
THE DIRICHLET PROBLEM AS A MINIMIZATION PROBLEM
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Abstract. The classical Dirichlet principle is made rigorous, through the introduction of
weak and strong derivatives, and Sobolev spaces.
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1. The Dirichlet energy

In this section, we will be introduced to the problem of minimizing the Dirichlet energy

E(u) =

∫
Ω
|∇u|2, (1)

subject to the boundary condition u|∂Ω = g. Recall from the preceding chapter that this
approach to the Dirichlet problem {

∆u = 0 in Ω,

u = g on ∂Ω,
(2)

was originally suggested around 1847 by William Thomson and Gustav Lejeune-Dirichlet. We
start with some simple observations.

Lemma 1. Let Ω ⊂ Rn be an open set and let u ∈ C 2(Ω) satisfy E(u) <∞.
• If ∆u = 0 in Ω, then E(u+ v) > E(u) for all nontrivial v ∈ C 1

c (Ω).
• Conversely, if E(u+ v) ≥ E(u) for all v ∈ C 1

c (Ω), then ∆u = 0 in Ω.

Proof. Let v ∈ D(Ω) and let ε ∈ R. Then we have

E(u+ εv) = E(u) + 2ε

∫
Ω
∇u · ∇v + ε2E(v) = E(u)− 2ε

∫
Ω
v∆u+ ε2E(v), (3)

by Green’s first identity and the fact that supp v is compact. The first assertion of the lemma
follows by putting ∆u = 0 and ε = 1. For the second assertion, note that

2ε

∫
Ω
v∆u = E(u)− E(u+ εv) + ε2E(v) ≤ ε2E(v), (4)
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for all ε ∈ R, implying that

2
∣∣ ∫

Ω
v∆u

∣∣ ≤ |ε|E(v), and so
∫

Ω
v∆u = 0. (5)

Since v is arbitrary and ∆u is continuous, we infer that ∆u = 0 in Ω. �

The second assertion of the preceding lemma tells us that in order to establish existence of a
solution to the Dirichlet problem (2), it suffices to show that E has a minimizer in

A0 = {u ∈ C 2(Ω) ∩ C (Ω̄) : u|∂Ω = g}. (6)

In order to obtain a minimizer, one would start with a sequence {uk} ⊂ A0 satisfying

E(uk)→ µ := inf
v∈A0

E(v) as k →∞, (7)

and then try to show that this sequence (or some subsequence of it) converges to an element
u ∈ A0 with E(u) = µ. Such a sequence is called a minimizing sequence. The difficulty with
this plan is that although one can easily establish the existence of some function u such that
uk → u in a certain sense, the topology in which the convergence uk → u occurs is so weak
that we cannot imply the membership u ∈ A0 from the convergence alone. Initially, e.g., in the
works of David Hilbert and Richard Courant, this difficulty was overcame by modifying the
sequence {uk} without loosing its minimizing property, so as to be able to say more about the
properties of the limit u. However, it was later realized that the following modular approach is
more natural and often better suited for generalization.

• First, we show that E has a minimizer in a class that contains A0 as a subset.
• Then we show that the minimizer we obtained is in fact in A0.

The division of labor described here, that separates existence questions from regularity questions,
has became the basic philosophy of calculus of variations. Already in 1900, Hilbert proposed
existence and regularity questions (for minimization of more general energies) as two individual
problems in his famous list.

In a few sections that follow, we will carry out this program for the Dirichlet energy. Before
setting up the problem, let us look at a counterexample due to Jacques Hadamard, which is a
variation of Friedrich Prym’s example from 1871.

Example 2 (Hadamard 1906). Let D = {x ∈ R2 : |x| < 1}, and let u : D → R be given in
polar coordinates by

u(r, θ) =

∞∑
n=1

n−2rn! sin(n!θ). (8)

It is easy to check that each term of the series is harmonic, and the series converges absolutely
uniformly in D̄. Hence u is harmonic in D and continuous in D̄. On the other hand, we have

E(u) =

∫
D
|∇u|2 ≥

∫ 2π

0

∫ ρ

0
|∂ru(r, θ)|2rdrdθ =

∞∑
n=1

πn!

2n4
ρ2n! ≥

m∑
n=1

πn!

2n4
ρ2n!, (9)

for any ρ < 1 and any integer m. This implies that E(u) = ∞. To conclude, there exists
a Dirichlet datum g ∈ C(∂D) for which the Dirichlet problem is perfectly solvable, but the
solution cannot be obtained by minimizing the Dirichlet energy. There is no full equivalence
between the Dirichlet problem and the minimization problem.

We are now ready to enter the full mathematical set up of the problem. With Ω ⊂ Rn a
domain (not necessarily bounded) and g ∈ C (∂Ω), we would like to minimize E over a class
of functions u satisfying the boundary condition u|∂Ω = g. However, in view of Hadamard’s
example, we want to make sure that there is at least one function u such that u|∂Ω = g and that
E(u) <∞. We will implement it by assuming from the beginning that g ∈ C 1(Ω) ∩ C (Ω̄) and

http://www-history.mcs.st-andrews.ac.uk/Biographies/Courant.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Hadamard.html
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that E(g) <∞, so that the boundary condition now takes the form u|∂Ω = g|∂Ω. Furthermore,
we introduce the space

C 1
0 (Ω) = {u ∈ C 1(Ω) ∩ C (Ω̄) : u|∂Ω = 0}, (10)

and let
A = {u ∈ C 1(Ω) ∩ C (Ω̄) : u− g ∈ C 1

0 }. (11)
An alternative, perhaps more standard way of defining the admissible set A would be to
require u− g ∈ D(Ω), which may appear a bit strange as it is not a priori clear why we need
to impose conditions on the derivatives of u− g near ∂Ω. However, it will turn out that both
choices lead to the same outcome. We remark that the differentiability condition is now C 1 in
(11) as opposed to C 2 in (6), because the Dirichlet energy makes perfect sense for C 1 functions.
This is not very relevant, because as we shall see, we will eventually be using an even larger
class of functions.

The next step is to consider a minimizing sequence. Let

µ = inf
v∈A

E(v). (12)

It is obvious that 0 ≤ µ <∞, because g ∈ A and E(g) <∞. By definition of infimum, there
exists a sequence {uk} ⊂ A satisfying

E(uk)→ µ as k →∞. (13)

We will see that there is a natural topology associated to the energy E in which we have the
convergence uk → u to some function u. However, this topology will not be very strong, as the
following example illustrates.

Example 3 (Courant). Consider the Dirichlet problem on the unit disk D ⊂ R2 with the
homogeneous Dirichlet boundary condition. The solution is u ≡ 0, which also minimizes the
Dirichlet energy. For k ∈ N, let

uk(r, θ) =


kak for r < e−2k,

−ak(k + log r) for e−2k < r < e−k,

0 for e−k < r < 1,

(14)

given in polar coordinates. These are continuous, piecewise smooth functions with

E(uk) = 2π

∫ 1

0
|∂ruk|2 rdr = 2πa2

k log r
∣∣e−k

e−2k = 2πka2
k. (15)

Upon choosing ak = k−2/3, we can ensure that {uk} is a minimizing sequence. However,
uk(0) = kak = k1/3 diverges as k → ∞. In any case, observe that uk converges to u ≡ 0 in
some averaged sense.

Exercise 4. In the context of the preceding example, construct a minimizing sequence of
piecewise smooth functions satisfying the homogeneous boundary condition, which diverges in
a set that is dense in D. Show that this sequence converges to u ≡ 0 in L2.

In order to illustrate the main ideas clearly, before dealing with the Dirichlet energy (1), we
would like to consider the problem of minimizing the modified energy

E∗(u) =

∫
Ω

(
|∇u|2 + |u|2

)
. (16)

The admissible set A will stay the same, as in (11), and we will assume that

µ∗ = inf
v∈A

E∗(v) <∞. (17)
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If Ω is bounded, µ∗ <∞ if and only if µ <∞, because the second term under the integral in
(16) is integrable for any u ∈ A . One can also show that minimizing E∗ corresponds to the
boundary value problem ∆u = u in Ω and u = g on ∂Ω.

