MATH 580 ASSIGNMENT 4

DUE FRIDAY NOVEMBER 16

1. Let $\Omega \subset \mathbb{R}^{n}$ be a domain, and let $W_{\mathrm{loc}}^{1,1}(\Omega)$ be the set of locally integrable functions whose (weak) derivatives are locally integrable (that is, in $L_{\text {loc }}^{1}(\Omega)$).
a) Show that if $u, v \in W_{\text {loc }}^{1,1}(\Omega)$ and $u v, u \partial_{i} v+v \partial_{i} u \in L_{\text {loc }}^{1}(\Omega)$, then $u v \in W_{\operatorname{loc}}^{1,1}(\Omega)$ and $\partial_{i}(u v)=u \partial_{i} v+v \partial_{i} u$.
b) Let $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism between Ω and Ω^{\prime}. Show that if $u \in W_{\text {loc }}^{1,1}\left(\Omega^{\prime}\right)$ then $v=u \circ \phi \in W_{\mathrm{loc}}^{1,1}(\Omega)$ and $\partial_{i} v(x)=\sum_{j} \partial_{i} \phi_{j}(x)\left(\partial_{j} u\right)(\phi(x))$, where ϕ_{j} is the j-th component of ϕ, and $\left(\partial_{j} u\right)(\phi(x))$ is the evaluation of $\partial_{j} u$ at the point $\phi(x)$.
c) Let $f \in C^{1}(\mathbb{R})$ with both f and f^{\prime} bounded, and let $u \in W_{\text {loc }}^{1,1}(\Omega)$. Prove that $f \circ u \in W_{\mathrm{loc}}^{1,1}(\Omega)$ and that $\partial_{i}(f \circ u)=\left(f^{\prime} \circ u\right) \partial_{i} u$.
d) Let $u \in W_{\text {loc }}^{1,1}(\Omega)$ and let $u^{+}=\max \{u, 0\}$ and $u^{-}=\min \{u, 0\}$ pointwise. Prove that $\partial_{i} u^{+}=\theta(u) \partial_{i} u$ and $\partial_{i} u^{-}=\theta(-u) \partial_{i} u$ a.e., where θ is the Heaviside step function. In particular, show that $|u| \in W^{1, p}(\Omega)$ if $u \in W^{1, p}(\Omega)$.
2 . Let $\Omega \subset \mathbb{R}^{n}$ be a bounded smooth domain, and consider the bilinear form

$$
a(u, v)=\int_{\Omega}\left(a_{i j} \partial_{i} u \partial_{j} v+b u v\right)
$$

where the repeated indices are summer over, and the coefficients $a_{i j}$ and b are smooth functions on $\bar{\Omega}$, with $a_{i j}$ satisfying the uniform ellipticity condition

$$
a_{i j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2}, \quad \xi \in \mathbb{R}^{n}, \quad x \in \bar{\Omega}
$$

for some constant $\lambda>0$.
a) Show that the mapping $A: H^{1}(\Omega) \rightarrow\left[H^{1}(\Omega)\right]^{\prime}$, defined by $\langle A u, v\rangle=a(u, v)$, is bounded, where $\langle\cdot, \cdot\rangle$ is the duality pairing between $\left[H^{1}(\Omega)\right]^{\prime}$ and $H^{1}(\Omega)$.
b) Show that if $b>0$ in $\bar{\Omega}$, then

$$
\langle A u, u\rangle \geq \alpha\|u\|_{H^{1}}^{2}, \quad u \in H^{1}(\Omega)
$$

for some constant $\alpha>0$.
c) Supposing that the condition in b) holds, show that given $f \in L^{2}(\Omega)$, there exists a unique function $u \in H^{1}(\Omega)$ satisfying $a(u, v)=\int_{\Omega} f v$ for all $v \in H^{1}(\Omega)$.
d) Suppose that $u \in H^{1}(\Omega)$ is sufficiently smooth and satisfies $a(u, v)=\int_{\Omega} f v$ for all $v \in H^{1}(\Omega)$. What differential equation does u satisfy in Ω ? What boundary condition does u satisfy?

Date: Fall 2018.
3. In the setting of the preceding question, let $a_{i j}$ be constant functions, and suppose that $u \in H_{0}^{1}(\Omega)$ satisfies

$$
a(u, v)=\int_{\Omega} f v \quad \text { for all } v \in \mathscr{D}(\Omega)
$$

a) Show that if $f \in H_{\mathrm{loc}}^{k}(\Omega)$ then $u \in H_{\mathrm{loc}}^{k+2}(\Omega)$.
b) How large k should be in order to guarantee that the classical equation holds?
c) Prove that if $f \in H^{k}(\Omega)$ then $u \in H^{k+2}(\Omega)$.
d) What condition would guarantee that the boundary condition is satisfied classically?
e) Show that if f and b are analytic in Ω, then u is analytic in Ω.
4. Recall that the Sobolev inequality

$$
\begin{equation*}
\|u\|_{L^{q}} \leq C\|u\|_{W^{1, p}}, \quad u \in W^{1, p}\left(\mathbb{R}^{n}\right) \tag{*}
\end{equation*}
$$

with some constant $C=C(p, q)$, is valid when $1 \leq p \leq q<\infty$, and $\frac{1}{p} \leq \frac{1}{q}+\frac{1}{n}$.
a) By way of a counterexample, show that the inequality ($*$) fails whenever $q<p$.
b) Show that (*) fails when $\frac{1}{p}>\frac{1}{q}+\frac{1}{n}$.
c) Show that ($*$) fails for $p=n$ and $q=\infty$ when $n \geq 2$.
d) Using ($*$) as a basis, derive sufficient conditions on the exponents p, q, k, m under which the inequality

$$
\|u\|_{W^{m, q}} \leq C\|u\|_{W^{k, p}}, \quad u \in W^{k, p}\left(\mathbb{R}^{n}\right)
$$

is valid.

