrals, similar in spirit to the
divergence theorem, and independently of Ostrogradsky. Nowadays, those are called Green’s
identities and best viewed as consequences of the divergence theorem. As a warmup, let
ϕ ∈ C 2(Ω̄), and apply the divergence theorem to F = ∇ϕ. Then we have ∇ · F = ∆ϕ and
ν · F = ∂νϕ, the latter denoting the (outward) normal derivative of ϕ, implying what can be
called Green’s zeroth identity4 ∫

Ω
∆ϕ =

∫
∂Ω
∂νϕ. (10)

3In the literature, the distinction between the Robin and Steklov boundary conditions is occasionally blurred,
and the terms are used interchangeably. Note also that the Steklov problem often designates a problem which
is different from but related to the meaning we ascribe to it here.

4This name is not standard.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Ostrogradski.html
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If we think of ϕ as the electrostatic potential, this leads to the integral form of the Gauss law
expressed in terms of ϕ.

Similarly, letting u ∈ C 1(Ω̄) and ϕ ∈ C 2(Ω̄), and applying the divergence theorem to
F = u∇ϕ, we get Green’s first identity∫

Ω
∇u · ∇ϕ+ u∆ϕ =

∫
∂Ω
u∂νϕ. (11)

Interchanging the roles of u and ϕ in this identity, and subtracting the resulting identity from
(11), we infer Green’s second identity∫

Ω
u∆ϕ− ϕ∆u =

∫
∂Ω
u∂νϕ− ϕ∂νu, u, ϕ ∈ C 2(Ω̄). (12)

Note that (10) follows from (11) by putting u ≡ 1. The identities (11) and (12) can be
considered as instances of, and are often called, integration by parts in n-dimensions.

Let us look at some simple consequences of Green’s identities. First, the identity (10) gives a
necessary condition for existence of a solution of the Neumann problem. For example, thinking
of the Laplace equation, any solution u ∈ C 2(Ω̄) of ∆u = 0 must satisfy∫

∂Ω
∂νu = 0. (13)

In physics terms, there is no charge in Ω, so the total flux of electric field through the boundary
∂Ω must vanish. Hence if u were to satisfy the Neumann boundary condition ∂νu = g, the
Neumann datum g should have the constraint that g has mean zero on the boundary ∂Ω.
Similarly, one can deduce that if the Poisson equation ∆u = f has a solution u ∈ C 2(Ω̄) with
the homogeneous Neumann boundary condition ∂νu = 0, then f necessarily has mean zero in
the domain Ω. In other words, if the total flux of electric field through the boundary vanish,
then the total charge in Ω must be 0.

Second, the identity (11) implies several uniqueness theorems for the Poisson equation. By
linearity, the issue of uniqueness for the Poisson equation reduces to the study of the Laplace
equation with homogeneous boundary conditions. By putting u ≡ ϕ and ∆u = 0 in (11), we
have ∫

Ω
|∇u|2 =

∫
∂Ω
u∂νu, (14)

for u ∈ C 2(Ω̄) with ∆u = 0 in Ω. For example, if u = 0 on ∂Ω, then the left hand side is zero,
implying that u = const in Ω. Using the condition u = 0 on the boundary once again makes
u ≡ 0 in Ω, hence we get uniqueness of solutions to the Dirichlet problem for the Poisson
equation. On the other hand, if ∂νu = 0 on ∂Ω, then by the same argument we have u = const,
implying that any two solutions (with suitable regularity) of the Neumann problem for the
Poisson equation differ by a constant. This cannot be strengthened, since one can explicitly
check that if u is a solution of ∆u = 0 with ∂νu = 0 on the boundary, then so is u+ α for any
constant α.

The aforementioned uniqueness results indicate that the Cauchy problem for the Laplace
(or Poisson) equation, where we specify both u and ∂νu at the boundary of the domain, is in
general not solvable. It would be analogous to overdetermined equations, where one has more
equations than unknowns.

Exercise 3. Prove a uniqueness theorem for the Robin problem for the Poisson equation.
What if one specifies a Dirichlet condition on part of the boundary, and a Neumann condition
on the rest?
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3. Fundamental solutions

As mentioned in the introduction, Poisson showed in 1813 that the function

u(y) = C

∫
R3

ρ(x)dx

|x− y| , (15)

satisfies the equation
∆u = −4πCρ, (16)

at least when ρ is “nice” enough, cf. (4) and (7). Observe that (15) and (16) together imply

u(y) =

∫
R3

E(x− y)∆u(x)dx, with E(x) = − 1

4π|x| . (17)

In other words, the operation of sending ρ to u in (15) inverts the action of ∆, up to a constant
multiple. We want to find functions E with analogous behaviour in dimensions other than
n = 3. The following definition formalizes what we mean.

Definition 4. A fundamental solution (or elementary solution) of the Laplacian in n dimensions
is a function E ∈ C 2(Rn \ {0}) satisfying

u(0) =

∫
Rn
E(x)∆u(x)dx, (18)

for all compactly supported functions u ∈ C 2(Rn).

A few comments are in order. First, recall that the support of u is the closure of the set on
which u is nonzero, and so u is compactly supported iff u vanishes in the complement of a
bounded set. Second, if E is a fundamental solution, then by translation

u(y) =

∫
Rn
E(x− y)∆u(x)dx, (19)

for all y ∈ Rn and for all compactly supported functions u ∈ C 2(Rn). Third, E(x) may have
a singularity at x = 0, which is certainly the case for n = 3, meaning that the integral in
(18) should be interpreted either as an absolutely convergent improper Riemann integral, or
as an ordinary Lebesgue integral, cf. Problem5. Lastly, since E in (17) is harmonic in the
complement of the origin, in general dimensions we may have also wanted to require that
∆E = 0 in Rn \ {0}, but this is actually already included in (18). Indeed, suppose that
∆E(y) 6= 0 for some y ∈ Rn \{0}. Then by continuity, ∆E does not change sign in a sufficiently
small ball Bε(y) with ε > 0 and 0 6∈ Bε(y), and so for any nontrivial nonnegative function
u ∈ C 2(Rn) whose support is contained in Bε(y), we are led to the contradiction

0 = u(0) =

∫
Bε(y)

E(x)∆u(x)dx =

∫
Bε(y)

u(x)∆E(x)dx 6= 0, (20)

due to Green’s second identity (12). Here and in the following, Br(z) ⊂ Rn denotes the open
ball of radius r centred at z, and Br = Br(0).

Remark 5. If E1 and E2 are two fundamental solutions, then∫
Rn

(
E1(x)− E2(x)

)
∆u(x)dx = u(0)− u(0) = 0, (21)

for all compactly supported functions u ∈ C 2(Rn). Hence by the argument that lead to (20),
the difference E1−E2 must be everywhere harmonic in Rn, that is, it must be entire harmonic.
This means that if we have one fundamental solution, then all the others can be generated by
adding entire harmonic functions to it.
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Now taking inspiration from the 3-dimensional case, we look for a radial fundamental
solution. First, we derive an expression for the Laplacian of a spherically symmetric function.
Let φ ∈ C 2(I) with I ⊂ (0,∞) an open interval, and let Φ(x) = φ(|x|) for x ∈ Rn with |x| ∈ I.
Then we apply Green’s zeroeth identity (10) in A = Bs \ B̄t with s, t ∈ I and s > t, to get∫

A
∆Φ =

∫
∂Bs

∂rΦ−
∫
∂Bt

∂rΦ, (22)

where ∂r is the radial derivative centred at the origin. Since Φ is spherically symmetric, so are
∆Φ and ∂rΦ. We have ∂rΦ = φ′ for the latter, and introducing the notation λ(r) = ∆Φ(x) for
|x| = r, (22) becomes ∫ s

t
λ(r)rn−1dr = φ′(s)sn−1 − φ′(t)tn−1, (23)

since, for instance ∫
∂Bt

∂rΦ = |Sn−1|tn−1φ′(t), (24)

where |Sn−1| = 2πn/2

Γ(n/2) is the surface area of the unit sphere Sn−1 = {x ∈ Rn : |x| = 1}. For
n = 1, it is understood that |S0| = 2. Then the fundamental theorem of calculus yields

∆Φ = λ(r) = r1−n(rn−1φ′(r))′ = φ′′(x) +
n− 1

r
φ′(r), (25)

in {x ∈ Rn : |x| ∈ I}, where r = |x|. In particular, we have

∆Φ = 0 in {x ∈ Rn : |x| ∈ I} ⇐⇒ φ′(r)rn−1 = const. (26)

This can easily be integrated, to yield

φ(r) =

{
a

2−nr
2−n + c for n 6= 2,

a log r + c for n = 2.
(27)

Note that any spherically symmetric harmonic function in a spherically symmetric domain
must be of this form.

Therefore, if a radial fundamental solution exists, it must be of the form E(x) = φ(|x|) for
x ∈ Rn \ {0} with φ given by (27). By construction, E is harmonic in Rn \ {0}. Moreover, with
reference to (18), we can ascertain that the integral

∫
E∆u over a bounded region is absolutely

convergent whenever u ∈ C 2(Rn), as∫
BR

|E∆u| ≤M
∫ R

0
φ(r)rn−1dr <∞, (28)

where M is a constant.
Since constants are entire harmonic, we can add any constant to a fundamental solution to

produce a new fundamental solution. Thus in the following, we will take c = 0 for convenience.
On the other hand, the value of a is determined if we invoke the full content of the condition
(18). Let u ∈ C 2(Rn) be a function whose support is contained in BR. To compute the integral∫
E∆u, we excise a small ball Bε of radius ε > 0 from BR, resulting in Ωε = BR \ B̄ε. Then

an application of Green’s second identity (12) gives∫
Ωε

E∆u =

∫
Ωε

u∆E +

∫
∂BR

(E∂νu− u∂νE) +

∫
∂Bε

(u∂rE − E∂ru), (29)

where we have taken into account that the boundary of Ωε consists of two parts ∂BR and
∂Bε, and ∂r is the radial derivative centred at the origin. Now, the first two integrals in the
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right hand side vanish, because ∆E = 0 in Ωε and the support of u is contained in BR. The
remaining integral can be estimated term by term as∣∣∣ ∫

∂Bε

E∂ru
∣∣∣ ≤ |φ(ε)| ·M · |Sn−1|εn−1 → 0 as ε→ 0, (30)

where M is an upper bound on |∇u| ≥ |∂ru|, and∫
∂Bε

u∂rE = φ′(ε)|Sn−1|εn−1
(
u(0) +O(ε)

)
= aε1−n|Sn−1|εn−1u(0) +O(ε)→ a|Sn−1|u(0) as ε→ 0,

(31)

because ∂rE(x) = φ′(ε) = aε1−n and |u(x)− u(0)| ≤Mε for x ∈ ∂Bε. Thus we conclude that∫
Ω
E∆u = lim

ε→0

∫
Ωε

E∆u = a|Sn−1|u(0), (32)

and so E with a = 1
|Sn−1| fulfills Definition 4, i.e.,

E(x) =

{
1

(2−n)|Sn−1| |x|2−n for n 6= 2,
1

2π log |x| for n = 2,
(33)

is a fundamental solution of the Laplace operator in Rn.

r

E

(a) In 1 dimension, E is un-
bounded as |x| → ∞, and con-
tinuous at x = 0.

r

E

(b) In 2 dimensions, E is un-
bounded both as |x| → ∞, and
as x→ 0.

rE

(c) In 3 and higher dimensions,
E is unbounded as x→ 0, but
tends to 0 as |x| → ∞.

Figure 3. Behaviour of E in different dimensions.