Exercise 5. Establish an analogue of Lemma 1 for the modified energy E∗. In particular,
show that if u ∈ C 2(Ω) satisfies E∗(u+ v) ≥ E∗(u) for all v ∈ C 1

c (Ω), then ∆u = u in Ω.

Pick a minimizing sequence for E∗, i.e., let {uk} ⊂ A be such that

E∗(uk)→ µ∗ as k →∞. (18)

Note that E(u) = 〈u, u〉∗, where 〈·, ·〉∗ is the symmetric bilinear form given by

〈u, v〉∗ =

∫
Ω

(∇u · ∇v + uv) . (19)

Any symmetric bilinear form satisfies the parallelogram law:

〈u− v, u− v〉∗ + 〈u+ v, u+ v〉∗ = 2〈u, u〉∗ + 2〈v, v〉∗, (20)

which reveals that

E∗(uj − uk) = 2E∗(uj) + 2E∗(uk)− 4E∗
(uj + uk

2

)
≤ 2E∗(uj) + 2E∗(uk)− 4µ∗, (21)

where the inequality is because of the fact that uj+uk
2 ∈ A . Since {uj} is a minimizing sequence,

we have E∗(uj − uk)→ 0 as j, k →∞. We would have said that {uj} is a Cauchy sequence,
for instance, if there was some norm of uj − uk, rather than E∗(uj − uk), that is going to 0.
As it turns out, this is indeed true: The quantity ‖ · ‖H1(Ω) =

√
E∗, that is, ‖ · ‖H1(Ω) given by

‖u‖2H1(Ω) = ‖∇u‖2L2(Ω) + ‖u‖2L2(Ω) =

∫
Ω

(
|∇u|2 + |u|2

)
, (22)

is a norm for functions in

C̃ 1(Ω) = {u ∈ C 1(Ω) : ‖u‖H1(Ω) <∞}. (23)

The space C̃ 1(Ω) is a proper subset of C 1(Ω), for instance, by Hadamard’s example, although
much simpler examples can be constructed that exploit growth, rather than oscillation, near
the boundary of Ω. To conclude, (21) implies that the sequence {uj} is Cauchy with respect
to this new norm:

‖uj − uk‖H1(Ω) → 0, as j, k →∞. (24)
The reader must have recognized why we modified the Dirichlet energy: It is precisely to make√
E∗ a norm. For the Dirichlet energy,

√
E is still a norm for functions in C 1(Ω) satisfying

the homogeneous boundary condition, but to show this one needs a bit more machinery, in
particular the Friedrichs inequality (Theorem 19 below). Note that since uj − uk satisfies the
homogeneous boundary condition, this would have been sufficient for us. The Dirichlet energy
E will be taken up after the treatment of E∗ which is a bit simpler.

2. Strong derivatives and weak solutions

Returning back to minimizing E∗, we have shown that any minimizing sequence is a Cauchy
sequence with respect to the norm ‖ · ‖H1(Ω). Now, if C̃ 1(Ω) was complete with respect to the
norm ‖ · ‖H1(Ω), there would have been u ∈ C̃ 1(Ω) such that ‖uj − u‖H1(Ω) → 0. However, it
is a fact of life that C̃ 1(Ω) is not complete with respect to the norm ‖ · ‖H1(Ω).

Exercise 6. Let v(x) = log log(2/|x|) and let vk ∈ C (D) be defined by vk(x) = min{k, v(x)}.
Show that the norms ‖vk‖H1(D) are uniformly bounded. Exhibit a sequence {uk} ⊂ C̃ 1(D)
that is Cauchy with respect to the norm ‖ · ‖H1(D), whose limit is not essentially bounded.
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If we ignore every aspect of the problem except the fact that {uj} is a Cauchy sequence, the
best thing we can do is to consider the completion of C̃ 1(Ω). What we get in this way is a
member of a large family of function spaces called Sobolev spaces, named in honour of Sergei
Sobolev, who initiated the systematic study of these spaces.

Definition 7. We define the Sobolev space H1(Ω) as the completion of C̃ 1(Ω) with respect to
the norm ‖ · ‖H1(Ω). In addition, we define H1

0 (Ω) as the closure of C 1
0 (Ω) ∩H1(Ω) in H1(Ω).

If there is no risk of confusion, we will simply write ‖ · ‖H1 omitting from the notation
the domain Ω, and call this norm the H1-norm. Note that C 1

0 (Ω) ∩ H1(Ω) simply means
those elements of C 1

0 (Ω) with finite H1-norms. By construction, H1
0 (Ω) is a closed subspace of

H1(Ω). For now, H1(Ω) is a space whose elements are equivalence classes of Cauchy sequences.
We want to identify H1(Ω) with a subspace of L2(Ω), which would give us a concrete handle
on H1(Ω). We start with the following observation: If a sequence {φk} ⊂ C̃ 1(Ω) is Cauchy
with respect to the H1-norm, then each of the sequences {φk} and {∂iφk}, where i = 1, . . . , n,
is Cauchy in L2(Ω). In particular, since L2(Ω) is a complete space, there exists a function
u ∈ L2(Ω) such that φk → u in L2(Ω) as k →∞. This defines a map from H1(Ω) into L2(Ω):
It sends the element of H1(Ω) represented by the sequence {φk} to u ∈ L2(Ω). Let us call this
map J0 : H1(Ω)→ L2(Ω). We will eventually prove that J0 is injective, identifying H1(Ω) as
a subspace of L2(Ω). For the time being, let us look into the range of J0. It is clear that a
function u ∈ L2(Ω) is in the range of J0 if and only if there exist a sequence {φk} ⊂ C̃ 1(Ω)
and functions vi ∈ L2(Ω) for i = 1, . . . , n, such that

φk → u, and ∂iφk → vi, (i = 1, . . . , n), (25)

with all convergences taking place in L2(Ω). This leads to the concept of strong derivatives,
which is based on approximation.

Definition 8. For u, v ∈ L2
loc(Ω), we say that v = ∂iu in the strong L2-sense, or that v is a

strong L2 derivative of u, if for each compact set K ⊂ Ω, there exists a sequence {φk} ⊂ C 1(K)
such that

φk → u and ∂iφk → v as k →∞, (26)
with both convergences taking place in L2(K).

In particular, if u ∈ L2(Ω) is in the range of J0, then u is strongly L2 differentiable.

Example 9. a) Let u ∈ C 1(Ω). Then taking the constant sequence φk = u (for all k) shows
that the classical derivative ∂iu is also a strong L2 derivative of u.

b) Let u(x) = |x| for x ∈ R, and let φk(x) =
√
x2 + ε2 with ε = 1/k. Obviously, we have

φk ∈ C∞(R). From the Maclaurin series of
√

1 + x, we get√
x2 + ε2 = |x|

√
1 +

ε2

x2
= |x|(1 + e(x)), |e(x)| ≤ ε2

x2
, (27)

for ε < |x|, and hence∣∣φk(x)− |x|
∣∣ =

∣∣√x2 + ε2 − |x|
∣∣ ≤ ε2

|x|
for |x| > ε. (28)

On the other hand, we have φk(x) ≤
√

2ε for |x| ≤ ε, so that∫ ε

−ε

∣∣φk(x)− |x|
∣∣2dx ≤ (4ε2 + 2ε2) · 2ε. (29)

Together with (28) this implies that φk → u in L2
loc(R), because∫ a

−a

∣∣φk(x)− |x|
∣∣2dx ≤ 12ε3 + 2aε, (30)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Lebesgue.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Lebesgue.html
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for any a > 0. Now we look at
φ′k(x) =

x√
x2 + ε2

, (31)

and would like to show that φ′k converges in L2
loc(R) to the sign function

sign(x) =

{
1 for x > 0,

−1 for x < 0.
(32)

This would show that the sign function is a derivative of the absolute value function in the
strong L2-sense. Since φ′k and sign are both odd functions, it suffices to consider only the half
line x > 0. We observe that φ′k(x) ≤ 1, and that

1− φ′k(x) =

√
x2 + ε2 − x√
x2 + ε2

≤ ε2

x2
, for |x| > ε, (33)

where we have used (28). Then for any fixed a > 0 and k large (hence ε small), we compute∫ a

0
|φ′k(x)− 1|2dx =

∫ √ε
0
|φ′k(x)− 1|2dx+

∫ a

√
ε
|φ′k(x)− 1|2dx ≤ 4

√
ε+ aε, (34)

which confirms the desired convergence.

