MATH 580 ASSIGNMENT 4

DUE FRIDAY NOVEMBER 16

- 1. Let $\Omega \subset \mathbb{R}^n$ be a domain, and let $W^{1,1}_{\text{loc}}(\Omega)$ be the set of locally integrable functions whose (weak) derivatives are locally integrable (that is, in $L^1_{loc}(\Omega)$).
 - a) Show that if $u, v \in W^{1,1}_{\text{loc}}(\Omega)$ and $uv, u\partial_i v + v\partial_i u \in L^1_{\text{loc}}(\Omega)$, then $uv \in W^{1,1}_{\text{loc}}(\Omega)$ and $\partial_i(uv) = u\partial_i v + v\partial_i u.$
 - b) Let $\phi: \Omega \to \Omega'$ be a C^1 -diffeomorphism between Ω and Ω' . Show that if $u \in W^{1,1}_{loc}(\Omega')$ then $v = u \circ \phi \in W^{1,1}_{\text{loc}}(\Omega)$ and $\partial_i v(x) = \sum_j \partial_i \phi_j(x)(\partial_j u)(\phi(x))$, where ϕ_j is the *j*-th component of ϕ , and $(\partial_j u)(\phi(x))$ is the evaluation of $\partial_j u$ at the point $\phi(x)$.
 - c) Let $f \in C^1(\mathbb{R})$ with both f and f' bounded, and let $u \in W^{1,1}_{\text{loc}}(\Omega)$. Prove that
 - (c) Let $y \in \mathcal{C}$ (d) and that $\partial_i (f \circ u) = (f' \circ u)\partial_i u$. (d) Let $u \in W^{1,1}_{\text{loc}}(\Omega)$ and let $u^+ = \max\{u, 0\}$ and $u^- = \min\{u, 0\}$ pointwise. Prove that $\partial_i u^+ = \theta(u)\partial_i u$ and $\partial_i u^- = \theta(-u)\partial_i u$ a.e., where θ is the Heaviside step function. In particular, show that $|u| \in W^{1,p}(\Omega)$ if $u \in W^{1,p}(\Omega)$.
- 2. Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain, and consider the bilinear form

$$a(u,v) = \int_{\Omega} (a_{ij}\partial_i u \partial_j v + b u v)$$

where the repeated indices are summer over, and the coefficients a_{ij} and b are smooth functions on Ω , with a_{ij} satisfying the uniform ellipticity condition

$$a_{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2, \qquad \xi \in \mathbb{R}^n, \quad x \in \overline{\Omega},$$

for some constant $\lambda > 0$.

- a) Show that the mapping $A: H^1(\Omega) \to [H^1(\Omega)]'$, defined by $\langle Au, v \rangle = a(u, v)$, is bounded, where $\langle \cdot, \cdot \rangle$ is the duality pairing between $[H^1(\Omega)]'$ and $H^1(\Omega)$.
- b) Show that if b > 0 in $\overline{\Omega}$, then

$$\langle Au, u \rangle \ge \alpha \|u\|_{H^1}^2, \qquad u \in H^1(\Omega),$$

for some constant $\alpha > 0$.

- c) Supposing that the condition in b) holds, show that given $f \in L^2(\Omega)$, there exists a unique function $u \in H^1(\Omega)$ satisfying $a(u, v) = \int_{\Omega} fv$ for all $v \in H^1(\Omega)$.
- d) Suppose that $u \in H^1(\Omega)$ is sufficiently smooth and satisfies $a(u, v) = \int_{\Omega} f v$ for all $v \in H^1(\Omega)$. What differential equation does u satisfy in Ω ? What boundary condition does u satisfy?

Date: Fall 2018.

DUE FRIDAY NOVEMBER 16

3. In the setting of the preceding question, let a_{ij} be constant functions, and suppose that $u \in H_0^1(\Omega)$ satisfies

$$a(u,v) = \int_{\Omega} fv$$
 for all $v \in \mathscr{D}(\Omega)$

- a) Show that if $f \in H^k_{loc}(\Omega)$ then $u \in H^{k+2}_{loc}(\Omega)$. b) How large k should be in order to guarantee that the classical equation holds?
- c) Prove that if $f \in H^k(\Omega)$ then $u \in H^{k+2}(\Omega)$.
- d) What condition would guarantee that the boundary condition is satisfied classically?
- e) Show that if f and b are analytic in Ω , then u is analytic in Ω .
- 4. Recall that the Sobolev inequality

$$||u||_{L^q} \le C ||u||_{W^{1,p}}, \qquad u \in W^{1,p}(\mathbb{R}^n),$$
 (*)

with some constant C = C(p,q), is valid when $1 \le p \le q < \infty$, and $\frac{1}{p} \le \frac{1}{q} + \frac{1}{n}$. a) By way of a counterexample, show that the inequality (*) fails whenever q < p.

- b) Show that (*) fails when $\frac{1}{p} > \frac{1}{q} + \frac{1}{n}$.
- c) Show that (*) fails for p = n and $q = \infty$ when $n \ge 2$.
- d) Using (*) as a basis, derive sufficient conditions on the exponents p, q, k, m under which the inequality

$$|u||_{W^{m,q}} \le C ||u||_{W^{k,p}}, \qquad u \in W^{k,p}(\mathbb{R}^n),$$

is valid.

 $\mathbf{2}$