Exercise 6. By explicit computation, show that E given by (33) is harmonic in Rn \ {0}.
Remark 7 (An alternative derivation). In light of Coulomb’s law (2) (or (15)), a physical
interpretation of E(x) = − 1

4π|x| that appears in (17) would be that it is the electric potential
produced by a point charge of quantity q = −1/(4πC), located at the origin. The density ρ of
such a point charge satisfies ρ(x) = 0 for x 6= 0, and yet it must have the property

∫
ρ = q.

Obviously, ρ is not a function, since the condition ρ(x) = 0 for x 6= 0 already implies
∫
ρ = 0,

whatever the value ρ(0) is. However, we can realize it as ρ = qδ, with δ being the Dirac
measure, defined by ∫

A
δ(x)dx =

{
1 if 0 ∈ A,
0 if 0 6∈ A, (34)

for any set A ⊂ Rn, where
∫
A δ(x)dx is an abuse of notation for δ(A), the δ-measure of the

set A. Now, assuming that (16) is true even when ρ is a measure, we are led to the formal
equality ∆E = δ. This equality is definitely true in R3 \ {0}, since ∆E(x) = 0 for x 6= 0. At
x = 0 though, both ∆E and δ are not defined, hence the equality ∆E = δ must be understood
only in an “integrated” sense, as in (34). Consequently, we need to ascribe a meaning to

∫
A ∆E

when 0 ∈ A. This can be achieved as follows. Let A 3 0 be an open set with C 1 boundary,
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and let B̄ε ⊂ A, with Bε = Bε(0) and ε > 0. Then a formal application of Green’s zeroeth
identity (10) yields ∫

A
∆E =

∫
∂A
∂νE =

∫
∂Bε

∂νE, (35)

where the second equality follows from

0 =

∫
A\Bε

∆E =

∫
∂A
∂νE −

∫
∂Bε

∂νE, (36)

because E is harmonic in R3 \ {0}. In particular, the integral
∫
∂Bε

∂νE does not depend on
ε > 0, so that we can use it as the definition of

∫
A ∆E for any open set A 3 0. Finally, an

explicit calculation gives∫
A

∆E =

∫
∂Bε

∂νE = 4πε2
( ∂
∂r

1

4πr

)∣∣∣
r=ε

= 1, (37)

confirming that ∆E coincides with δ on open sets.
Our next goal is to find functions satisfying ∆E = δ in general dimensions. Thus we look

for a function E ∈ C 2(Rn \ {0}) satisfying ∆E = 0 in Rn \ {0} and∫
∂Br

∂νE = 1 for r > 0. (38)

As noted before, we are using the equality (35) as the definition of ∆E, since the pointwise
value of ∆E might not be defined at the origin. Now we make the ansatz E(x) = φ(|x|) for
x ∈ Rn \ {0}, with a twice differentiable function φ : (0,∞)→ R. Then for r > 0, we require

1 =

∫
∂Br

∂νE = |Sn−1|rn−1φ′(r), (39)

which immediately gives (33).

yε

Figure 4. This illustration is relevant in two separate places in the text. In
the current section (§3), the potential produced by a given charge distribution
is split into two parts: the potential produced by the shaded part is harmonic
in the ball Bε(y), while the potential produced by the ball itself satisfies the
Poisson equation at y, cf. (41). In the next section (§4), we apply an identity
to the shaded area, which we call Ωε, and then take the limit ε→ 0, in order
to derive Green’s representation formula.

Remark 8 (Poisson’s proof). Let us see how Poisson proved (16), that is, the implication

u(x) = − 1

4π

∫
R3

f(z)dz

|x− z| =⇒ ∆u = f. (40)
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Since the argument is from the early 19-th century, note that it does not necessarily conform
to today’s standard of rigour. The idea was to split the integral over R3 in (40) into two
parts, one over the small ball Bε(y) = {z ∈ R3 : |y − z| < ε}, and one over the complement
R3 \Bε(y), see Figure 4. What we have in mind is the situation x ≈ y. Then the integral over
the complement is harmonic in Bε(y) by Laplace’s result (5), and the other integral can be
formally manipulated as

∆xu(x) =
1

4π

∫
Bε(y)

(f(x)− f(z)) ∆x
1

|x− z|dz −
f(x)

4π

∫
Bε(y)

∆x
1

|x− z|dz, (41)

where ∆x means that the Laplacian acts on the x variable. Note that we are treating 1/|x− z|
as if it was a smooth function. For any smooth function φ, a direct computation reveals

∆xφ(|x− z|) = φ′′(|x− z|) +
(n− 1)φ′(|x− z|)

|x− z| = ∆zφ(|x− z|). (42)

Taking this into account at a formal level, for the second integral of (41), an application of the
(Green’s zeroeth) identity (10) gives∫

Bε(y)
∆x

1

|x− z|dz =

∫
Bε(y)

∆y
1

|x− z|dz =

∫
∂Bε(y)

∂ν
1

|x− z|d
2z, (43)

where ∂Bε(y) is the boundary of the ball Bε(y), ∂ν is the normal derivative at z with respect
to the variable z, and d2z denotes the surface area element of ∂Bε(y). Then putting x = y
into (43), we get (∫

Bε(y)
∆x

1

|x− z|dz
)∣∣∣
x=y

= 4πε2
( ∂
∂r

1

r

)∣∣∣
r=ε

= −4π. (44)

As for the first integral of (41), the function 1/|x − z| is harmonic except at x = z, and if
f(x) − f(z) vanishes sufficiently fast as x → z, we expect that the integral would come out
as zero, finally giving a (very) formal justification of (16). The whole argument can be made
rigorous, hence (16) is valid, e.g., provided that f is a C 1 function (The reader might want to
take this problem as a challenge). Poisson argued that (16) is valid for any continuous function
f , which would be wrong (there exist counterexamples).

4. Green’s representation formula

The defining property of the fundamental solution E we found in the preceding section is

u(y) =

∫
Rn
E(x− y)∆u(x)dx, (45)

for all y ∈ Rn and for all compactly supported functions u ∈ C 2(Rn). The fundamental solution
is a generalization of the potential produced by a point charge to arbitrary dimensions, as it
satisfies ∆E = δ under a suitable interpretation.

Since the fundamental solution in a certain sense inverts the action of ∆, we hope to be able
to use it as a key to unlock the secrets of the Laplace operator, and in particular, of harmonic
functions. As a start, if u ∈ C 2(Rn) is a compactly supported harmonic function, then an
application of (45) reveals that u ≡ 0. In other words, nontrivial entire harmonic functions
cannot be compactly supported. If u(y) 6= 0, then ∆u in (45) must be nonzero somewhere.
An approach to study nontrivial harmonic functions with the help of (45) is as follows. Let
u ∈ C 2(BR) be harmonic in BR. Pick 0 < r < R, and let χ ∈ C 2(Rn) satisfy χ ≡ 1 in Br
and χ ≡ 0 in Rn \BR−ε for some small ε > 0. Then the product v = χu satisfies v ∈ C 2(Rn),
v = u in Br, and v = 0 in Rn \BR. Now we apply (45) to v, and get

u(y) =

∫
A
E(x− y)∆v(x)dx for y ∈ Br, (46)
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where A = BR \Br. Notice that x 6∈ Br while y ∈ Br in the integrand, and so the integrand
E(x− y) is smooth in the variable y. Therefore u must be smooth in Br, see Example 10 below
for details. By applying this argument at each point in an open set Ω, we have

u ∈ C 2(Ω) and ∆u = 0 in Ω =⇒ u ∈ C∞(Ω). (47)

Results such as this one, that allow one to conclude higher regularity from a lower regularity
and a differential equation, are called regularity theorems.

The representation formula (46) can be derived for a general domain Ω as well, by invoking
a cut-off function χ that is nonzero only in an ε-neighbourhood of the boundary ∂Ω. Then
a natural question is what happens in the limit ε → 0. This can be answered by repeating
the derivation of (45) with appropriate modifications, as follows. Let Ω ⊂ Rn be a bounded
open set with C 1 boundary. Let y ∈ Ω, and let ε > 0 is so small that Bε(y) ⊂ Ω. We apply
Green’s second identity (12) to the pair u ∈ C 2(Ω̄) and Ey(x) := E(x − y), in the region
Ωε := Ω \Bε(y), see Figure 4, to infer∫

Ωε

u∆Ey − Ey∆u =

∫
∂Ω

(u∂νEy − Ey∂νu)−
∫
∂Bε(y)

(u∂rEy − Ey∂ru), (48)

where we have taken into account that the boundary of Ωε consists of two parts ∂Ω and ∂Bε(y),
and ∂r is the radial derivative centred at y. Since Ey is harmonic except at x = y, the term
with u∆Ey vanishes. Moreover, we know from the preceding section that the integral∫

Ω
Ey∆u = lim

ε→0

∫
Ωε

Ey∆u, (49)

is an absolutely convergent, and that

lim
ε→0

∫
∂Bε(y)

(u∂rEy − Ey∂ru) = u(y). (50)

The result is Green’s representation formula (or Green’s third identity)

u(y) =

∫
Ω
Ey∆u+

∫
∂Ω
u∂νEy −

∫
∂Ω
Ey∂νu, (51)

valid for u ∈ C 2(Ω̄). Green’s formula delivers a way to represent an arbitrary function as the
sum of certain special kinds of functions, called potentials. We call the first term in the right
hand side the Newtonian potential, the second term the double layer potential, and the last
term the single layer potential. Note that if ∆u = 0 in Ω, then

u(y) =

∫
∂Ω
u∂νEy −

∫
∂Ω
Ey∂νu, (52)

and so in particular, we can conclude that u ∈ C∞(Ω), because the single- and double layer
potentials are smooth in the interior of the domain. However, (52) is not a solution formula for
either Dirichlet or Neumann problem, since (52) requires both u and ∂νu on the boundary.

From (51), we see that ∆u (or a constant multiple of it) can be understood as the volume
charge density, and −∂νu as the surface charge density. To clarify a possible meaning of the
other term, consider a point charge of quantity −q placed at x ∈ ∂Ω, and another charge of
quantity q placed at x+ lν, where l 6= 0 is a scalar. Such a system is called a dipole, and the
potential produced by it at the point y is

u(y) = qE(x+ lν − y)− qE(x− y) = ql · E(x+ lν − y)− E(x− y)

l
. (53)

If we now send l→ 0 and q →∞, such that the dipole moment µ = ql remains constant, then
the preceding expression approaches u(y) = µ∂νEy(x), which makes it clear that the second
integral in the right hand side of (51) represents the potential produced by dipoles distributed



12 TSOGTGEREL GANTUMUR

over the surface ∂Ω, and that the role of u in the same integral should be the surface dipole
moment density. This explains the designation “double layer potential.”

As a technical aside, we include here the following simple result on differentiating under the
integral sign, which has been used in this section, and will be used many times later.