Proceeding further, for each i ∈ {1, . . . , n}, we can define the map Ji : H1(Ω)→ L2(Ω) that
captures the L2-limit of ∂iφk as k →∞, where {φk} is a sequence representing an element of
H1(Ω). The composite map J = (J0, . . . , Jn) : H1(Ω)→ L2(Ω)n+1 is clearly injective, because
if limφk = limψk and lim ∂iφk = lim ∂iψk for all i, then the mixed sequence φ1, ψ1, φ2, ψ2, . . . is
Cauchy inH1(Ω), and so the two sequences {φk} and {ψk} represent the same element ofH1(Ω).
We see that the injectivity of J0 would follow once we have shown that for any U ∈ H1(Ω),
the components J1U, . . . , JnU are uniquely determined by J0U alone. The following result
confirms this.

Lemma 10. Strong derivatives are unique if they exist. Moreover, if u ∈ L2
loc(Ω) is strongly

L2 differentiable, then we have the integration by parts formula∫
Ω
ϕ∂iu = −

∫
Ω
u∂iϕ, ϕ ∈ C 1

c (Ω). (35)

Proof. Suppose that both v, w ∈ L2
loc(Ω) are strong L2 derivative of u ∈ L2

loc(Ω). We want
to show that v = w almost everywhere. Let ϕ ∈ C 1

c (Ω), and put K = suppϕ. Then there is
a sequence {vk} ⊂ C 1(K) such that vk → u and ∂ivk → v as k → ∞, both convergences in
L2(K). From the usual integration by parts, we have∫

Ω
vϕ =

∫
Ω

(v − ∂ivk)ϕ+

∫
Ω
ϕ∂ivk =

∫
Ω

(v − ∂ivk)ϕ−
∫

Ω
vk∂iϕ, (36)

hence ∣∣ ∫
Ω
vϕ+

∫
Ω
u∂iϕ

∣∣ ≤ ∫
Ω
|v − ∂ivk||ϕ|+

∫
Ω
|u− vk||∂iϕ|

≤ ‖v − ∂ivk‖L2(K)‖ϕ‖L2 + ‖u− vk‖L2(K)‖∂iϕ‖L2 ,

(37)

showing that the formula (35) is valid. The same reasoning applies to w, which means that∫
Ω

(v − w)ϕ =

∫
Ω

(u− u)∂iϕ = 0. (38)

Since ϕ ∈ C 1
c (Ω) is arbitrary, by the du Bois-Reymond lemma (Lemma 22 in §4) we conclude

that v = w almost everywhere. �
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Remark 11. The heart of the uniqueness argument was the integration by parts formula (35).
We will see in §5 that in fact the property (35) characterizes strong derivatives.

In terms of the new concepts we have just defined, we can say that the minimizing sequence
{uj} ⊂ A converges to some u ∈ H1(Ω). Moreover, from the definition (11), the sequence {vk}
defined by vk = uk − g is in C 1

0 (Ω) ∩H1(Ω), and it is Cauchy in H1(Ω), hence u− g ∈ H1
0 (Ω).

We emphasize here that the only part of the boundary condition that survives the limit process
is u− g ∈ H1

0 (Ω), and this must be understood as a generalized form of the Dirichlet boundary
condition. The energy E∗ is a continuous function on C̃ 1(Ω) with respect to the H1-norm,
that can be seen, for instance, from the inequality

|E∗(φ)− E∗(ψ)| ≤ ‖φ+ ψ‖H1(Ω)‖φ− ψ‖H1(Ω), φ, ψ ∈ C̃ 1(Ω). (39)

Hence E∗ can be extended to a continuous function on H1(Ω) in a unique way. Keeping the
notation E∗ for this extension, we have

E∗(u) = E∗(limuj) = limE∗(uj) = µ∗. (40)

We cannot say that u minimizes the energy E∗ over A , because we have not ruled out the
possibility u 6∈ A . What we can say though is that u minimizes E∗ over the set

Ã = {g + v : v ∈ H1
0 (Ω)} ⊃ A , (41)

since u − g ∈ H1
0 (Ω) and for any w ∈ Ã there is a sequence {wk} ⊂ A converging to w in

H1(Ω), meaning that
E∗(w) = E∗(limwk) = limE∗(wk) ≥ µ∗. (42)

Let us now try to derive a differential equation from the minimality of u, as was done in Lemma
1. It is easy to see that E∗(w) can be calculated by the same formula

E∗(w) =

∫
Ω

(
|∇w|2 + |w|2

)
, (43)

also for w ∈ H1(Ω), with ∇w = (∂1w, . . . , ∂nw) understood in the strong L2-sense. In light of
this, we have

E∗(u) ≤ E∗(u+ εv) = E∗(u) + ε2E∗(v) + 2ε

∫
Ω

(∇u · ∇v + uv) , (44)

for ε ∈ R and v ∈ H1
0 (Ω), which then implies that

〈u, v〉H1 :=

∫
Ω

(∇u · ∇v + uv) = 0, for all v ∈ H1
0 (Ω). (45)

We cannot go any further because we cannot quite move the derivatives from v to u in such a
low regularity setting (cf. Exercise 5). Until we can prove that u is indeed smooth, we will
have to work with (45) as it is.

Definition 12. If u ∈ H1(Ω) satisfies (45), then we say that u solves ∆u = u in Ω in the weak
sense, or that u is a weak solution of ∆u = u in Ω. In the same spirit, we call (45) the weak
formulation of the equation ∆u = u in Ω.

We have practically proved the following result.

Theorem 13. Let g ∈ H1(Ω). Then there exists a unique u ∈ H1(Ω) satisfying (45) and
u− g ∈ H1

0 (Ω). In other words, there is a unique weak solution of ∆u = u with u− g ∈ H1
0 (Ω).

Proof. For uniqueness, let us start as usual by assuming that there exist two such functions
u1, u2 ∈ H1(Ω). Then w = u1 − u2 ∈ H1

0 (Ω), and by linearity, we have∫
Ω

(∇w · ∇v + wv) = 0, (46)
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for all v ∈ H1
0 (Ω). Taking v = w gives ‖w‖H1 = 0, hence w = 0.

Existence had already been established, modulo the fact that we now allow g ∈ H1(Ω). For
completeness, let us sketch a proof. We define the admissible set Ã as in (41), and take a
minimizing sequence {uj} ⊂ Ã , that is, a sequence satisfying

E∗(uj)→ µ∗ = inf
v∈Ã

E∗(v). (47)

We have 0 ≤ µ∗ < ∞, since E∗(g) = ‖g‖2H1 < ∞. The argument (21) shows that {uj} is
Cauchy in H1(Ω), and hence there is u ∈ H1(Ω) such that uj → u in H1. By continuity of E∗,
i.e., the argument (40), we have E∗(u) = µ∗. Moreover, the sequence {uj − g} is Cauchy in
H1(Ω), and H1

0 (Ω) is a closed subspace of H1(Ω), implying that u− g ∈ H1
0 (Ω). Finally, the

argument (44) confirms that (45) is satisfied. �

Exercise 14 (Stability). Let u1 ∈ H1(Ω) and u2 ∈ H1(Ω) be the weak solutions of ∆u = u
satisfying u1 − g1 ∈ H1

0 (Ω) and u2 − g2 ∈ H1
0 (Ω), where g1, g2 ∈ H1(Ω). Show that

‖u1 − u2‖H1 ≤ ‖g1 − g2‖H1 . (48)

3. Minimization of the Dirichlet energy

We have proved that the energy E∗ attains its minimum over the set Ã , and that the
minimizer is the weak solution to ∆u = u in Ω. If we can show that u is smooth, then this
would imply that ∆u = u pointwise in Ω. Leaving the smoothness question aside for the
moment, now we would like to return to our original goal, that is to minimize the Dirichlet
energy E over Ã . To this end, let us try to imitate and adapt the proof of Theorem 13.
Recall that the admissible set Ã is defined in (41) with some g ∈ H1(Ω). Let {uj} ⊂ Ã be a
minimizing sequence, i.e., let

