MATH 580 ASSIGNMENT 5

DUE FRIDAY NOVEMBER 30

1. Show that the embedding $H^{1}(B) \hookrightarrow L^{q}(B)$ is not compact, where $B \subset \mathbb{R}^{n}$ is an open ball, and $q=\frac{2 n}{n-2}$.
2. Let $\Omega \subset \mathbb{R}^{n}$ be a (possibly unbounded) domain, and let $1 \leq p<\infty$. Let $S \subset W^{1, p}(\Omega)$ be a set bounded in $W^{1, p}(\Omega)$, and suppose that $K_{1} \subset K_{2} \subset \ldots \subset \Omega$ is a sequence of compact sets satisfying $\Omega=\bigcup_{j} K_{j}$ and

$$
\|u\|_{L^{p}\left(\Omega \backslash K_{j}\right)} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty
$$

uniformly in $u \in S$. Prove that S is relatively compact in $L^{p}(\Omega)$. Is there an unbounded domain $\Omega \subset \mathbb{R}^{n}$ for which the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact? If yes, provide an explicit example. If no, give a proof.
3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, and consider the Poincaré inequality

$$
\begin{equation*}
\int_{\Omega}|u-\bar{u}|^{2} \leq C \int_{\Omega}|\nabla u|^{2}, \quad \text { where } \quad \bar{u}=\int_{\Omega} u \tag{*}
\end{equation*}
$$

that is hypothesized to hold for all $u \in H^{1}(\Omega)$, and for some constant $C=C(\Omega)>0$.
(a) Is there a bounded domain Ω for which C is infinite?
(b) Characterize the best constant $C>0$ appearing in the Poincaré inequality via an eigenvalue problem.
(c) Find the best constant when Ω is the rectangle $\Omega=(0, a) \times(0, b)$. Exhibit a function u that achieves the equality in (*).
4. Completely solve the problem $-\Delta u=\lambda u$ with the homogeneous Dirichlet boundary condition, in the disk $D_{r}=\left\{x^{2}+y^{2}<r^{2}\right\} \subset \mathbb{R}^{2}$. You are encouraged to consult extra material outside what is covered in the lectures.
5. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, and let

$$
a(u, v)=\int_{\Omega}\left(a_{i j} \partial_{i} u \partial_{j} v+b u v\right),
$$

where the repeated indices are summer over, and the coefficients $a_{i j}$ and b are smooth functions in $\bar{\Omega}$, with a symmetric matrix $\left[a_{i j}\right]$ satisfying the uniform ellipticity condition

$$
a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2}, \quad \xi \in \mathbb{R}^{n}, \quad x \in \bar{\Omega},
$$

for some constant $\alpha>0$. We define the map $\tilde{A}: H_{0}^{1}(\Omega) \rightarrow\left[H_{0}^{1}(\Omega)\right]^{\prime}$ by $\langle\tilde{A} u, v\rangle=a(u, v)$ for $u, v \in H_{0}^{1}(\Omega)$, and then we let A be the unbounded operator in $L^{2}(\Omega)$ that is given
by the restriction of \tilde{A} onto $L^{2}(\Omega)$, i.e., $A u=\tilde{A} u$ for $u \in \operatorname{Dom}(A)$ where

$$
\operatorname{Dom}(A)=\left\{u \in H_{0}^{1}(\Omega): \tilde{A} u \in L^{2}(\Omega)\right\} .
$$

Consider the generalized eigenvalue problem

$$
A u=\lambda \rho u,
$$

where ρ is a (fixed) positive smooth function in $\bar{\Omega}$. Prove the following, by using the spectral theorem for compact self-adjoint positive operators where possible.
(a) The eigenvalues $\left\{\lambda_{k}\right\}$ are countable and real, and that $\lambda_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Each eigenvalue has a finite multiplicity.
(b) The eigenfunctions $\left\{u_{k}\right\}$ form a complete orthonormal system in $L^{2}(\Omega)$, with respect to a suitable inner product.
(c) The system $\left\{u_{k}\right\}$ is complete and orthogonal in $H_{0}^{1}(\Omega)$, with respect to the inner product $a(u, v)+t \int_{\Omega} \rho u v$, where t is a suitably chosen constant.
(d) The eigenfunctions are smooth in Ω, and are smooth up to the boundary if $\partial \Omega$ is smooth.