Theorem 9 (Leibniz rule). Let X be a compact topological space, and let f : X× (a, b)→ R be
a (jointly) continuous function. We label the variables of f by (x, t) ∈ X × (a, b), and assume
that ∂f

∂t : X × (a, b)→ R is also continuous. Let T : C (X)→ R be a bounded linear map, i.e.,

|Tu| ≤ c‖u‖C (X), u ∈ C (X), (54)

for some constant c. Then we have

d

dt
Tf(·, t) = T

∂f

∂t
(·, t), t ∈ (a, b). (55)

Proof. In this proof, we fix t ∈ (a, b) once and for all. Then by the mean value theorem, for
x ∈ X and h > 0, there is some 0 ≤ θ(x, h) ≤ h such that

f(x, t+ h)− f(x, t)

h
= f ′t(x, t+ θ(x, h)), (56)

where we have abbreviated f ′t = ∂f
∂t . For a fixed t, the left hand side is a continuous function

of x ∈ X, hence we can apply T to both sides, and conclude that

Tf(·, t+ h)− Tf(·, t)
h

= T
(f(·, t+ h)− f(·, t)

h

)
= Tf ′t(·, t+ θ(·, h)). (57)

The lemma would follow from linearity and boundedness of T , upon showing that

sup
x∈X
|f ′t(x, t+ θ(x, h))− f ′t(x, t)| → 0 as h→ 0. (58)

To see that this is true, let

ω(x, s) = |f ′t(x, t+ s)− f ′t(x, t)|, (59)

which is a continuous function of (x, s) ∈ X × [0, ε) for some ε > 0, satisfying ω(x, 0) = 0 for
all x ∈ X. Since 0 ≤ θ(x, h) ≤ h, we have

sup
x∈X
|f ′t(x, t+ θ(x, h))− f ′t(x, t)| ≤ sup

(x,s)∈X×[0,h]
ω(x, s) =: w(h). (60)

The function w is continuous because ω is continuous, and w(0) = 0 because ω(·, 0) = 0, thus
(58) is established. �

Example 10. Let us show that u from (46) is smooth in Br. To apply the preceding theorem,
we put X = Ā, and T : C (X) → R will be the integration over X. Take a smooth curve
γ(−ε, ε)→ Br in Br, and set f(x, t) = E(x− γ(t))∆v(x). Since

∂f

∂t
= −γ′(t) · ∇E(x− γ(t)), (61)

is continuous in X × (−ε, ε), by the preceding theorem, the derivative

d

dt
Tf(·, t) =

d

dt
u(γ(t)) (62)

exists, and is equal to

d

dt
u(γ(t)) =

d

dt
Tf(·, t) = −

∫
A
γ′(t) · ∇E(x− γ(t))∆v(x)dx. (63)
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In particular, taking γ(t) to be a line parallel to an arbitrary coordinate axis, passing through
an arbitrary point in Br, we conclude that ∇u exists in Br, and

∇u(y) = −
∫
A
∇E(x− y)∆v(x)dx. (64)

Although this is hardly new, as we already have u ∈ C 2(BR), new information will be produced
if we inductively apply the same argument to (64). Thus in the k-th iteration, we deduce that
all k-th order partial derivatives of u exists in Br, and therefore that all (k− 1)-st order partial
derivatives of u are continuous in Br. Since k is arbitrary, we have u ∈ C∞(Br).

5. Mean value property

Let B = Br(y) and u ∈ C 2(B̄). Then Green’s representation formula (51) yields

u(y) =

∫
B
Ey∆u+

∫
∂B
u∂νEy −

∫
∂B
Ey∂νu

=

∫
B
Ey∆u+ φ′(r)

∫
∂B
u− φ(r)

∫
∂B
∂νu,

(65)

where φ is the function such that E(x) = φ(|x|). Of course, the reason for this simplification is
the spherical symmetry of E. Now in light of (10), that is,∫

∂B
∂νu =

∫
B

∆u, (66)

we conclude

u(y) = φ′(r)
∫
∂B
u+

∫
B

(
Ey − φ(r)

)
∆u

=
1

|∂B|

∫
∂B
u+

∫
B

(
Ey − φ(r)

)
∆u,

(67)

where we have taken into account that

φ′(r) =
1

|∂B|

∫
∂B
∂νEy =

1

|∂B| , (68)

cf., e.g., (39). In particular, if u is harmonic in B, we have

u(y) =
1

|∂B|

∫
∂B
u, (69)

which is called the mean value property of harmonic functions. Furthermore, we can get a
volume averaged version, instead of the surface averaged one, by radial integration. Let us
summarize these findings in the following theorem.

Theorem 11 (Gauss 1840). Let Ω ⊂ Rn be an open set, and let u ∈ C 2(Ω) with ∆u = 0 in Ω.
Then for any ball Br(y) ⊂ Ω, we have ∫

∂Br(y)
∂νu = 0, (70)

and
u(y) =

1

|∂Br|

∫
∂Br(y)

u =
1

|Br|

∫
Br(y)

u. (71)

Direct proof. We present here an alternative proof that does not rely on Green’s representation
formula. Without loss of generality, we set y = 0, and for 0 < ρ ≤ r, let

g(ρ) =
1

|∂Bρ|

∫
∂Bρ

u(x) dn−1x =
1

|Sn−1|

∫
Sn−1

u(ρξ) dn−1ξ. (72)
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Then we have

g′(ρ) =
1

|Sn−1|

∫
Sn−1

ξ · ∇u(ρξ) dn−1ξ =
1

|∂Bρ|

∫
∂Bρ

∂νu(x) dn−1x = 0, (73)

by (70). For a justification of the differentiation under the integral sign, we refer to the Leibniz
rule (Theorem9). On the other hand, g(ρ)→ u(0) as ρ→ 0 by continuity, hence establishing
the first equality of (71). �

Both (70) and (71) can be compared to Cauchy’s theorem (or perhaps Cauchy’s integral
formula) in complex analysis. We will later prove that the mean value property characterizes
harmonicity, which would be an analogue of Morera’s theorem. For now, let us look at some of
its immediate consequences.

Lemma 12 (Harnack inequality). Let u ∈ C 2(Ω) be a nonnegative function harmonic in Ω.
Let BR(y) ⊂ Ω with R > 0, and x ∈ BR(y). Then we have

u(x) ≤
(

R

R− |x− y|

)n
u(y) =

(
1

1− k

)n
u(y), (74)

where k = |x− y|/R.
Proof. From the mean value property and the positivity of u, with r = R− |x− y| we have

u(x) =
1

|Br|

∫
Br(x)

u ≤ 1

|Br|

∫
BR(y)

u =
|BR|
|Br|

u(y), (75)

establishing the claim. See Figure 5(a) for an illustration. �

If y ∈ BR(x) as well, then u(y) ≤ 1
(1−k)nu(x), that is, we have

(1− k)n u(y) ≤ u(x) ≤
(

1

1− k

)n
u(y). (76)

Note that the inequalities become more stringent as k = |x− y|/R tends to 0, and therefore
the function cannot oscillate too much when x ≈ y, cf. Figure 5(b).

y

R

x
r

(a) Setting of the proof of Lemma 12.

k
1

0 1

(b) Behavior of the constants Ak and Bk in the
Harnack inequality Aku(y) ≤ u(x) ≤ Bku(y),
where k = |x− y|/R.

Figure 5. The Harnack inequality.

For nonnegative entire harmonic functions, we can apply (74) with fixed x, y, and take the
limit R→∞ to get the following result.
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Corollary 13 (Liouville’s theorem5). Let u ∈ C 2(Rn) be nonnegative and harmonic in Rn.
Then u is constant.

Note that Liouville’s theorem still holds if we relax the condition “nonnegative” to “bounded
from above or below,” since if u is harmonic then so are u− c and c− u for any constant c ∈ R.

Remark 14. If a harmonic function is bounded from below, we can always add a constant
to it and make it a nonnegative harmonic function. Therefore the Harnack inequality can be
used to turn one sided bounds into two sided bounds. For instance, suppose that u ∈ C 2(Rn)
is entire harmonic, and u(x) ≥ −p(|x|) for some nondecreasing function p : [0,∞) → [0,∞).
Fix an arbitrary x ∈ Rn, and consider the ball B2r with r = |x|. Then v = u + p(2r) is a
nonnegative harmonic function in B̄2r, and so the Harnack inequality (74) gives

v(x) ≤ 2nv(0). (77)

In terms of u, this can be written as

u(x) ≤ 2n(u(0) + p(2r))− p(2r) ≤ 2n(u(0) + p(2|x|)). (78)

Thus for example, if u(x) ≥ −A(1+ |x|m) for some constants A and m, then u(x) ≤ B(1+ |x|m)
for some constant B.

6. Maximum principles

The mean value property tells us that the value of a harmonic function at the centre of a
sphere is equal to the function averaged over the sphere. This leads to the intuition that the
central point cannot be a maximum or a minimum. We can in fact eliminate only maximums
(or only minimums), with the help of the following more primitive concept.

Definition 15. A continuous function u ∈ C (Ω) is called subharmonic in Ω, if for any y ∈ Ω,
there exists r∗ = r∗(y) > 0 such that

u(y) ≤ 1

|∂Br|

∫
∂Br(y)

u, 0 < r < r∗. (79)

We can also define the concept of superharmonic functions, by flipping the inequality in the
preceding definition. The mean value property then implies that harmonic functions are both
subharmonic and superharmonic. In 1 dimension, the concepts of harmonicity, subharmonicity,
and superharmonicity reduce to linearity, convexity, and concavity, respectively.

Remark 16. Let u ∈ C 2(Ω) be subharmonic in Ω. Then (67) gives∫
Br(y)

(
φ(r)− Ey

)
∆u = −u(y) +

1

|∂Br|

∫
∂Br(y)

u ≥ 0, (80)

for all 0 < r < r∗. Since Ey < φ(r) in Br, this implies that ∆u ≥ 0 in Ω. On the other hand,
if u ∈ C 2(Ω) satisfies ∆u ≥ 0 in Ω, then it is immediate from (67) that u is subharmonic in Ω.

Theorem 17 (Strong maximum principle). Let Ω ⊂ Rn be an open set, and let u ∈ C (Ω)
be subharmonic in Ω. If u(z) = sup

Ω
u for some z ∈ Ω, then u is constant in the connected

component of Ω that contains z.

Proof. Let M = supΩ u. Then by hypothesis the set Σ = {y ∈ Ω : u(y) = M} is nonempty and
closed. Now suppose that y ∈ Σ. Then by subharmonicity of u we have

1

|Br|

∫
Br(y)

M = u(y) ≤ 1

|Br|

∫
Br(y)

u, (81)

5Sometimes attributed to Picard
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for small r > 0, giving ∫
Br(y)

(u(x)−M)dx ≥ 0. (82)

This means that u ≡M in Br(y), hence Σ is open. �

If Ω is bounded and if u is continuous up to the boundary of Ω, then u has its maximum
in Ω̄. Since a maximum in the interior of Ω would imply that u is constant in the connected
component of Ω containing the maximum, in any case the maximum value is attained at the
boundary of Ω. We emphasize here that the subharmonicity condition is imposed only in the
interior of Ω, and nothing except continuity of u is assumed at the points of ∂Ω.

Corollary 18 (Weak maximum principle). Let Ω be a bounded open set, and let u ∈ C (Ω̄) be
subharmonic in Ω. Then

sup
Ω
u = max

∂Ω
u, (83)

i.e., u achieves its maximum at the boundary.

Remark 19. The boundedness condition on Ω cannot be removed, as seen from the example
u(x, y) = y defined in the upper half plane H = {(x, y) ∈ R2 : y > 0}.

An immediate consequence of the weak maximum principle is a uniqueness theorem for the
Dirichlet problem. Indeed, by linearity, the question of uniqueness reduces to the uniqueness
for the homogeneous problem ∆u = 0 in Ω and u = 0 on ∂Ω. Then we can apply the weak
maximum principle to u and to −u to infer u = 0. Note that we require u ∈ C 2(Ω) ∩ C (Ω̄)
and that Ω be a bounded open set, which is weaker than the conditions in the uniqueness proof
using the identity (14). Maximum principles applied to −u are sometimes called minimum
principles for u.

If we apply a maximum principle to the difference between two functions, we obtain a
comparison principle. We state here one version of it.