E(uj)→ µ = inf
v∈Ã

E(v). (49)

We have 0 ≤ µ <∞, since E(g) = ‖∇g‖2L2 <∞. Repeating the argument (21), we find that

‖∇(uj − uk)‖L2 → 0, as j, k →∞. (50)

As ‖∇ · ‖L2 is only a part of the H1-norm, we cannot directly say that the sequence {uj} is
Cauchy in H1. In particular, the fact that ‖∇v‖L2 = 0 would only mean that v is a constant
function. However, if we know that v = 0 on ∂Ω, then this constant must be 0. This is the
intuitive reason behind the Friedrichs inequality1

‖v‖H1 ≤ c‖∇v‖L2 , v ∈ H1
0 (Ω), (51)

where c > 0 is a constant. Under the assumption that the Friedrichs inequality is true, from
(50) it is immediate that {uj} is Cauchy in H1, because uj −uk ∈ H1

0 (Ω). Proceeding as in the
proof of Theorem 13, we conclude that uj → u in H1 for some u ∈ H1(Ω) satisfying E(u) = µ
and u− g ∈ H1

0 (Ω).

Exercise 15. Show that the function u from the preceding paragraph satisfies∫
Ω
∇u · ∇v = 0, for all v ∈ H1

0 (Ω). (52)

Show also that there is a unique u ∈ H1(Ω) satisfying (52) and u− g ∈ H1
0 (Ω).

Definition 16. If u ∈ H1(Ω) satisfies (52), then we say that u solves ∆u = 0 in Ω in the weak
sense, or that u is a weak solution of ∆u = 0 in Ω. We call (52) the weak formulation of the
equation ∆u = 0 in Ω.

1It is sometimes called the Poincaré inequality, although the latter term is used more commonly to refer to
the same inequality for functions v ∈ H1(Ω) with vanishing mean.
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Modulo the proof of Friedrichs’ inequality that will follow, we have established the following.

Theorem 17. Let Ω ⊂ Rn be a bounded domain, and let g ∈ H1(Ω). Then there exists a
unique u ∈ H1(Ω) satisfying u− g ∈ H1

0 (Ω) and (52). In other words, there is a unique weak
solution of ∆u = 0 with u− g ∈ H1

0 (Ω).

Before proving the Friedrichs inequality, we include here a density result.

Theorem 18. Let Ω ⊂ Rn be a bounded open set. Then C 1
c (Ω) is dense in H1

0 (Ω). In other
words, H1

0 (Ω) could have been defined as the closure of C 1
c (Ω) in H1(Ω).

Proof. Recall that H1
0 (Ω) is defined as the closure of C 1

0 (Ω) ∩H1(Ω) in H1(Ω). In order to
establish the claimed density, we let u ∈ C 1

0 (Ω) ∩H1(Ω), and shall construct a sequence in
C 1
c (Ω), that converges to u in the H1-norm. To this end, pick a function θ ∈ C 1(R) such that

θ ≡ 0 on [−1, 1], and

θ(t)

t
→ 1 and θ′(t)→ 1, as |t| → ∞. (53)

Then we define θk(t) = θ(kt)
k for t ∈ R, and uk(x) = θk(u(x)) for x ∈ Ω, where k ∈ N. Since

the set {x ∈ Ω : |u(x)| ≥ ε} is compact for any ε > 0, and θk ≡ 0 on [− 1
k ,

1
k ], the support of uk

is compact in Ω. Now for any fixed x ∈ Ω with u(x) 6= 0, we have

uk(x) =
θ(ku(x))

k
→ u(x) as k →∞, (54)

and for those x ∈ Ω with u(x) = 0, we have uk(x) = 0 anyways, meaning that uk converges
pointwise to u. Moreover, for u(x) 6= 0, we have

u(x)− uk(x) = u(x)− θ(ku(x))

k
= u(x)

(
1− θ(ku(x))

ku(x)

)
, (55)

and so
|u(x)− uk(x)| ≤ c|u(x)|. (56)

Then by the dominated convergence theorem, uk converges to u in L2(Ω).
Next, we need to look at the derivatives. We have

∂iuk(x) = θ′k(u(x)) ∂iu(x) = θ′(ku(x)) ∂iu(x), (57)

which means that ∇uk(x) → ∇u(x) as k → ∞, except at those x ∈ Ω with u(x) = 0 and
∇u(x) 6= 0. However, by the implicit function theorem, this exceptional set is an n − 1
dimensional surface, hence has measure zero. Thus ∇uk converges almost everywhere to ∇u.
Furthermore, it follows from (57) that

|∂iu(x)− ∂iuk(x)| ≤ |1− θ′(ku(x))| |∂iu(x)| ≤ c|∂iu(x)|, (58)

for almost every x ∈ Ω, and we get ∂iuk → ∂iu in L2(Ω) by dominated convergence. �

Now we prove the Friedrichs inequality.

Theorem 19 (Friedrichs inequality). Let Ω ⊂ Rn be a bounded domain. Then we have

‖v‖L2 ≤ diam(Ω)‖∇v‖L2 , for all v ∈ H1
0 (Ω). (59)

Proof. First, we will prove the inequality for v ∈ C 1
c (Ω). Let us extend v by 0 outside Ω so

that we have v ∈ C 1
c (Rn). Without loss of generality, assume that Ω ⊂ (0, a)n for some a > 0.

Then for x ∈ Ω, we have

|v(x)| =
∣∣ ∫ xn

0
∂nv(x′, t)dt

∣∣ ≤ ∫ a

0
|∂nv(x′, t)|dt, (60)
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where x = (x′, xn) with x′ = (x1, . . . , xn−1) ∈ Rn−1. The function t 7→ |∂nv(x′, t)| is Riemann
integrable because it is a continuous function with compact support. Now using the Cauchy-
Bunyakowsky-Schwarz inequality and squaring, we get

|v(x)|2 ≤ a
∫ a

0
|∂nv(x′, t)|2dt, (61)

which, upon integrating along x′ = const, gives∫ a

0
|v(x′, t)|2dt ≤ a2

∫ a

0
|∂nv(x′, t)|2dt. (62)

Then we integrate over x′ ∈ (0, a)n−1, and obtain∫
Ω
|v|2 =

∫
(0,d)n

|v|2 ≤ a2

∫
(0,a)n

|∂nv|2 = a2

∫
Ω
|∂nv|2 ≤ a2

∫
Ω
|∇v|2. (63)

This establishes the inequality for v ∈ C 1
c (Ω).

Now let v ∈ H1
0 (Ω). Then by Theorem 18 there exists a sequence {vk} ⊂ C 1

c (Ω) such that
vk → v in H1(Ω). The triangle inequality gives

‖v‖L2 ≤ ‖vk‖L2 + ‖v − vk‖L2 ≤ a‖∇vk‖L2 + ‖v − vk‖L2

≤ a‖∇v‖L2 + a‖∇vk −∇v‖L2 + ‖v − vk‖L2 ,
(64)

and since the last two terms can be made arbitrarily small, the claim follows. �

4. Interior regularity: Weyl’s lemma

Now that we have established the existence of a minimizer for the Dirichlet energy, in this
section, we want to look at how smooth the minimizer is, and if the minimizer satisfies the
equation ∆u = 0 in the classical sense. Both questions can be answered simultaneously and
affirmatively, as was done by Hermann Weyl in 1940.

