MATH 580 ASSIGNMENT 3

DUE WEDNESDAY OCTOBER 31

1. In this exercise we will study Sobolev spaces on the interval I = (0, 1). Let $1 \le p < \infty$, and define the norm

$$||u||_{1,p} = (||u||_{L^p}^p + ||u'||_{L^p}^p)^{1/p}$$

for $u \in C^1(\overline{I})$. Let $H^{1,p}(I)$ be the completion of $C^1(\overline{I})$ with respect to the norm $\|\cdot\|_{1,p}$.

- a) Show that there is a continuous injection of $H^{1,p}(I)$ into $L^p(I)$.
- b) Prove the Sobolev inequality

$$||u||_{L^{\infty}} \le 2^{1-1/p} ||u||_{1,p}, \qquad u \in H^{1,p}(I).$$

- c) Since $H^{1,p}(I)$ is a subspace of $L^p(I)$, an element of $H^{1,p}(I)$ is an equivalence class of functions that differ on sets of measure zero. So one can change the values of a function on a set of measure zero, and it would still correspond to the same element in $H^{1,p}(I)$. Make sense of, and prove the statement that the elements of $H^{1,p}(I)$ are continuous functions.
- d) Prove the Friedrichs inequality

$$||u||_{L^p}^p \le 2^{p-1} ||u'||_{L^p}^p + 2^{p-1} |u(\xi)|^p, \qquad u \in H^{1,p}(I), \quad \xi \in [0,1].$$

In particular, make sense of the derivative u' appearing in the right hand side.

e) Prove the *Poincaré inequality*

$$||u||_{L^p}^p \le 2^{p-1} ||u'||_{L^p}^p + 2^{p-1} |\int_I u|^p, \qquad u \in H^{1,p}(I).$$

f) Let $H_0^{1,p}(I)$ be the closure of $C_c^1(I)$ in $H^{1,p}(I)$. Show that

$$H_0^{1,p}(I) = \{ u \in H^{1,p}(I) : u(0) = u(1) = 0 \}.$$

g) With u' understood in the weak sense, let

$$W^{1,p}(I) = \{ u \in L^p(I) : u' \in L^p(I) \}.$$

Prove (a special case of) the Meyers-Serrin theorem: $H^{1,p}(I) = W^{1,p}(I)$.

2. a) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Prove that there is a constant c > 0 with the following property: Given any $g \in H^1(\Omega)$ and any constant t > -c, there exists a unique $u \in H^1(\Omega)$ satisfying $u - g \in H^1_0(\Omega)$ and

$$\int_{\Omega} \left(\nabla u \cdot \nabla v + tuv \right) = 0 \quad \text{for all} \quad v \in \mathscr{D}(\Omega). \tag{*}$$

What classical equation does (*) correspond to?

Date: Fall 2018.

DUE WEDNESDAY OCTOBER 31

b) In the context of a), for a fixed t > -c, let us denote the map that sends g to u by $S: g \mapsto u: H^1(\Omega) \to H^1(\Omega).$

Show that S is linear and is Lipschitz continuous in the sense that there is a (real) constant M such that

$$||S(g_1) - S(g_2)||_{H^1} \le M ||g_1 - g_2||_{H^1}, \qquad g_1, g_2 \in H^1(\Omega).$$

- 3. Find a function $u \in H_0^1(U) \cap C(U)$ where $U \subset \mathbb{R}^2$ is the upper half plane, whose boundary trace vanishes in the L^2 -sense, but does not vanish pointwise.
- 4. Let u be given by the Poisson formula for the Dirichlet problem on the unit ball $B = B_1$, for a boundary datum $g \in L^p(\partial B)$, with $1 \le p < \infty$.
 - a) Show that u is harmonic in B, and takes correct boundary values (in the classical sense) wherever g is continuous.
 - b) Show that u satisfies the boundary condition $u|_{\partial B} = g$ in the L^p -sense, i.e., that $u_r \to g$ in $L^p(\partial B)$ as $r \to 1$, where $u_r(x) = u(rx)$ for $x \in \partial B$ and $0 \le r < 1$.
- 5. Let $Q = (0,1)^n$ and let $Q_h = (h,1-h)^n$. For h > 0 small, define the trace map $\gamma_h : C^1(Q) \to C(\partial Q_h)$ by $\gamma_h v = v|_{\partial Q_h}$.
 - a) Prove that γ_h can be uniquely extended to a bounded map $\gamma_h : H^1(Q) \to L^2(\partial Q_h)$.
 - b) Make sense of the boundary trace $\gamma_0 u = \lim_{h \to 0} \gamma_h u$ in $L^2(\partial Q)$ for $u \in H^1(Q)$.
 - c) Show that $\gamma_0 u = 0$ for $u \in H_0^1(Q)$.
 - d) Let $u \in H_0^1(Q)$ and let u be continuous at 0. Show that u(0) = 0.

 $\mathbf{2}$