Corollary 20 (Comparison principle). Let Ω be a bounded open set, and let u and v be elements
of C (Ω̄). Assume that u− v is subharmonic in Ω and that u ≤ v on ∂Ω. Then u ≤ v in Ω.

Recall that if u, v ∈ C 2(Ω̄), then u− v is subharmonic in Ω if and only if ∆u ≥ ∆v in Ω. As
a simple application of the comparison principle, let us prove the following a priori bound.

Corollary 21. Let Ω be a bounded open set. Then for u ∈ C 2(Ω) ∩ C (Ω̄) we have

sup
Ω
|u| ≤ C sup

Ω
|∆u|+ sup

∂Ω
|u|, (84)

where C > 0 is a constant depending only on Ω.

Proof. Suppose that Ω is contained in the strip {x ∈ Rn : 0 < x1 < d} with some d > 0. Let
v(x) = α− γx2

1 with constants α and γ to be determined. We have ∆v = −2γ, meaning that
the choice γ = 1

2 supΩ |∆u| would ensure that ∆u ≥ ∆v in Ω. Then in order to have u ≤ v on
∂Ω, we put α = sup∂Ω |u|+ γd2, which gives the bound u ≤ v ≤ α in Ω. The same function v
works also for −u. �

Yet another application of the comparison principle gives the following important result
known as Hopf’s boundary point lemma.

Corollary 22. Let u ∈ C (B̄r) be a function subharmonic in Br, and suppose that u ≤ 0 in
Br, with u(0) < 0. Then there exists γ > 0 such that

u(x) ≤ γ
(
|x| − r

)
for all x ∈ Br. (85)

In particular, if the normal derivative ∂νu exists at some z ∈ ∂Br with u(z) = 0, then it must
be strictly positive: ∂νu(z) > 0.
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Proof. By continuity, there is a small ρ > 0 such that

β = max
B̄ρ

u < 0. (86)

We want to apply the comparison principle in A = Br \ B̄ρ. The function v(x) = e−αr
2−e−α|x|2

satisfies v = 0 on ∂Br, and v = e−αρ
2
(e−α(r2−ρ2) − 1) ≥ β on ∂Bρ for α > 0 sufficiently large.

Furthermore, we have

∆v(x) = 2αe−α|x|
2(
n− 2α|x|2

)
, (87)

so that ∆v ≤ 0 in A for α > 0 sufficiently large. To conclude, u − v is subharmonic in A
and u − v ≤ 0 on ∂A, implying that u ≤ v in A, or u ≤ max{v, β} in Br. Finally, since
(−e−αt2)′ > 0 at t = r > 0, it is clear that max{v, β} can be bounded from above in Br by a
function of the form γ(|x| − r) with some γ > 0. �

Remark 23. In 1 dimension, a notable property of convex functions is that if u ∈ C (R) is
convex and bounded from above, then u = const. Does the same property hold for subharmonic
functions in higher dimensions? It turns out that for n ≥ 3, there are subharmonic functions
in Rn that are bounded from above. For example the following function will do:

u(x) = −min
{

1, |x|2−n
}
. (88)

Indeed, it is harmonic in B = B1(0) and in Rn \ B̄, so we need to check the subharmonicity
condition only at points y ∈ ∂B. But this is obvious as

u(y) =
1

|Br|

∫
Br(y)

1 ≤ 1

|Br|

∫
Br(y)

u. (89)

Now for n = 2, we claim that if u ∈ C (R2) is subharmonic and bounded from above, then
u = const. To establish this, we will show that u attains its global maximum somewhere in B̄,
and so the strong maximum principle would finish the job. First, by adding a constant to u,
without loss of generality, we can assume that

max
B̄

u = 0. (90)

Then we consider the comparison function

v(x) = ε log |x| in A = BR \ B̄, (91)

for R > 0 large. Note that v is harmonic in A and u ≤ 0 = v on ∂B. Furthermore, since u is
bounded from above, and v(x)→∞ as |x| → ∞, for all large R, we have u ≤ v on ∂BR, and
so u ≤ v in A. As R is arbitrary, this means that

u(x) ≤ ε log |x| for |x| ≥ 1. (92)

Finally, by sending ε→ 0 for each fixed x ∈ R2 \ B̄, we get

u(x) ≤ 0 for x ∈ R2 \ B̄, (93)

and on account of (90), we conclude that

max
R2

u = max
B̄

u, (94)

which is what we wanted to show.
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7. Green’s function

In this and the next sections, we consider the so called Green’s function approach to the
Dirichlet and Neumann problems for the Laplace equation. The treatment is largely heuristic,
as we do not include rigorous justifications, but it adds to the insight into the problems under
consideration, and in fact allows us to derive explicit formulas to solve those problems for
certain special domains. If the reader skips this and the next section, and proceed directly to
§9, they would still be able to follow the main thread of this chapter.

Adding (12) to (51), we get the generalized Green formula

u(y) +

∫
Ω
u∆ϕ =

∫
Ω

Φy∆u+

∫
∂Ω
u∂νΦy −

∫
∂Ω

Φy∂νu, (95)

for u, ϕ ∈ C 2(Ω̄) with Φy(x) = E(x− y) + ϕ(x) and y ∈ Ω. Recall that Ω is assumed to be a
bounded C 1 domain in Rn. Consider the Dirichlet problem{

∆u = f in Ω,

u = g on ∂Ω,
(96)

where f ∈ C (Ω) and g ∈ C (∂Ω) are given functions, respectively called the source term and
Dirichlet datum. Then assuming that u satisfies (96), and applying (95) to it, we observe that

u(y) =

∫
Ω

Φyf +

∫
∂Ω
g ∂νΦy, (97)

provided that ∆ϕ = 0 in Ω and Φy = 0 on ∂Ω. The latter conditions are equivalent to{
∆ϕ = 0 in Ω,

ϕ = −Ey on ∂Ω.
(98)

So this approach potentially reduces the general Dirichlet problem (96) to a set of special
Dirichlet problems (98). Note that we have to solve one special problem for each y ∈ Ω. For
this reason, it is preferable to denote ϕ in (98) by ϕy, so in particular, Φy(x) = Ey(x) + ϕy(x).
The function (y, x) 7→ Φy(x) is called Green’s function for the Dirichlet problem (96), and
(y, x) 7→ ϕy(x) is called the corresponding correction function.

We remark that formally, the problem (98) is equivalent to{
∆Φy = ∆Ey ≡ δy in Ω,

Φy = 0 on ∂Ω,
(99)

where δy(x) = δ(x− y) is the Dirac measure concentrated at y.

y

∂Ω

Figure 6. In 3 dimensions, Green’s function Φy for a domain Ω can be
thought of as the potential produced by a point charge at y, when the
conducting surface ∂Ω is grounded, cf. (99). Any deviation of the potential
from 0 on the surface ∂Ω would induce electrostatic force that pushes the
charges in the right direction within the conductor or between the conductor
and the Earth, until the potential is 0 throughout ∂Ω.
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Now, in order to justify the whole thing, we need to address the following questions.
(i) Does Φy exists, i.e., is the problem (98) solvable?
(ii) Supposing that Φy exists, does the function u defined by (97) solve the problem (96)?
In general, the first question is essentially as difficult as solving the general problem (96),

but when Ω is simple, e.g., a ball or a half space, we can solve (99) explicitly, and hence we
will have an integral formula for the solution of (96). On the other hand, there is a heuristic
argument on the solvability of (99), which we quote straight from the source (see Figure 6):

To convince ourselves that there does exist such a function as we have supposed
Φy to be; conceive the surface to be a perfect conductor put in communication
with the earth, and a unit of positive electricity to be concentrated in the point
y, then the total potential function arising from y and from the electricity it
will induce upon the surface, will be the required value of Φy (Green 1828).

We will see in the next chapter that this intuition is correct if the boundary of Ω is nice in a
certain sense. For domains with highly nonsmooth boundaries, the problem (98) is not always
solvable.

As for Question (ii), it can be answered without much difficulty when the domain boundary
is sufficiently regular, but we will not go into details here as the next sections do not depend
on it. The main use we have for Green’s function is to give a derivation of Poisson’s formula,
whose validity will be verified independently. Moreover, solvability of (96) will be treated by
more direct methods.

Remark 24. Let G(y, x) = Φy(x) be Green’s function considered as a locally integrable
function on Ω× Ω. Then assuming that G exists, we have

• G is unique and G < 0.
• G(y, x) > E(x− y) if n ≥ 3 and G(y, x) > E(x− y)− 1

2π log dist(y, ∂Ω) if n = 2.
• G(x, y) = G(y, x) for x 6= y.

Uniqueness follows from the uniqueness theorem for (98). Since ϕ|∂Ω = −Ey|∂Ω > 0 for n ≥ 3,
the maximum principle says that ϕ > 0, which implies G(y, x) > E(x− y). For n = 2, we have
Ey|∂Ω < 1

2π log dist(y, ∂Ω), so G(y, x) > E(x− y)− 1
2π log dist(y, ∂Ω). The negativity G < 0 is

because Φy is harmonic in Ω except at y, and satisfies Φy|∂Ω = 0 and Φy(x)→ −∞ as x→ y.
As for the symmetry G(x, y) = G(y, x), let Ωε = Ω \ (Bε(y)∪Bε(z)) where ε > 0 is sufficiently
small, and invoke Green’s second identity (12) to write∫

Ωε

Φy∆Φz − Φz∆Φy =

∫
∂Ω

(Φy∂νΦz − Φz∂νΦy)

+

∫
∂Bε(y)

(Φz∂rΦy − Φy∂rΦz) +

∫
∂Bε(z)

(Φz∂rΦy − Φy∂rΦz).

(100)

Note that in the last two integrals, r denotes the radial variable centred at y and z, respectively.
Since ∆Φy = ∆Φz = 0 in Ωε and Φy = Φz = 0 on ∂Ω, the entire left hand side as well as the
first integral in the right hand side vanish. Then taking into account that∫

∂Bε(y)
Φy∂rΦz → 0,

∫
∂Bε(y)

Φz∂rΦy → Φz(y), (101)

as ε→ 0, and analogous limits for the remaining terms, we get

0 =

∫
∂Bε(y)

(Φz∂rΦy − Φy∂rΦz) +

∫
∂Bε(z)

(Φz∂rΦy − Φy∂rΦz)→ Φz(y)− Φy(z), (102)

as ε→ 0, which establishes that Φz(y) = Φy(z).
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Example 25. Let us find Green’s function for Ω = {x ∈ Rn : xn > 0}, the “upper half space”.
The defining condition (99) for Green’s function arose from discussions about bounded domains,
but the equations (99) make perfect sense even in unbounded domains. Let y ∈ Ω. Then
we have ∆Ey = δy, but we have to correct it by a function ϕ harmonic in Ω so as to have
(Ey+ϕ)|xn=0 = 0. It is obvious that ϕ(x) = −E−y(x) = −E(x+y) works, since |x−y| = |x+y|
if xn = 0, and E−y is harmonic in Ω. Thus Green’s function is Gy(x) = E(x− y)− E(x+ y).
A physical interpretation is that when a point charge of quantity q is at y ∈ Ω, near the infinite
conducting plane {xn = 0}, the charges on the plane will arrange themselves so that the
electrostatic field in Ω would be as if there is an additional charge of quantity −q at y∗ = −y.
This additional, “imaginary” charge can be thought of as the mirror image of q with respect to
the plane {xn = 0}, cf. Figure 7(a).