Our approach will be to construct a sequence {uj} of harmonic functions such that uj → u
in L1

loc, which would then establish the desired result since harmonic functions are closed under
the convergence in L1

loc. To construct such an approximating sequence, we will employ the
technique of mollifiers due to Jean Leray, Sergei Sobolev and Kurt Otto Friedrichs, as it is
also useful in many other problems. Let ρ ∈ D(B1) where B1 ⊂ Rn is the unit ball, satisfying
ρ ≥ 0 and

∫
ρ = 1. Then we define ρε ∈ D(Bε) for ε > 0 by

ρε(x) = ε−nρ(x/ε). (65)

It is easy to see that
∫
ρε = 1. Given u ∈ L1

loc(Ω) with Ω ⊂ Rn open, let

uε(x) =

∫
Ω
ρε(x− y)u(y)dy, x ∈ Ω. (66)

Note that for each x ∈ Ω, the integral defining uε(x) makes sense for all sufficiently small ε > 0.
The function uε could be called a mollified version of u, because it is the outcome of a local
averaging process, and as we shall see, uε is a smooth function.

Theorem 20. In this setting, we have the following.
a) If u ∈ C (Ω), then uε → u locally uniformly as ε→ 0.
b) If u ∈ Lqloc(Ω) for some 1 ≤ q <∞, then uε → u in Lqloc(Ω) as ε→ 0.

Proof. a) Making use of the facts
∫
ρε = 1 and ρε ≥ 0, we can write

|u(x)− uε(x)| ≤
∫

Ω
ρε(x− y)|u(x)− u(y)|dy ≤ sup

y∈Bε(x)
|u(x)− u(y)| = ω(x, ε), (67)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Weyl.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Leray.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Friedrichs.html
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where the last equality defines the function ω : K × (0, ε0) → R, with K ⊂ Ω an arbitrary
compact set and ε0 > 0 small, depending on K. Since u is continuous, ω is continuous in
K × (0, ε0), and moreover ω can be continuously extended to K × [0, ε0) with ω(·, 0) = 0. This
shows that ω(x, ε)→ 0 as ε→ 0 uniformly in x ∈ K, and part a) follows.

b) Let K ⊂ Ω and K ′ ⊂ Ω be compact sets, with K contained in the interior of K ′. Then
the Hölder inequality gives

|uε(x)|q ≤
( ∫

ρε
)q−1

∫
K′
ρε(x− y)|u(y)|qdy, (68)

and integrating over x ∈ K, we get∫
K
|uε|q ≤

∫
K′

( ∫
K
ρε(x− y)dx

)
|u(y)|qdy ≤

∫
K′
|u|q, (69)

for small ε > 0. Now let δ > 0 be an arbitrary small number, and let φ ∈ C (K ′) be such that
‖φ− u‖Lq(K′) < δ. The existence of such φ is guaranteed by the standard density result, which
we recall below in Lemma 21. From the bound we just proved, taking into account the linearity
of the mollification process, we have

‖φε − uε‖Lq(K) ≤ ‖φ− u‖Lq(K′) < δ. (70)

Finally, we use the triangle inequality to obtain

‖uε − u‖Lq(K) ≤ ‖uε − φε‖Lq(K) + ‖φε − φ‖Lq(K) + ‖φ− u‖Lq(K)

< ‖φε − φ‖Lq(K) + 2δ

≤ vol(K)1/q sup
K
|φε − φ|+ 2δ,

(71)

which, by part a), implies that ‖uε − u‖Lq(K) < 3δ for all sufficiently small ε, and since δ > 0
is arbitrary, the claim follows. �

We now give a proof of the density result we have used.

Lemma 21. Let K ⊂ Rn be a compact set, and let 1 ≤ q <∞. Then the space of continuous
functions on K is dense in Lq(K).

Proof. Strictly speaking, an element of Lq(K) is an equivalence class of functions that differ on
sets of measure zero. We assume that g : K → R is a member of such an equivalence class, and
shall prove that for any ε > 0, there is v ∈ C (K) such that ‖g − v‖Lq(K) < ε. This will suffice
since for any other member g̃ of the same class, it holds that ‖g − v‖Lq(K) = ‖g̃ − v‖Lq(K). By
decomposing g into its positive and negative parts, we can assume that g takes only nonnegative
values, i.e., that g : K → [0,∞). Then for m ∈ N, we define

vm =
22m−1∑
k=0

k

2m
χAk

+ 2mχB, (72)

where Ak = {x ∈ K : k
2m < g(x) ≤ k+1

2m } and B = {x ∈ K : g(x) > 2m}. For any set S,
the characteristic function χS is defined as χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. By
construction, the sequence vm is nondecreasing, and vm → g pointwise. Since g is measurable,
the sets Ak and B are also measurable, and so are the functions vm. Moreover, we have

|g − vm|q ≤ 2q−1|g|q + 2q−1|vm|q ≤ 2q|g|q, (73)

which, combined with Lebesgue’s dominated convergence theorem, implies that

‖g − vm‖qLq(K) =

∫
K
|g − vm|q → 0, as m→∞. (74)
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Thus, the functions of the form (72), that is, the simple functions, are dense in Lq(K). To
complete the proof, it suffices to approximate simple functions by continuous functions, or
simpler still, approximate the characteristic function of an arbitrary measurable set A ⊂ K by
continuous functions. By regularity of the Lebesgue measure, for any given ε > 0, there exist a
compact set K and an open set O ⊂ Rn, such that K ⊂ A ⊂ O and |O \K | < ε, where | · |
denotes the Lebesgue measure. Now we define

f(x) =
dist(x,Rn \ O)

dist(x,K ) + dist(x,Rn \ O)
, x ∈ Rn, (75)

where dist(x,B) = infy∈B |x− y| for any set B ⊂ Rn. We have 0 ≤ f ≤ 1 everywhere, f(x) = 1
for x ∈ K and f(x) = 0 for x ∈ Rn \ O. Therefore

‖χA − f‖qLq(K) ≤ ‖χA − f‖
q
Lq(Rn) =

∫
Rn

|χA − f |q ≤ |O \K | < ε, (76)

and moreover, f is continuous because of the property

|dist(x,B)− dist(y,B)| ≤ |x− y|, x, y ∈ Rn, (77)

which holds for any set B ⊂ Rn. The proof is completed. �

As a simple application of mollifiers, let us prove the following important result known as
the fundamental lemma of calculus of variations, which is attributed to Paul du Bois-Reymond.

Lemma 22 (du Bois-Reymond). Let u ∈ L1
loc(Ω) and let∫

Ω
uϕ = 0 for all ϕ ∈ D(Ω). (78)

Then u = 0 almost everywhere in Ω.

Proof. Since mollification (66) is the integration against a function from D(Ω) for small ε > 0,
it follows that uε(x) = 0 eventually for each x ∈ Ω. Let K ⊂ Ω be a compact set. Then uε
converges to u in L1(K), meaning that u = 0 almost everywhere in K. As K ⊂ Ω was an
arbitrary compact set, we conclude that u = 0 almost everywhere in Ω. �

In order to study differentiability properties of uε, we need to be able to differentiate an
integral with respect to a parameter. The following result is appropriate for our purposes.

Theorem 23 (Leibniz rule, version 2). Let Ω ⊂ Rn be a measurable set, and let I ⊂ R be an
open interval. Suppose that f : Ω× I → R is a function satisfying

• f(·, t) ∈ L1(Ω) for each fixed t ∈ I,
• f(y, ·) ∈ C 1(I) for almost every y ∈ Ω,
• There is g ∈ L1(Ω) such that |ft(y, t)| ≤ g(y) for almost every y ∈ Ω and for each t ∈ I,
where ft is the derivative of f with respect to t ∈ I.

Then the function F : I → R defined by

F (t) =

∫
Ω
f(y, t)dy (t ∈ I), (79)

satisfies F ∈ C 1(I), and

F ′(t) =

∫
Ω
ft(y, t)dy, t ∈ I. (80)

Proof. First, we claim that

G(t) =

∫
Ω
ft(y, t)dy, t ∈ I, (81)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Du_Bois-Reymond.html
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is continuous in t. Since ft(y, t)− ft(y, s)→ 0 as |t− s| → 0 for almost every y, it suffices to
bound |ft(y, t)− ft(y, s)| by an integrable function, uniformly in s and t. But this is exactly
what we have assumed in the third bulleted item.