The formula (97) involves ∂νGy, so let us compute it. For n ≥ 3, we have

∂n|x− y|2−n = (2− n)|x− y|−n(xn − yn), (103)

and so

∂νGy(x) = −∂nGy(x) =
2yn

|Sn−1| · |x− y|n , (104)

which is called the Poisson kernel for the half space. For n = 2 we have

∂2 log |x− y| = |x− y|−2(x2 − y2), hence ∂νGy(x) =
2y2

2π|x− y|2 , (105)

meaning that (104) holds for all n ≥ 2.

y

y∗

x

(a) The effect of an infinite conducting plane
near a point charge q at y is the same as that
of an additional point charge of quantity −q
at the mirror image y∗ of y with respect to the
plane.

0

r
y y∗

x

(b) Given a point charge at y, we want to
place another point charge at a suitably chosen
point y∗, so that the combined potential at the
surface ∂Br is constant. It turns out that the
spherical inversion y∗ = r2

|y|2 y works.

Figure 7. Green’s function construction by the method of images.

Example 26. Let us now find Green’s function for the ball Br. Fix y ∈ Br, and we look for
the Green function in the form

Gy(x) = E(x− y)− qE(x− y∗) + c, (106)

with y∗ = λy, where q, c and λ are real numbers possibly depending on y. For now, we assume
y 6= 0. If λ is so large that y∗ is outside Br, then the second term is harmonic in Br, so all we
need to do is to ensure that Gy = 0 on ∂Br. We see that

|x− λy|2 = |x|2 + λ2|y|2 − 2λx · y = r2 + λ2|y|2 − 2λx · y, (107)



HARMONIC FUNCTIONS 21

is a constant multiple of |x − y|2 = r2 + |y|2 − 2x · y for all x ∈ ∂Br, if λ = 1 or λ|y|2 = r2.
Since we want λ > 1, the latter is clearly our choice, with which we then have

|x− y∗| =
√
λ|x− y| = r

|y| |x− y|, (x ∈ ∂Br). (108)

This implies

E(x− y∗) =
( |y|
r

)n−2
E(x− y), (x ∈ ∂Br), (109)

for n ≥ 3, and

E(x− y∗) = E(x− y) +
1

2π
log
( r
|y|
)
, (x ∈ ∂Br), (110)

for n = 2. Then from (106) it is easy to figure out the values of q and c that ensures Gy = 0
on ∂Br, resulting in

Gy(x) = E(x− y)−
( r
|y|
)n−2

E(x− y∗) +

{
0 for n ≥ 3,
1

2π log
(
r
|y|
)

for n = 2,
(111)

where y∗ = r2

|y|2 y, cf. Figure 7(b). This definition can be extended to y = 0 by continuity.

Namely, as y → 0, we have |x− y∗| ∼ r2

|y| , so Gy(x) → E(x)− 1
(2−n)|Sn−1|rn−2 for n ≥ 3, and

Gy(x)→ E(x)− 1
2π log r for n = 2.

Assuming n ≥ 3, for a ∈ Br and x ∈ ∂Br, we have

∂ν |x− a|2−n = (2− n)|x− a|−n |x|
2 − a · x
|x| =

(2− n)(r2 − a · x)

r|x− a|n , (112)

and hence

∂νE(x− y) =
r2 − y · x

r|Sn−1| · |x− y|n , (113)

and

∂νE(x− y∗) =
r2 − y∗ · x

r|Sn−1| · |x− y∗|n =
|y|n−2(|y|2 − y · x)

rn−1|Sn−1| · |x− y|n . (114)

Then substituting those into (111), we get the Poisson kernel

Π(y, x) := ∂νGy(x) =
r2 − |y|2

r|Sn−1| · |x− y|n . (115)

and Poisson’s formula

u(y) =

∫
∂Br

Π(y, x)g(x)dn−1x, (116)

the latter being true if u ∈ C 2(Ω) ∩ C 1(Ω̄) satisfies ∆u = 0 in Br and u = g on ∂Br. In
particular, putting u ≡ 1 immediately gives∫

∂Br

Π(y, x)dn−1x = 1, y ∈ Br. (117)

For n = 2, the formula (112) must be replaced by

1

2
∂ν log |x− a|2 =

1

|x− a|2 ·
|x|2 − a · x
|x| =

r2 − a · x
r|x− a|2 , (118)

which implies that (113) and (114) are valid for n = 2, and hence that the Poisson kernel for
n = 2 is given by the same formula (115) with n = 2.
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8. Neumann’s function

Green’s function approach can be extended to the Neumann problem{
∆u = f in Ω,

∂νu = g on ∂Ω,
(119)

where f ∈ C (Ω) and g ∈ C (∂Ω) are given functions. Let us note that in order for a solution u
to exist, the data must satisfy the consistency condition∫

Ω
f =

∫
∂Ω
g, (120)

that follows from (10), and that the solution u is determined by (119) only up to a constant.
Recall from (95) the generalized Green formula

u(y) =

∫
Ω

Φy∆u−
∫
∂Ω

Φy∂νu+

∫
∂Ω
u∂νΦy −

∫
Ω
u∆ϕ, (121)

which is valid for u, ϕ ∈ C 2(Ω̄) with Φy(x) = E(x− y) + ϕ(x) and y ∈ Ω. Imitating what we
did for the Dirichlet case, for any solution u of (119), from (121) we get

u(y) =

∫
Ω

Φyf −
∫
∂Ω

Φyg, (122)

provided that ∆ϕ = 0 in Ω and ∂νΦy = 0 on ∂Ω. The analogue of (98) is{
∆ϕy = 0 in Ω,

∂νϕy = −∂νEy on ∂Ω,
(123)

where Φy(x) = Ey(x) + ϕy(x). This problem is not solvable, since (10) requires∫
∂Ω
∂νϕy =

∫
Ω

∆ϕy = 0, (124)

but (51) with u ≡ 1 implies ∫
∂Ω
∂νEy = 1. (125)

Thus in order to have a chance at solvability, we have to replace the problem (123) by{
∆ϕy = ρy in Ω,

∂νϕy = χy on ∂Ω,
(126)

where ρy ∈ C (Ω) and χy ∈ C (∂Ω), (y ∈ Ω), are suitably chosen functions satisfying∫
Ω
ρy =

∫
∂Ω
χy (y ∈ Ω). (127)

Assuming that such ϕy exists for each y ∈ Ω, we put N(y, x) = Ny(x) = Ey(x) + ϕy(x), which
is called Neumann’s function or Green’s function of the second kind. It is easy to see that the
analogue of (99) is {

∆Ny = δy + ρy in Ω,

∂νNy = ∂νEy + χy on ∂Ω,
(128)

and by (121), the analogue of (97) is

u(y) =

∫
Ω
Nyf −

∫
∂Ω
Nyg +

∫
∂Ω

(∂νEy + χy)u−
∫

Ω
ρyu. (129)

If we think of the latter formula as a solution formula for u in terms of f and g, then it requires
us to know beforehand the quantity

∫
∂Ω(∂νEy + χy)u−

∫
Ω ρyu for each y ∈ Ω. As the solution



HARMONIC FUNCTIONS 23

of the Neumann problem is determined up to a constant, a general solution formula must
involve one and only one additive constant that can be chosen at will. The formula (129) would
have such a property if ρy = ρ, i.e., one function ρ for all y, and if χy = χ − ∂νEy for some
χ ∈ C (∂Ω). The compatibility condition (127) now reads∫

∂Ω
χ = 1 +

∫
Ω
ρ, (130)

and (129) becomes

u(y) =

∫
Ω
Nyf −

∫
∂Ω
Nyg +

∫
∂Ω
χu−

∫
Ω
ρu. (131)

Two standard choices for ρ and χ are

(i) ρ ≡ 0, χ ≡ 1

|∂Ω| , and (ii) ρ ≡ − 1

|Ω| , χ ≡ 0. (132)

As with the Dirichlet case, we have not addressed the solvability of (126), and if (131) solves
the Neumann problem (119). Assuming that everything is fine, (131) offers a solution formula
in which we can freely specify the quantity

∫
∂Ω χu−

∫
Ω ρu.

Remark 27. We can study the symmetry of N by using the method from Remark 24. First,
let us rewrite (100) in the current context as∫

Ωε

Ny∆Nz −Nz∆Ny =

∫
∂Ω

(Ny∂νNz −Nz∂νNy)

+

∫
∂Bε(y)

(Nz∂rNy −Ny∂rNz) +

∫
∂Bε(z)

(Nz∂rNy −Ny∂rNz).

(133)

Since ∆Ny = ∆Nz = ρ in Ωε and ∂νNy = ∂νNz = χ on ∂Ω, we get∫
Ωε

Ny∆Nz −Nz∆Ny =

∫
Ωε

(Ny −Nz)ρ, (134)

and ∫
∂Ω

(Ny∂νNz −Nz∂νNy) =

∫
∂Ω

(Ny −Nz)χ. (135)

Furthermore, we have∫
∂Bε(y)

Ny∂rNz → 0,

∫
∂Bε(y)

Nz∂rNy → Nz(y), (136)

as ε→ 0, and analogous limits for the remaining terms, yielding∫
Ωε

(Ny −Nz)ρ−
∫
∂Ω

(Ny −Nz)χ→ Nz(y)−Ny(z), (137)

as ε→ 0. After taking the limit, this can be rewritten as

Ny(z) + ψ(y) = Nz(y) + ψ(z), (138)

where
ψ(y) =

∫
Ω
Nyρ+

∫
∂Ω
Nyχ. (139)

Since Ny in (128) is defined only up to a constant, the new function

N ′y(x) = Ny(x) + ψ(y), (140)

still satisfies (128) with ρy = ρ and χy = χ, and it is symmetric:

N ′y(x) = N ′x(y). (141)
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To conclude, the possibility to add an arbitrary constant to the Neumann function for each y
allows us to require the Neumann function be symmetric. Once we impose this requirement,
the Neumann function is fixed up to a global constant.

Example 28. Let us find Neumann’s function for Ω = {x ∈ Rn : xn > 0}, the upper half
space. Looking at (132)(ii), since |Ω| = ∞, we take ρ ≡ 0 and χ ≡ 0. Even though all our
derivations so far have been for bounded domains, we proceed to finding Neumann’s function
Ny satisfying (128), which, in the current setting, becomes{

∆Ny = δy in Ω,

∂νNy = 0 on ∂Ω.
(142)

By symmetry, it is obvious that Ny(x) = E(x − y) + E(x + y) works. In particular, since
E(x− y) = E(x+ y) for x ∈ ∂Ω = Rn−1 × {0}, for f ≡ 0, the formula (131) specializes to

u(y) = −2

∫
∂Ω
E(x− y)g(x)dx1 · · · dxn−1, (143)

which may be called the half-space Poisson formula for the Neumann problem.

Example 29. Let us now find Neumann’s function for the unit disk D = {x ∈ R2 : |x| < 1}.
We follow the approach (132)(i), and set ρ ≡ 0 and χ ≡ 1

2π . Then (128) becomes{
∆Ny = δy in D,
∂νNy = 1

2π on ∂D.
(144)

Taking inspiration from Example 26, we look for Neumann’s function in the form

Ny(x) =
1

2π
log |x− y|+ q

2π
log(|x− y∗| · |y|), (145)

where y∗ = 1
|y|2 y, and q is a constant, possibly depending on y. The factor |y| in the second

term is there to ensure that Ny(x) at y = 0 can be defined by contiuity, as N0(x) = 1
2π log |x|.

Since the second term (as a function of x) is harmonic in D, the condition ∆Ny = δy is satisfied.
Recall from Example 26 that

∂ν log |x− y| = 1− y · x
|x− y|2 , and ∂ν log |x− y∗| = |y|

2 − y · x
|x− y|2 . (146)

Hence if we put q = 1, for x ∈ ∂D, we get

∂νNy(x) =
1− 2y · x+ |y|2

2π|x− y|2 =
|x− y|2

2π|x− y|2 =
1

2π
, (147)

which confirms that Ny(x) = 1
2π log(|x− y| · |x− y∗| · |y|) is Neumann’s function for the unit

disk. In particular, taking into account the fact that |x − y∗| = |x− y|/|y| for x ∈ ∂D, and
setting f ≡ 0 and

∫
∂D u = 0, the formula (131) specializes to

u(y) = − 1

π

∫
∂D
g(x) log |x− y|dx, (148)

which may be called the Poisson formula for the Neumann problem.

Exercise 30. With Ω ⊂ Rn a bounded domain, the Robin problem for the Poisson equation is

∆u = f, in Ω, ∂νu+ ku = g, on ∂Ω,

where f and g are functions defined on Ω and ∂Ω, respectively, and k > 0 is a constant.
Devise an approach analogous to Green’s functions for the Robin problem. The resulting
functions are called Robin’s functions, or Green’s functions of the third kind. Make some
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preliminary observations on the behaviour of these functions. Give explicit formulas for the
Robin function(s) and the solution of the Robin problem in the case n = 1.

9. Poisson’s formula

In this section we will solve the Dirichlet problem{
∆u = 0 in Br,
u = g on ∂Br,

(149)

in the ball Br = {x ∈ Rn : |x| < r}, where g ∈ C (∂Br) is a given function. It will give us a
powerful tool to study harmonic functions, and will be a stepping stone to solving the Dirichlet
problem in general domains. By using Green’s function approach, we have derived a good
candidate solution, the Poisson formula

u(y) =

∫
∂Br

Π(y, x)g(x)dn−1x, (y ∈ Br), (150)

where

Π(y, x) =
r2 − |y|2

r|Sn−1| · |x− y|n , (151)

is called the Poisson kernel. Note that thus far we have not established the fact that the
function defined by (150) indeed satisfies (149). We shall establish that fact now.

(a) Contour lines of Π(y, x) as a func-
tion of y, with x fixed.

0 π−π

(b) Graphs of Π(reiθ, 1) as a function of θ, in com-
plex notation, for the values r = 0.3, 0.6, 0.9.

Figure 8. The Poisson kernel.

The following lemma summarizes some of the key properties of the Poisson kernel.

Lemma 31. For any fixed x ∈ ∂Br, the Poisson kernel Π(y, x) is infinitely differentiable in
y and ∆yΠ(y, x) = 0 for y ∈ Br, where ∆y denotes the Laplace operator with respect to y.
Moreover, we have

∂

∂yi
Π(0, x) =

nxi
rn+1|Sn−1| , for x ∈ ∂Br. (152)

Proof. The smoothness of Π(y, x) in y is immediate. An explicit calculation gives
∂

∂yi

1

|x− y|n =
n(xi − yi)
|x− y|n+2

, (153)

and
∂

∂yi

|y|2
|x− y|n =

2yi|x− y|2 + n(xi − yi)|y|2
|x− y|n+2

, (154)
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which imply (152). Furthermore, we have

∂2

∂y2
i

1

|x− y|n =
n(n+ 2)(xi − yi)2

|x− y|n+4
− n

|x− y|n+2
, (155)

and
∂2

∂y2
i

|y|2
|x− y|n =

n(n+ 2)|y|2(xi − yi)2

|x− y|n+4
− n|y|2 + 4nyi(xi − yi)

|x− y|n+2
+

2

|x− y|n , (156)

leading to

∆y
r2 − |y|2
|x− y|n =

2n(r2 + |y|2 − x · y)

|x− y|n+2
− 2n

|x− y|n = 0, for |x| = r. (157)

This completes the proof. �

To study differentiability properties of u given by the Poisson formula (150), we need to
be able to differentiate under the integral sign. The simple Leibniz rule (Theorem9) will be
sufficient for our purposes.

Theorem 32 (Schwarz 1872). a) Let g ∈ C (∂Br) and let u be given by the Poisson formula

u(y) =

∫
∂Br

Π(y, x)g(x)dn−1x, (y ∈ Br). (158)

Then u ∈ C∞(Br), ∆u = 0 in Br, and u(y)→ g(x) as Br 3 y → x ∈ ∂Br.
b) Let u ∈ C 2(Br) ∩ C (B̄r) be harmonic in Br. Then

u(y) =

∫
∂Br

Π(y, x)u(x)dn−1x, for y ∈ Br. (159)

In particular, u ∈ C∞(Br).

Proof. a) By Lemma31, for any fixed x ∈ ∂Br, the Poisson kernel Π(y, x) is infinitely differen-
tiable in y and ∆yΠ(y, x) = 0 for y ∈ Br. Furthermore, observe that all partial derivatives
∂k1+...+kn

∂k1y1···∂knynΠ(y, x) are continuous functions of (y, x) ∈ Br×∂Br, thus we can apply the Leibniz
rule (Theorem 9) to the Poisson integral (158) repeatedly, and conclude that u ∈ C∞(Br), and
that

∆u(y) = ∆

∫
∂Br

Π(y, x)g(x)dn−1x =

∫
∂Br

g(x)∆yΠ(y, x)dn−1x = 0, (160)

for y ∈ Br.
By the preceding result, the function

v(y) =

∫
∂Br

Π(y, x)dn−1x, (y ∈ Br) (161)

is harmonic in Br. Moreover, by symmetry, v is radial, meaning that v(y) = φ(|y|) for some
function φ ∈ C∞((0, r))∩C ([0, r)). From §3, we know that the only radial harmonic functions
in a ball (in particular, continuous at the origin) are constants. Hence v = const, and computing
the integral in (161) at y = 0 reveals that∫

∂Br

Π(y, x)dn−1x = 1, y ∈ Br. (162)

Now let x̂ ∈ ∂Br. Then by (162) we have

g(x̂) =

∫
∂Br

Π(y, x)g(x̂)dn−1x, (163)
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and so
u(y)− g(x̂) =

∫
∂Br

Π(y, x)(g(x)− g(x̂))dn−1x. (164)

If |x − x̂| > δ > 0 and |y − x̂| < δ
2 , then |x − y| > δ

2 , so the function x 7→ Π(y, x) converges
uniformly in ∂Br \ Bδ(x̂) to 0 as y → x̂. For x close to x̂, the continuity of g is enough to
counteract the singularity of x 7→ Π(y, x) at x = x̂, because this singularity is integrable
uniformly in y as seen from (162). To formalize the argument, let δ > 0 be a constant to be
adjusted later. Then by using the fact that Π(y, x) is positive, we have

|u(y)− g(x̂)| ≤
∫
∂Br

Π(y, x)|g(x)− g(x̂)|dn−1x

≤ sup
x∈∂Br∩Bδ(x̂)

|g(x)− g(x̂)|
∫
∂Br∩Bδ(x̂)

Π(y, x)dn−1x

+ sup
x∈∂Br\Bδ(x̂)

Π(y, x)

∫
∂Br\Bδ(x̂)

|g(x)− g(x̂)|dn−1x

≤ sup
x∈∂Br∩Bδ(x̂)

|g(x)− g(x̂)|+ 2‖g‖L∞ |∂Br| sup
x∈∂Br\Bδ(x̂)

Π(y, x).

(165)

For any given ε > 0, we can pick δ > 0 so small that the first term is smaller than ε. Then we
choose y so close to x̂ that the second term is smaller than ε.

b) We construct a function v ∈ C∞(Br) ∩ C (B̄r) by the Poisson formula with the boundary
values given by v = u on ∂Br. Then by part a) of this theorem, we have ∆v = 0 in Br and
v = u on ∂Br. Now by uniqueness of the Dirichlet problem (or by the maximum principle) we
infer u ≡ v in Br. �

Remark 33. Let u ≥ 0 be a harmonic function in some region that contains B̄r. Then from
an application of the Poisson formula we infer the following Harnack inequality

u(y) ≤ r2 − |y|2
r|Sn−1| · (r − |y|)n

∫
∂Br

u(x)dn−1x =
rn−2(r2 − |y|2)

(r − |y|)n u(0) =
1− k2

(1− k)n
u(0), (166)

where k = |y|/r. A lower bound on u(y) can also be obtained, leading to(
1

1 + k

)n−2 1− k
1 + k

u(0) =
1− k2

(1 + k)n
u(0) ≤ u(y) ≤

(
1

1− k

)n−2 1 + k

1− k u(0), (167)

which are a slight quantitative improvement over (74).

One should not be deceived by the fact that Poisson’s formula solves a seemingly simple
problem. It is a very powerful tool in the study of harmonic functions.

Theorem 34 (Removable singularity). Let Ω be an open set, and let z ∈ Ω. Assume that
u ∈ C 2(Ω \ {z}) is harmonic in Ω \ {z}, and satisfies u(x) = o(E(x− z)) as x→ z. Then u(z)
can be defined so that u ∈ C 2(Ω) and ∆u = 0 in Ω.

Proof. Without loss of generality, let us assume z = 0 and B̄r ⊂ Ω with some r > 0. Let
v ∈ C 2(Br) satisfy ∆v = 0 in Br and v = u on ∂Br. Of course, if u has a harmonic extension
to Br then it must be equal to v. For this to work, we need to show that u = v in Br \ {0}.
By the maximum principle, we have |v| ≤ Mr in Br, where Mr = supx∈∂Br |u(x)|. Let
w = u− v and δ > 0. Then we have ∆w = 0 in Br \Bδ and w = 0 on ∂Br. We can say that
|w| ≤ |v|+ |u| ≤Mr +Mδ on ∂Bδ. At this point if we apply the maximum principle to w, we
would only get |w| ≤Mr +Mδ, which is not what we are after. Let us look at the case n ≥ 3
first. We define the function φδ(x) = (Mr +Mδ)δ

n−2/|x|n−2 for comparison purposes. We see
that ∆φδ = 0 in Br \ Bδ, φδ ≥ 0 on ∂Br and φδ = Mr + Mδ on ∂Bδ, i.e., ±w ≤ φδ on the
boundary of Br \ Bδ. Then the comparison principle yields |w(x)| ≤ φδ(x) for x ∈ Br \ Bδ.
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Finally, for any fixed x ∈ Br, sending δ → 0 and taking into account that Mδ = o(δ2−n), we
infer |w(x)| = 0. Figure 9(a) illustrates the phenomenon φδ(x) → 0 as δ → 0 for any fixed
x ∈ Br, by taking Mδ = const for simplicity. In the case n = 2, we can use the comparison
function φδ(x) = (Mr +Mδ) log(r/|x|)/ log(r/δ). �

|x|

φδ

Mr +Mδ

δ r

(a)

y

r

ηt

ν

+−

(b)

Figure 9. Illustrations for the proofs of Theorem 34 and Theorem 35.

10. Converse to the mean value property

In this section, we prove that the mean value property implies smoothness and harmonicity.
We present two proofs, a slick one that is based on the Poisson formula, and one that is direct
and elementary. The mean value property says that the values of harmonic functions are
averages over balls, which, at an intuitive level, implies that harmonic functions cannot be too
rough. The direct proof below makes this intuition precise.