Now let a ∈ I be an arbitrary but fixed point. Since G is continuous on I, from the
fundamental theorem of calculus we have

G(t) =
d

dt

∫ t

a
G(s)ds, (82)

which leads to ∫
Ω
ft(y, t)dy =

d

dt

∫ t

a

∫
Ω
ft(y, s)dyds

=
d

dt

∫
Ω

∫ t

a
ft(y, s)dsdy

=
d

dt

∫
Ω

(f(y, t)− f(y, a)) dy

=
d

dt

∫
Ω
f(y, t)dy,

(83)

where we have used Fubini’s theorem in the second equality and the fundamental theorem of
calculus for almost every y ∈ Ω in the third equality. �

Corollary 24. In the context of mollification, cf. (65) and (66), let u ∈ L1
loc(Ω) and let K ⊂ Ω

be a compact set. Then for all sufficiently small ε > 0, we have uε ∈ C∞(K) and

∂αuε(x) =

∫
Rn

∂αρε(x− y)u(y)dy (x ∈ K), (84)

for any α ∈ Nn0 .

Proof. What we need to show is for φ ∈ D(Bε) with ε > 0 sufficiently small,

∂

∂xi

∫
Rn

φ(x− y)u(y)dy =

∫
Rn

∂

∂xi
φ(x− y)u(y)dy (x ∈ K). (85)

With t = xi, the conditions are easily verified. For instance, we have∣∣ ∂
∂xi

φ(x− y)u(y)
∣∣ ≤ |u(y)| sup

Bε

|∂iφ|, (86)

which confirms the condition after the third bullet point. �

Now we can prove the main result of this section, the result known as Weyl’s lemma.

Theorem 25 (Weyl 1940). Let Ω ⊂ Rn be an open set, and let u ∈ H1(Ω) satisfy∫
Ω
∇u · ∇ϕ = 0, for all ϕ ∈ D(Ω). (87)

Then up to a modification on a set of measure zero, u is harmonic in the classical sense. In
particular, we have u ∈ C ω(Ω).

Proof. For ε > 0, let uε be the mollified version of u, cf. (65) and (66). Let K ⊂ Ω be
a compact set, and let ε > 0 be sufficiently small. Then from Corollary 24, we know that
uε ∈ C∞(K), and

∆uε(x) =

∫
∆ρε(x− y)u(y)dy (x ∈ K). (88)
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Developing this further, we get

∆uε(x) =

∫
∆ρε(x− y)u(y)dy =

∫
∆yρε(x− y)u(y)dy

= −
∫
∇yρε(x− y) · ∇u(y)dy = 0,

(89)

where we have used integration by parts for strong derivatives in the second equality, and the
property (87) in the last equality. We also have used ∆y and ∇y to indicate that the implied
derivatives are with respect to the y variable. Hence the functions uε are harmonic in K.

On the other hand, Theorem 20b) tells us that uε → u in L1(K) as ε→ 0. From the mean
value property, it is easy to see that {uε} forms a Cauchy sequence in the uniform norm on
any compact set contained in the interior of K. This shows that uε converges locally uniformly
to some harmonic function w in the interior of K. But uε also converges to u in L1(K), which
means that u = w almost everywhere in K. As K ⊂ Ω was an arbitrary compact set, we
conclude that u = w almost everywhere in Ω, with w a harmonic function in Ω. �

Exercise 26. Show that if u ∈ L1
loc(Ω) satisfies∫

Ω
u∆ϕ = 0, for all ϕ ∈ D(Ω), (90)

then u is harmonic in the classical sense.

5. Weak derivatives

Recall that for functions u, v ∈ L2
loc(Ω), we say v = ∂iu strongly in L2 if for each compact

set K ⊂ Ω, there exists a sequence {φk} ⊂ C 1(K) such that φk → u and ∂iφk → v in L2(K).
Strong derivatives are defined in terms of approximation. In order to show that a particular
function is strongly differentiable by using the definition directly, one needs to construct a
suitable approximating sequence, cf. Example 9. On the other hand, in the process of showing
that strong derivatives are unique, in Lemma 10 we proved that strong derivatives satisfy an
integration by parts formula, namely∫

Ω
ϕ∂iu = −

∫
Ω
u∂iϕ, ϕ ∈ C 1

c (Ω). (91)

We can turn this around and introduce a new concept of derivative, which is a priori more
general than strong derivatives.

Definition 27. For u, v ∈ L1
loc(Ω), we say v = ∂iu in the weak sense, or that v is a weak

derivative of u, if ∫
Ω
vϕ = −

∫
Ω
u∂iϕ, (92)

for all ϕ ∈ D(Ω).

Weak derivatives are defined in terms of duality. It is immediate from the du Bois-Reymond
lemma that the weak derivatives are unique.

Example 28. a) Let us try to find the weak derivative of u(x) = |x|, x ∈ R. We have∫
R
|x|ϕ′(x)dx = −

∫ 0

−∞
xϕ′(x)dx+

∫ ∞
0

xϕ′(x)dx

=

∫ 0

−∞
ϕ(x)dx−

∫ ∞
0

ϕ(x)dx

= −
∫
R
ϕ(x) sign(x)dx,

(93)
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for ϕ ∈ D(R), implying that |x|′ = sign(x) in the weak sense. Note that as expected, the result
is the same as that of Example 9.

b) Suppose that v ∈ L1
loc(R) is the weak derivative of sign. Then we would have∫

R
v(x)ϕ(x)dx = −

∫
R
ϕ′(x) sign(x)dx = −

∫ ∞
0

ϕ′(x)dx+

∫ 0

−∞
ϕ′(x)dx = 2ϕ(0), (94)

for ϕ ∈ D(R). In particular, it is true for ϕ ∈ D(R \ {0}), which by the du Bois-Reymond
lemma implies that v = 0 almost everywhere in R \ {0}. This of course means that v = 0
almost everywhere in R, and for such functions, the integral in the left hand side of (94) is
equal to 0. Hence (94) cannot be satisfied if ϕ(0) 6= 0, meaning that the sign function is not
weakly differentiable.2

The following theorem shows that in the L2-context, strong and weak derivatives coincide.

Theorem 29 (Friedrichs 1944). Let u, v ∈ L2
loc(Ω). Then v = ∂iu in the strong L2-sense if

and only if v = ∂iu in the weak sense.

Proof. The integration by parts formula (91) that we proved in Lemma 10 shows that if v = ∂iu
in the strong L2-sense, then v = ∂iu also in the weak sense.

Let v = ∂iu in the weak sense, and let K ⊂ Ω be a compact set. We will employ the
technique of mollifiers, cf. (65) and (66). Let uε and vε be the mollified versions of u and v,
respectively. We know that uε → u and vε → v in L2(K) as ε→ 0. What remains is to show
that ∂iuε → v in L2(K) as ε→ 0, but it follows from

∂iuε(x) =

∫
Rn

∂

∂xi
ρε(x− y)u(y)dy = −

∫
Rn

∂

∂yi
ρε(x− y)u(y)dy

=

∫
Rn

ρε(x− y)v(y)dy = vε(x),

(95)

where in the third equality we have used the fact that v is the weak derivative of u. �

Definition 30. We define the Sobolev space W 1,2(Ω) as

W 1,2(Ω) = {u ∈ L2(Ω) : ∂iu ∈ L2(Ω), i = 1, . . . , n}, (96)

and equip it with the norm ‖ · ‖H1 .

Theorem 31 (Meyers-Serrin 1964). For Ω ⊂ Rn open, C∞(Ω) ∩H1(Ω) is dense in W 1,2(Ω).
In particular, we have H1(Ω) = W 1,2(Ω).