Theorem 35 (Koebe 1906). Let u ∈ C (Ω) be a function satisfying the mean value property
for every ball whose closure is contained in Ω. Then u ∈ C∞(Ω) and ∆u = 0. Moreover, for
η ∈ Sn−1 and Br(y) ⊂ Ω, we have

∂ηu(y) =
1

|Br|

∫
∂Br(y)

u η · ν. (168)

Proof. Let B be an arbitrary ball such that B̄ ⊂ Ω, and by employing the Poisson formula, let
us construct a function v ∈ C∞(B) ∩ C (B̄) satisfying ∆v = 0 in B and v = 0 on ∂B. Since
u− v satisfies the mean value property in B, and u− v = 0 on ∂B, by the maximum principle
we infer that u ≡ v in B. Hence u is smooth and harmonic. Then the formula (168) follows
from (152). �

Direct proof. We will prove (168) first. Let y ∈ Ω, and let Br(y) ⊂ Ω. Then for all small t, we
have Br(y + ηt) ⊂ Ω. The mean value property gives

u(y + ηt)− u(y) =
1

|Br|

∫
Br(y)

(u(x+ ηt)− u(x))dnx, (169)

see Figure 9(b). Define ∂±Br(y) = {x ∈ ∂Br(y) : (x− y) · η ≷ 0}, i.e., ∂+Br(y) is the positive
half of ∂Br(y) with respect to the direction η, and ∂−Br(y) is the negative half. Then the
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above integral can be decomposed as

1

|Br|

∫
Br(y)

(u(x+ ηt)− u(x))dnx =
1

|Br|

∫
∂+Br(y)

∫ t

0
u(x+ ηs) η · νdsdn−1x

− 1

|Br|

∫
∂−Br(y)

∫ t

0
u(x+ ηs)(−η · ν)dsdn−1x,

(170)

where ν is the outer unit normal to ∂Br(y), and the notation dn−1x is meant to make it clear
that the x-integration is over an n− 1 dimensional surface. We can recombine the integrals
and use uniform continuity to get

u(y + ηt)− u(y) =
1

|Br|

∫
∂Br(y)

∫ t

0
u(x+ ηs) η · νdsdn−1x

=
t

|Br|

∫
∂Br(y)

u(x) η · νdn−1x+ o(|t|),
(171)

which proves (168).
Since u is continuous, the integral over Br(y) depends on y continuously, hence ∂ηu ∈ C (Ω),

implying that u ∈ C 1(Ω). Moreover, from the divergence theorem, we get

∂ηu(y) =
1

|Br|

∫
∂Br(y)

u η · ν =
1

|∂Br|

∫
∂Br(y)

∂ηu, (172)

i.e., ∂ηu satisfies the mean value property. Then the smoothness of u follows by induction.
As ∆u is a linear combination of derivatives of u, it satisfies the mean value property.

Applying the divergence theorem to this fact then reveals

∆u(y) =
1

|Br|

∫
Br(y)

∇ · ∇u =
1

|Br|

∫
∂Br(y)

∂νu. (173)

The mean value property can be written as

u(y) =
1

|∂Br|

∫
∂Br(y)

u =
1

|Sn−1|

∫
Sn−1

u(y + ξr)dn−1ξ. (174)

Then

0 =
d

dr

∫
Sn−1

u(y + ξr)dn−1ξ =

∫
Sn−1

∂ru(y + ξr)dn−1ξ =
1

rn−1

∫
∂Br(y)

∂νu, (175)

which completes the proof. �

11. Derivative estimates

Suppose that u is a harmonic function in Ω. Then from (168) we infer

|∂ηu(y)| ≤ 1

|Br|

∫
∂Br(y)

|u| ≤ |∂Br||Br|
sup
∂Br(y)

|u| = n

r
sup
∂Br(y)

|u|, (176)

for η ∈ Sn−1 and Br(y) ⊂ Ω. This means that a harmonic function tends to be flat towards
the middle of the domain on which it is harmonic.

If u ≥ 0 in (176), we can use the mean value property to get

|∂ηu(y)| ≤ 1

|Br|

∫
∂Br(y)

u =
|∂Br|
|Br|

u(y) =
n

r
u(y), (177)

which is called a differential Harnack inequality. Liouville’s theorem follows immediately: If u
is nonnegative and entire harmonic, then at each point y ∈ Rn, taking r →∞ in (177) implies
that ∂ηu(y) = 0.
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Remark 36. The differential Harnack inequality (177) can be integrated to get a Harnack
inequality. Suppose that γ is a differentiable curve parameterized by arc length, with endpoints
x = γ(0) and y = γ(`), such that each point on γ is at the distance greater than R from the
boundary of Ω. Assume that u > 0 in Ω. Then we have

d log u(γ(t))

dt
=
γ′(t) · ∇u(γ(t))

u(γ(t))
, 0 ≤ t ≤ `. (178)

Integrating this, we get

| log u(x)− log u(y)| ≤
∫ `

0

∣∣γ′(t) · ∇u(γ(t))

u(γ(t))

∣∣dt ≤ n`

R
, (179)

which implies

e−n`/R ≤ u(x)

u(y)
≤ en`/R. (180)

The essence of Harnack inequalities is the fact that the ratio u(x)/u(y) cannot be too large if,
in a certain sense, the domain boundary does not obstruct the “connection” between x and y.
For example, if the curve γ has to go through a bottleneck in order to connect x and y, then it
would make R smaller, resulting in a weaker control in (180), cf. Figure 10.

Ω

γ

x

y

(a) The quality of the constants in the Harnack
inequality (180) depends on the length of γ and
the width of the shaded neighbourhood.

y ρ

(b) For the proof of Theorem 37.

Figure 10. Illustrations for Remark 36 and for the proof of Theorem37.

We can repeatedly apply (176) to derive estimates on higher derivatives. In the following
theorem, we use the convenient notation ∂α = ∂α1

1 · · · ∂αnn for higher order partial derivative
operators, and |α| = α1 + . . .+ αn, where α = (α1, . . . , αn) ∈ Nn0 is called a multi-index.

Theorem 37. Let u be harmonic in Ω, and let Br(y) ⊂ Ω. Then

|∂αu(y)| ≤ |α|!
(ne
r

)|α|
sup
Br(y)

|u|. (181)
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Proof. Let ρ = r
|α| and let β be a multi-index with |β| = |α| − 1. Then since all derivatives of

a harmonic function are also harmonic, from (176) we have

|∂αu(y)| ≤ n

ρ
sup
∂Bρ(y)

|∂βu|. (182)

We can estimate the derivative ∂βu appearing in the right hand side by the same procedure,
decreasing the order of derivatives again by one. We continue this process until we get no
derivatives in the right hand side, and get

|∂αu(y)| ≤
(n
ρ

)|α|
sup
Br(y)

|u| =
(n|α|
r

)|α|
sup
Br(y)

|u|. (183)

The estimate (181) follows from here upon using the elementary inequality kk ≤ k!ek, which
can be seen for instance from the convergent series ek = 1 + k + . . .+ kk

k! + . . .. �

12. Analyticity

In this section, we will show that harmonic functions are analytic. Let us first clarify the
notion of analyticity. In Rn, a power series is an expression of the form

f(x) =
∞∑

α1=0

. . .
∞∑

αn=0

aα1,...,αn(x1 − y1)α1 · · · (xn − yn)αn , (184)

with the coefficients aα1,...,αn ∈ R, and the centre y ∈ Rn. Introducing the multi-index notation
xα = xα1

1 · · ·xαnn for x ∈ Rn and α ∈ Nn0 , this series can also be written as

f(x) =
∑
α

aα(x− y)α. (185)

If the preceding series converges for some x, then obviously there is a constant M < ∞,
such that |aα||x1 − y1|α1 · · · |xn − yn|αn ≤M for all α. In particular, if this series converges in
a neighbourhood of y, then there are constants M <∞ and r > 0, such that |aα| ≤Mr−|α|

for all α. On the other hand, if r ∈ Rn and M <∞ satisfy |aα|rα1
1 · · · rαnn ≤M for all α, then

the series converges absolutely and uniformly for all x ∈ Rn satisfying |xi − yi| < ri for each i.
For our purposes, the take away message here is that if (185) converges in a neighbourhood of
y, then the convergence is absolute and uniform in a (possibly smaller) neighbourhood of y.

Exercise 38. Prove the statements in the previous paragraph.

Definition 39. Let Ω be an open subset of Rn. A real-valued function f : Ω → R is called
(real) analytic at y ∈ Ω if it is developable into a power series around y, i.e, if there are
coefficients aα ∈ R, (α ∈ Nn0 ), such that the power series (185) converges in a neighbourhood
of y. Moreover, f is said to be (real) analytic in Ω if it is analytic at each y ∈ Ω. The set of
analytic functions in Ω is denoted by Cω(Ω).

In parallel to the single variable case, one can show that if f is analytic at y, then the series
(185) is its multivariate Taylor series, i.e., the coefficients are given by

aα =
∂αf(y)

α!
=
∂α1

1 . . . ∂αnn f(y)

α1! · · ·αn!
, (186)

where we have introduced the convention α! = α1! · · ·αn!. In other words, f is analytic at
y ∈ Ω if and only if

f(x) =
∑
α

∂αf(y)

α!
(x− y)α, (187)

holds in a neighbourhood of y. Note that this requires not only that the series in the right
hand side converges, but also that the limit value is equal to the function in the left hand side.
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Example 40. Convergence of the series in the right hand side of (187) is not enough to
guarantee analyticity. A classical counterexample is

f(x) =

{
e−1/x for x > 0,

0 for x ≤ 0.
(188)

This function is in C∞(R), and f (n)(0) = 0 for all n. Hence the Taylor series (187) of f at
y = 0 is identically 0, but f itself is clearly a nontrivial function.

The reason behind the failure of analyticity in the aforementioned example can be attributed
to the fact that the derivatives f (n)(x) grow too fast with n in any neighbourhood of 0. The
following lemma establishes a sufficient condition for analyticity based on growth estimates of
derivatives. In fact, we will see later in the course that this condition is also necessary.

Lemma 41. A function f is real analytic in Ω if for any point y ∈ Ω there exist a ball
B = Br(y) with r > 0 and B̄ ⊂ Ω, and constants δ > 0 and M <∞ such that

max
|α|=m

sup
x∈B
|∂αf(x)| ≤Mm!

δm
for all m ∈ N. (189)

Proof. Let y ∈ Ω be an arbitrary point, and assume that (189) is satisfied for some B = Br(y)
as hypothesized in the statement of the lemma. Our goal is now by using the estimates (189) to
show that the Taylor series (187) converges in a neighbourhood of y. Without loss of generality,
let us assume that y = 0. Given z ∈ B, consider the function g(t) = f(zt). Taylor’s theorem
tells us

f(z) = g(1) =
m−1∑
k=0

g(k)(0)

k!
+
g(m)(s)

m!
, (190)

where 0 ≤ s ≤ 1. Let us compute the derivatives of g. We have

g′(t) = (z1∂1 + . . .+ zn∂n)f(zt),

g
′′
(t) = (z1∂1 + . . .+ zn∂n)2f(zt), . . .

g(k)(t) = (z1∂1 + . . .+ zn∂n)kf(zt)

=
∑

α1...+αn=k

k!

α1! . . . αn!
zα1

1 . . . zαnn ∂α1
1 . . . ∂αnn f(zt)

=
∑
|α|=k

k!

α!
zα ∂αf(zt),

(191)

by the multinomial theorem, so

f(z) =
∑
|α|<m

∂αf(0)

α!
zα +

(z1∂1 + . . .+ zn∂n)mf(sz)

m!︸ ︷︷ ︸
Rm

, (192)

with 0 ≤ s ≤ 1. We can estimate the remainder term by

|Rm| ≤Mδ−mnm|z|m = M
(n|z|
δ

)m
, (193)

which tends to 0 if |z| < δ
n . This establishes the lemma. �

Now we can state and prove our main theorem.