Proof. Let u ∈W 1,2(Ω), and let ε > 0. We will show that there exists φ ∈ C∞(Ω) such that
‖u − φ‖H1 ≤ ε. Consider a sequence {Ωk} of bounded domains, such that Ω =

⋃
k Ωk and

Ωk ⊂ Ωk+1 for k = 1, 2, . . .. Moreover, for each k, let χk be a smooth nonnegative function
satisfying suppχk ⊂ Ωk+2 \ Ωk, and globally,

∑
k χk ≡ 1 in Ω. Then for each k, we define

φk = (χku)εk by mollification, with εk > 0 so small that suppφk ⊂ Ωk+3 \ Ωk−1 (with the
convention Ω0 = ∅) and ‖φk − χku‖H1 ≤ ε/2k. This is possible because χku ∈W 1,2(Ω) and
∂iφk = (∂i(χku))εk . Finally, we define φ =

∑
k φk. There is no issue of convergence because

the sum is locally finite. We have

‖u− φ‖H1 ≤ ‖
∑

k(χku− φk)‖H1 ≤
∑

k ‖χku− φk‖H1 ≤ ε, (97)

which establishes the proof. �

2However, we have sign′ = 2δ in the sense of distributions. From this perspective, the reason why sign is
not weakly differentiable is that by definition weak derivatives are locally integrable functions and δ is not a
locally integrable function.
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6. Boundary values of weak solutions

To summarize what we have accomplished so far on the Dirichlet problem with the Sobolev
space approach, for any given g ∈ H1(Ω) with Ω ⊂ Rn a bounded domain, we have constructed
a harmonic function u ∈ H1(Ω) satisfying u− g ∈ H1

0 (Ω). We know from Weyl’s lemma that u
is harmonic in the classical sense in Ω.

The condition u− g ∈ H1
0 (Ω) is supposed to be a generalized form of the Dirichlet boundary

condition (u− g)|∂Ω = 0. We want to clarify what it would mean, at least when ∂Ω is not so
irregular. To get some insight, let us consider the one dimensional case first.

Lemma 32. Let u ∈ H1
0 (Σ), with Σ = (0, 1). Then there is w ∈ C (Σ̄) with w(0) = w(1) = 0

such that u = w almost everywhere in Σ.

Proof. There exists a sequence {uk} ⊂ D(Σ) such that uk → u in H1. From the fundamental
theorem of calculus, for v ∈ D(Σ) and for 0 < h < 1 we have

v(h) =

∫ h

0
v′(t)dt, (98)

which implies that

|v(h)|2 ≤ h
∫ h

0
|v′(t)|2dt ≤ h‖v′‖2L2 . (99)

Applying this inequality to the differences uj − uk, we conclude that {uk} is Cauchy in the
uniform norm on I and that uk → w uniformly for some w ∈ C (I). This means that u = w
almost everywhere. We want to see if the boundary value w(0) can be defined. By continuity,
we have

|w(h)| ≤
√
h‖u′‖L2 ≤

√
h‖u‖H1 , (100)

and so
w(0) = lim

h→0
w(h) = 0, (101)

establishing the lemma. �

Now we look at the two dimensional case, where a new phenomenon arises.

Lemma 33. Let Σ = (0, 1) and Q = Σ × Σ. For 0 < h < 1, define γh : D(Q) → D(Σ) by
(γhϕ)(x) = ϕ(x, h). Then γh can be uniquely extended to a bounded map γh : H1

0 (Q)→ L2(Σ),
and for u ∈ H1

0 (Q), we have γhu→ 0 in L2(Σ) as h→ 0.

Proof. For v ∈ D(Q) and for 0 < h < 1 we have

v(x, h) =

∫ h

0
∂yv(x, t)dt, (102)

which implies that

|v(x, h)|2 ≤ h
∫ h

0
|∂yv(t)|2dt ≤ h

∫ 1

0
|∂yv(x, t)|2dt, (103)

and upon integrating over x, that∫ 1

0
|v(x, h)|2dx ≤ h

∫
Q
|∂yv(x, t)|2dtdx ≤ h‖∇v‖2L2(Q). (104)

This means that ‖γhv‖L2(Σ) ≤
√
h‖v‖H1(Q) and that γh can be uniquely extended to a bounded

map γh : H1
0 (Q)→ L2(Σ). �
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The map γh in the preceding lemma is called the trace map, in the sense that functions
defined on Q leave their traces on the lower dimensional manifold Σ× {h}. Then the boundary
trace γ0u of u (onto Σ×{0}) is defined in terms of the limit γhu as h→ 0. If we piece together
the boundary traces of u onto the four edges of Q, we get the boundary trace of u onto the
whole boundary ∂Q, as an element of L2(∂Q). Thus u− g ∈ H1

0 (Q) implies that the trace of
u− g onto ∂Q vanishes in the L2 sense, or equivalently, that the traces of u and g onto ∂Q are
equal to each other as elements of L2(∂Q).

Example 34. Let u ∈ D(Q) be a function with γhu 6≡ 0 for some 0 < h < 1, and let φ ∈ D(R)
be a function satisfying φ(0) = 1 and 0 ≤ φ ≤ 1. Then vk(x, y) = u(x, y)[1 − φ(k(y − h))]
satisfies vk ∈ D(Q) and γhvk = 0. Moreover, it is easy to see that vk → u in L2(Q), because
the area of the region on which vk differs from u shrinks to 0. This shows that the trace
map γh cannot be extended to L2(Q) as a continuous map, because γhvk = 0 for all k, while
γhuk = γhu 6≡ 0 for the constant sequence uk = u.

Example 35. Let φ ∈ D(R) be an even function with φ(0) = 1, and let u(ρ, ϕ, z) = φ(ρ/z) be
defined in the region {0 < z < 1} ⊂ R3 in cylindrical coordinates. Then γhu = u|z=h satisfies
‖γhu‖L2(R2) → 0 as h→ 0, because

‖γhu‖2L2(R2) = 2π

∫ ∞
0
|φ(ρ/h)|2ρdρ = 2πh2

∫ ∞
0
|φ(t)|2 tdt. (105)

However, (γhu)(0) = 1 for all h > 0, hence γhu does not go to 0 pointwise. This is an example
where the boundary trace vanishes in the L2-sense, but does not vanish pointwise. Moreover,
we have u ∈ H1({0 < z < 1}), since∫ ∞

0
|∂ρu|2ρdρ = z−2

∫ ∞
0
|φ′(ρ/z)|2ρdρ =

∫ ∞
0
|φ′(t)|2 tdt, (106)

and ∫ ∞
0
|∂zu|2ρdρ = z−4

∫ ∞
0
|φ′(ρ/z)|2ρ3dρ =

∫ ∞
0
|φ′(t)|2 t3dt. (107)

Exercise 36. Find a function u ∈ H1
0 (H) where H ⊂ R2 is the upper half plane, whose

boundary trace vanishes in the L2-sense, but does not vanish pointwise.

The general case is not more complicated than the two dimensional case.

Theorem 37. Let Q = (0, 1)n and Σh = (0, 1)n−1 × {h}. Let Ω ⊂ Rn be a domain, and let
Φ : Q̄→ Ω̄ be an injective C 1 map, satisfying Φ(Q) ⊂ Ω and Φ(Σ0) ⊂ ∂Ω. With Γh = Φ(Σh)
for 0 < h < 1, define the trace map γh : D(Ω) → C(Γh) by γhϕ = ϕ|Γh

. Then γh can be
uniquely extended to a bounded map γh : H1

0 (Ω)→ L2(Γh), and moreover, for u ∈ H1
0 (Ω) we

have ‖γhu‖L2(Γh) → 0 as h→ 0.

Proof. Let X = {v ∈ C 1(Q̄) : v|Σ0 = 0}, and define γ̂h : X → C(Σh) by γ̂hv = v|Σh
. Then as

in the preceding lemma, we have ‖γ̂hv‖L2(Σh) ≤
√
h‖∇v‖L2(Q) for v ∈ X. Now let u ∈ D(Ω).

Then the pull-back û = Φ∗u defined by û(x̂) = u(Φ(x̂)) satisfies û ∈ X. Moreover, from the
transformation properties of the first derivatives, we have

‖∇û‖L2(Q) ≤ c‖∇u‖L2(Ω), where c = sup
Q
| detDΦ|−

1
2 |DΦ|, (108)

and |DΦ| is the spectral norm of the Jacobian matrix DΦ. We also have

‖γhu‖L2(Γh) ≤ c′‖γ̂hû‖L2(Σh), (109)

where c′ depends only on the Jacobian DΦ. Combining all three estimates, we infer

‖γhu‖L2(Γh) ≤ C
√
h‖∇u‖L2(Ω), (110)
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and the theorem follows. �

Finally, we include a complementary result which basically says that if a function u ∈ H1
0 (Ω)

is continuous at a boundary point z ∈ ∂Ω, then u(z) = 0. In the next chapter, we will see
that the weak solutions to ∆u = 0 are continuous up to the boundary, under some regularity
conditions on the boundary ∂Ω.

Lemma 38 (Nirenberg 1955). In the setting of the preceding theorem, let u ∈ H1
0 (Ω), and let

u be continuous at z ∈ Φ(Σ0). Then u(z) = 0.

Proof. Without loss of generality we assume that Ω = {x ∈ Rn : |x| < 1, xn > 0} and z = 0.
Let u ∈ D(Ω), and with h > 0, let E = B × (0, h) ⊂ Ω be a cylinder, where B ⊂ Rn−1 is a
ball centred at 0 whose volume is |B| = h. For x ∈ E, we have

|u(x)| =
∣∣ ∫ xn

0
∂nu(x′, t)dt

∣∣ ≤ ∫ h

0
|∂nu(x′, t)|dt, (111)

where x = (x′, xn) with x′ = (x1, . . . , xn−1) ∈ Rn−1. Now using the Cauchy-Bunyakowsky-
Schwarz inequality and squaring, we get

|u(x)|2 ≤ h
∫ h

0
|∂nu(x′, t)|2dt, (112)

which, upon integrating along x′ = const, gives∫ h

0
|u(x′, t)|2dt ≤ h2

∫ h

0
|∂nu(x′, t)|2dt. (113)

Then we integrate over x′ ∈ B, and obtain∫
E
|u|2 ≤ h2

∫
E
|∂nu|2 ≤ h2

∫
E
|∇u|2 = |E|

∫
E
|∇u|2, (114)

which means
1

|E|

∫
E
|u|2 ≤

∫
E
|∇u|2. (115)

The same inequality is true for u ∈ H1
0 (Ω) by density, and the right hand side goes to 0 as

h→ 0 by the fact that u ∈ H1(Ω). Since u is continuous at 0, the left hand side goes to |u(0)|2
as h→ 0, which proves the lemma. �

7. Problems and exercises

1. In the context of Example 3, construct a minimizing sequence of piecewise smooth functions
satisfying the homogeneous boundary condition, which diverges in a set that is dense in D.
Show that this sequence converges to u ≡ 0 in L2.

2. Let Ω ⊂ Rn be a bounded domain and let u ∈ C 2(Ω) satisfy

E∗(u) :=

∫
Ω

(|∇u|2 + |u|2) <∞.

Prove the following.
(a) If ∆u = u in Ω, then E∗(u+ v) > E∗(u) for all nontrivial v ∈ C 1

c (Ω).
(b) Conversely, if E∗(u+ v) ≥ E∗(u) for all v ∈ C 1

c (Ω), then ∆u = u in Ω.

3. Let v(x) = log log(2/|x|) and let vk ∈ C (D) be defined by vk(x) = min{k, v(x)}. Show that
the norms ‖vk‖H1(D) are uniformly bounded. Exhibit a sequence {uk} ⊂ C̃ 1(D) that is Cauchy
with respect to the norm ‖ · ‖H1(D), whose limit is not essentially bounded.
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4. Let u1 ∈ H1(Ω) and u2 ∈ H1(Ω) be the weak solutions of ∆u = u satisfying, respectively,
u1 − g1 ∈ H1

0 (Ω) and u2 − g2 ∈ H1
0 (Ω), where g1, g2 ∈ H1(Ω). Show that

‖u1 − u2‖H1 ≤ ‖g1 − g2‖H1 . (116)

5. Let Ω be a bounded domain, and let g ∈ H1(Ω). Show that there is a unique u ∈ H1(Ω)
satisfying u− g ∈ H1

0 (Ω) and∫
Ω
∇u · ∇v = 0 for all v ∈ H1

0 (Ω). (117)

6. Prove that the function u given by the Poisson formula for the Dirichlet problem on a ball,
say, Br, is harmonic in Br for boundary data g ∈ L1(∂Br), and takes correct boundary values
wherever g is continuous.

7. Let u be given by the Poisson formula for the Dirichlet problem on the unit ball B = B1,
for boundary data g ∈ Lp(∂B), with 1 ≤ p <∞. Show that u satisfies the boundary condition
u|∂B = g in the Lp-sense, i.e., that ur → g in Lp(∂B) as r → 1, where ur(x) = u(rx) for
x ∈ ∂B and 0 ≤ r < 1.

8. Show that Theorem 23 is true when Ω is an arbitrary complete measure space. Moreover,
in the context of the theorem, replace the conditions on f by

• f(·, t) ∈ L1(Ω) for almost every t ∈ I,
• f(y, ·) is absolutely continuous on I, for almost every y ∈ Ω,
• ft ∈ L1(Ω× I),

and prove that F is absolutely continuous on I and F ′ = G almost everywhere on I, where G
is as in (81).

9. Show that if u ∈ L1
loc(Ω) satisfies∫

Ω
u∆ϕ = 0, for all ϕ ∈ D(Ω), (118)

then u is harmonic in the classical sense.

10. Find a function u ∈ H1
0 (H) where H ⊂ R2 is the upper half plane, whose boundary trace

vanishes in the L2-sense, but does not vanish pointwise.

11. Let Ω ⊂ Rn be an open set, let k ≥ 0 be an integer, and let 1 ≤ p ≤ ∞. Then the Sobolev
space W k,p(Ω) by definition consists of those u ∈ Lp(Ω) such that ∂αu ∈ Lp(Ω) for each α with
|α| ≤ k. Equip it with the norm

‖u‖Wk,p(Ω) = N({‖∂αu‖Lp(Ω) : |α| ≤ k}),
where N is a norm on the finite dimensional space {λα ∈ R : |α| ≤ k}.
a) Show that the topology of W k,p(Ω) does not depend on the choice of N .
b) Show that W k,p(Ω) is a Banach space for any k ≥ 0 and 1 ≤ p ≤ ∞.
c) Prove that D(Rn) is a dense subspace of W k,p(Rn), for any k ≥ 0 and 1 ≤ p <∞.

12. Let Q = (0, 1)n and let Qh = (h, 1 − h)n. For h > 0 small, define the trace map
γh : C1(Q)→ C(∂Qh) by γhv = v|∂Qh

.
a) Prove that γh can be uniquely extended to a bounded map γh : H1(Q)→ L2(∂Qh).
b) Make sense of the boundary trace γ0u = lim

h→0
γhu in L2(∂Q) for u ∈ H1(Q).

c) Show that γ0u = 0 for u ∈ H1
0 (Q).

d) Let u ∈ H1
0 (Q) and let u be continuous at 0. Show that u(0) = 0.

13. Let Ω ⊂ Rn be a domain, and let W 1,1
loc (Ω) be the set of locally integrable functions whose

(weak) derivatives are locally integrable (that is, in L1
loc(Ω)).
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a) Show that if u, v ∈ W 1,1
loc (Ω) and uv, u∂iv + v∂iu ∈ L1

loc(Ω), then uv ∈ W 1,1
loc (Ω) and

∂i(uv) = u∂iv + v∂iu.
b) Let φ : Ω→ Ω′ be a C1-diffeomorphism between Ω and Ω′. Show that if u ∈W 1,1

loc (Ω′) then
v = u ◦ φ ∈W 1,1

loc (Ω) and ∂iv(x) =
∑

j ∂iφj(x)(∂ju)(φ(x)), where φj is the j-th component
of φ, and (∂ju)(φ(x)) is the evaluation of ∂ju at the point φ(x).

c) Let f ∈ C1(R) with both f and f ′ bounded, and let u ∈W 1,1
loc (Ω). Prove that f ◦u ∈W 1,1

loc (Ω)
and that ∂i(f ◦ u) = (f ′ ◦ u)∂iu.

d) Let u ∈ W 1,1
loc (Ω) and let u+ = max{u, 0} and u− = min{u, 0} pointwise. Prove that

∂iu
+ = θ(u)∂iu and ∂iu

− = θ(−u)∂iu a.e., where θ is the Heaviside step function. In
particular, show that |u| ∈W 1,p(Ω) if u ∈W 1,p(Ω).
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