Theorem 42. Let u ∈ C 2(Ω) be harmonic in an open set Ω. Then u ∈ C ω(Ω).
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Proof. Let y ∈ Ω, and choose ρ > 0 such that B̄ρ(y) ⊂ Ω. Then for all x ∈ Br wih 0 < r < ρ,
by Theorem 37 we have

|∂αu(x)| ≤ |α|!
( ne

ρ− r
)|α|

sup
Bρ(y)

|u|. (194)

This gives the desired estimate in Lemma 41, with δ = ρ−r
ne and M = sup

Bρ(y)
|u|, to establish that

u is real analytic in Ω. �

Before closing this section, we include here a basic result known as the identity theorem for
multivariate analytic functions.

Theorem 43 (Identity theorem). Let f ∈ Cω(Ω) with Ω a connected open set in Rn, and with
some y ∈ Ω, let ∂αf(y) = 0 for all α. Then f ≡ 0 in Ω. In particular, the same conclusion
holds if f vanishes in some open subset of Ω.

Proof. Each Σα = {x ∈ Ω : ∂αf(x) = 0} is relatively closed in Ω, so the intersection Σ =
⋂
α Σα

is also relatively closed. On the other hand, Σ is open, because x ∈ Σ implies that f ≡ 0 in a
neighbourhood of x by a Taylor series argument. As Σ is nonempty, we have Σ = Ω. �

Corollary 44. If u is harmonic in a domain Ω and u = 0 in an open subset of Ω, then u ≡ 0.

13. Multipole expansions

Analyticity of f at y is equivalent to Tmf → f as m→∞ in a neighbourhood of y, where

Tmf(x) =
∑
|α|≤m

∂αf(y)

α!
(x− y)α, (195)

are the Taylor polynomials of f at y. In light of the fact that harmonic functions are analytic,
a natural question arises: Are the Taylor polynomials of a harmonic function also harmonic?
We claim that the answer is yes.

Obviously, T0f and T1f are harmonic. With the intent of applying induction, if Tm−1f is
harmonic, then harmonicity of Tmf is equivalent to harmonicity of Tmf − Tm−1f . An obvious
quality of the latter is that it is a homogenous polynomial, i.e., it is of the form

hm(x) =
∑
|α|=m

aαx
α, (196)

which can also be characterized by the property

hm(λx) = λmhm(x) for any λ ∈ R. (197)

It is clear that ∆hm is homogeneous of degree m− 2, and so

∆hm(x) = |x|m−2∆hm

( x
|x|
)
. (198)

Now consider the special case m = 2. Supposing that f is harmonic, and without loss of
generality, letting y = 0, we have

0 = ∆f(x) = ∆h2(x) + e2(x) = ∆h2

( x
|x|
)

+ e2(x), (199)

where e2(x) = O(x) as x→ 0. If ∆h2(x) 6= 0 for some x 6= 0, then by homogeneity, ∆h2(ω) 6= 0
for ω = x

|x| ∈ Sn−1. Since e2(x) can be made arbitrarily small by taking |x| small, we conclude
that ∆h2 = 0 on Sn−1, and hence ∆h2 ≡ 0. This argument works for general m, and shows in
the end that if f is harmonic in a neighbourhood of 0, then the series

f(x) =
∑
m≥0

|x|mhm
( x
|x|
)
, (200)
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converges in a neighbourhood of 0, where hm is a homogeneous, harmonic polynomial of degree
m, for each m.

14. Problems and exercises

1. Prove that the space of entire harmonic functions in Rn (n ≥ 2) is infinite dimensional.

2. Show that real and imaginary parts of a holomorphic function satisfy the Laplace equation.

3. Compute the electrostatic potential produced by a uniformly charged circular wire.

4. (a) Consider a 3-dimensional solid ball B of radius a centred at the origin, with a spherically
symmetric charge density ρ(x) = g(|x|) ≥ 0, for some continuous function g of a single
variable. Show that the electrostatic potential generated by B at the point x ∈ R3

with |x| > a, is the same as if its charge were all concentrated at the origin, that is,
u(x) = CQ/|x|, where Q is the total charge of B.

(b) Consider now a spherical shell S, defined by a ≤ |x| ≤ b, with spherically symmetric,
continuous charge density function. Show that this shell exerts no electrostatic force on a
point charge q located at the point (c, 0, 0) inside S (that is, |c| < a).

(c) In both cases (a) and (b), find the electrostatic potential u and compute ∆u everywhere,
that is, inside and outside of the body.

5. Let f : BR \ {0} → R and let there be a constant M > 0 such that∫
BR\Bε

|f | ≤M for any ε > 0, (201)

where the integral is understood in the Riemann sense. Then the improper Riemann integral of
f over BR is defined to be ∫

BR

f = lim
ε→0

∫
BR\Bε

f, (202)

and we say that f is absolutely integrable.
(a) Let {Uε} be a family of open sets in Rn, satisfying Uε ⊂ Uδ for ε < δ and

⋂
ε Uε = {0}.

Show that if f is absolutely integrable, then

lim
ε→0

∫
BR\Uε

f = lim
ε→0

∫
BR\Bε

f, (203)

meaning that the improper Riemann integral does not depend on the family {Uε}.
(b) Show that if f is absolutely integrable, then the Lebesgue integral of f over BR exists, and

is equal to the improper Riemann integral (202).

6. Let φ : (0, 1]→ R be a continuous nonnegative function satisfying∫ 1

ε
φ(r)rn−1dr ≤M,

for any ε > 0, with a fixed constant M . Define f(x) = φ(|x|) for x ∈ B1 where B1 is the open
unit ball centred at the origin. Prove in complete detail that f ∈ L1(B1).

7. Let Ω and u be as in Green’s representation formula (51), and in addition, let ∆u = 0 in Ω.
Then by using Green’s formula, prove that u ∈ C∞(Ω) with

sup
y∈K
|∂αu(y)| ≤ C(sup

Ω
|u|+ sup

Ω
|∇u|), (204)

for all multi-indices α and compact sets K ⊂ Ω, with the constant C possibly depending on α
and K.
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8. Let u ∈ C 2(Rn) be a function satisfying ∆u = 0 in Rn \Br, where Br is the open ball of
radius r > 0 centred at the origin. Show that

1

|∂Br|

∫
∂Br

u =
r2−n

(2− n)|Sn−1|

∫
Br

∆u ≡ E(r)

∫
Br

∆u,

provided n ≥ 3 and
1

|∂Bρ|

∫
∂Bρ

u→ 0 as ρ→∞.

9. Let Ω ⊂ Rn be an open set, and let u ∈ C2(Ω) be a nonconstant harmonic function. Show
that u cannot have any local maximum in Ω. (Note that the strong maximum principle as
stated rules out only global maximums.)

10. Let u ∈ C 2(Ω) be harmonic in a bounded domain Ω. By using the Harnack inequality
show that unless u is constant, it cannot achieve its extremums in Ω.

11. Let Ω ⊂ Rn be a bounded domain, and consider the boundary value problem

∆u = f(u) in Ω, u = 1 on ∂Ω. (205)

Prove the following.
(a) Any solution of (205) in C2(Ω) ∩ C(Ω̄) with f(u) = um where m ∈ N is odd, must satisfy

0 ≤ u ≤ 1 in Ω̄, and is unique.
(b) The only solution of (205) in C2(Ω) ∩ C(Ω̄) with f(u) = u− u−1 is u ≡ 1.

12. Prove the following statements.
(a) A function u ∈ C(Ω) is subharmonic in Ω iff for any closed ball B ⊂ Ω and any harmonic

function v in a neighbourhood of B, u ≤ v on ∂B implies u ≤ v in B.
(b) If u is harmonic in Ω, then |∇u|2 is subharmonic in Ω.
(c) Let u ∈ C (Rn) be subharmonic in Rn where n ≤ 2, and suppose that u(x) = o(|x|) or

u(x) = o(log |x|), depending on whether n = 1 or n = 2. Show that u is constant.

13. Let Ω ⊂ Rn+ ≡ {x ∈ Rn : xn > 0} be a domain, and let Σ = {x ∈ ∂Ω : xn = 0} be a
nonempty open subset of the hyperplane ∂Rn+ ≡ {xn = 0}. Prove the following.
(a) Suppose that u ∈ C2(Ω) ∩ C(Ω ∪ Σ) is harmonic in Ω and u = 0 on Σ. Denote by x∗ the

reflection (x1, . . . , xn−1,−xn) of x = (x1, . . . , xn−1, xn), and let

Ω̃ = Ω ∪ Σ ∪ {x∗ : x ∈ Ω}.
Then the function ũ ∈ C(Ω̃) defined by ũ = u in Ω ∪ Σ and ũ(x∗) = −u(x) for x ∈ Ω is
harmonic in Ω̃. This result is known as the Schwarz reflection principle.

(b) The Cauchy problem for the Laplace equation ∆u = 0 with the Cauchy data u = 0 and
∂nu = g on the hyperplane {xn = 0} has no solution in any neighbourhood of 0 ∈ Rn, if g
is not analytic at 0 ∈ Rn−1.

(c) A bounded harmonic function in Rn+ with u = 0 on {xn = 0} is identically zero.

14. Let u be an entire harmonic function in Rn. Prove the following.
(a) If u ∈ Lp(Rn) for some 1 ≤ p <∞ then u ≡ 0.
(b) Any tangent hyperplane to the graph of u intersects the graph more than once.
(c) If u satisfies u(x) ≥ −C(1 + |x|)m for some constants C and m ∈ N, then u is a polynomial

of degree less or equal to m.

15. Let g ∈ C (Rn−1) be a bounded function, and let u : Rn+ → R be given by

u(y) =

∫
∂Rn+

Π(y, x)g(x)dx1 · · · dxn−1, (y ∈ Rn+), (206)
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where Rn+ = Rn−1 × (0,∞), and

Π(y, x) =
2yn

|Sn−1| · |x− y|n , (207)

is the half-space Poisson kernel. Show that u ∈ C∞(Rn+), ∆u = 0 in Rn+, and u(y)→ g(x) as
Rn+ 3 y → x ∈ ∂Rn+.
16. Let g ∈ C (Rn−1) be a compactly supported function, and let u : Rn+ → R be given by

u(y) = 2

∫
∂Rn+

E(x− y)g(x)dx1 · · · dxn−1, (y ∈ Rn+), (208)

where Rn+ = Rn−1 × (0,∞). Show that u ∈ C ω(Rn+), ∆u = 0 in Rn+, and ∂nu(y) → g(x) as
Rn+ 3 y → x ∈ ∂Rn+.
17. Let g ∈ C (∂D), and let u : D→ R be given by

u(y) = − 1

π

∫
∂D
g(x) log |x− y|dx, (209)

Show that u is harmonic in D, and continuous in D̄, with
∫
∂D u = 0. Moreover, prove that

∂ru(y)→ g(x) as D 3 y → x ∈ ∂D, where ∂r is the radial derivative.

18. Let Ω be a domain, and let Σ = ∂Ω∩B be a smooth and nonempty portion of the boundary,
where B is an open ball. Let u ∈ C2(Ω) ∩ C1(Ω ∪ Σ) satisfy ∆u = 0 in Ω and u = ∂νu = 0 on
Σ. Show that u is identically zero in Ω.

19 (Bôcher 1905). Let Ω ⊂ Rn be an open set. Suppose that u ∈ C1(Ω) and that for each
y ∈ Ω there exists r∗ = r∗(y) > 0 such that∫

∂Br

∂νu = 0,

for all 0 < r < r∗, where ∂ν is the normal derivative. Show that u is harmonic in Ω.

20. Let u be a harmonic function, and define

q(r) =

∫
∂Br

u2, for r > 0.

Prove that
a) q is monotone and convex.
b) q is log-convex, i.e., log q(r) is a convex function of log r.
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