MATH 580 ASSIGNMENT 3

DUE WEDNESDAY OCTOBER 31

1. In this exercise we will study Sobolev spaces on the interval $I=(0,1)$. Let $1 \leq p<\infty$, and define the norm

$$
\|u\|_{1, p}=\left(\|u\|_{L^{p}}^{p}+\left\|u^{\prime}\right\|_{L^{p}}^{p}\right)^{1 / p}
$$

for $u \in C^{1}(\bar{I})$. Let $H^{1, p}(I)$ be the completion of $C^{1}(\bar{I})$ with respect to the norm $\|\cdot\|_{1, p}$.
a) Show that there is a continuous injection of $H^{1, p}(I)$ into $L^{p}(I)$.
b) Prove the Sobolev inequality

$$
\|u\|_{L^{\infty}} \leq 2^{1-1 / p}\|u\|_{1, p}, \quad u \in H^{1, p}(I)
$$

c) Since $H^{1, p}(I)$ is a subspace of $L^{p}(I)$, an element of $H^{1, p}(I)$ is an equivalence class of functions that differ on sets of measure zero. So one can change the values of a function on a set of measure zero, and it would still correspond to the same element in $H^{1, p}(I)$. Make sense of, and prove the statement that the elements of $H^{1, p}(I)$ are continuous functions.
d) Prove the Friedrichs inequality

$$
\|u\|_{L^{p}}^{p} \leq 2^{p-1}\left\|u^{\prime}\right\|_{L^{p}}^{p}+2^{p-1}|u(\xi)|^{p}, \quad u \in H^{1, p}(I), \quad \xi \in[0,1]
$$

In particular, make sense of the derivative u^{\prime} appearing in the right hand side.
e) Prove the Poincaré inequality

$$
\|u\|_{L^{p}}^{p} \leq 2^{p-1}\left\|u^{\prime}\right\|_{L^{p}}^{p}+2^{p-1}\left|\int_{I} u\right|^{p}, \quad u \in H^{1, p}(I)
$$

f) Let $H_{0}^{1, p}(I)$ be the closure of $C_{c}^{1}(I)$ in $H^{1, p}(I)$. Show that

$$
H_{0}^{1, p}(I)=\left\{u \in H^{1, p}(I): u(0)=u(1)=0\right\}
$$

g) With u^{\prime} understood in the weak sense, let

$$
W^{1, p}(I)=\left\{u \in L^{p}(I): u^{\prime} \in L^{p}(I)\right\}
$$

Prove (a special case of) the Meyers-Serrin theorem: $H^{1, p}(I)=W^{1, p}(I)$.
2. a) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain. Prove that there is a constant $c>0$ with the following property: Given any $g \in H^{1}(\Omega)$ and any constant $t>-c$, there exists a unique $u \in H^{1}(\Omega)$ satisfying $u-g \in H_{0}^{1}(\Omega)$ and

$$
\begin{equation*}
\int_{\Omega}(\nabla u \cdot \nabla v+t u v)=0 \quad \text { for all } \quad v \in \mathscr{D}(\Omega) \tag{*}
\end{equation*}
$$

What classical equation does $(*)$ correspond to?
b) In the context of a), for a fixed $t>-c$, let us denote the map that sends g to u by

$$
S: g \mapsto u: H^{1}(\Omega) \rightarrow H^{1}(\Omega) .
$$

Show that S is linear and is Lipschitz continuous in the sense that there is a (real) constant M such that

$$
\left\|S\left(g_{1}\right)-S\left(g_{2}\right)\right\|_{H^{1}} \leq M\left\|g_{1}-g_{2}\right\|_{H^{1}}, \quad g_{1}, g_{2} \in H^{1}(\Omega)
$$

3. Find a function $u \in H_{0}^{1}(U) \cap C(U)$ where $U \subset \mathbb{R}^{2}$ is the upper half plane, whose boundary trace vanishes in the L^{2}-sense, but does not vanish pointwise.
4. Let u be given by the Poisson formula for the Dirichlet problem on the unit ball $B=B_{1}$, for a boundary datum $g \in L^{p}(\partial B)$, with $1 \leq p<\infty$.
a) Show that u is harmonic in B, and takes correct boundary values (in the classical sense) wherever g is continuous.
b) Show that u satisfies the boundary condition $\left.u\right|_{\partial B}=g$ in the L^{p}-sense, i.e., that $u_{r} \rightarrow g$ in $L^{p}(\partial B)$ as $r \rightarrow 1$, where $u_{r}(x)=u(r x)$ for $x \in \partial B$ and $0 \leq r<1$.
5. Let $Q=(0,1)^{n}$ and let $Q_{h}=(h, 1-h)^{n}$. For $h>0$ small, define the trace map $\gamma_{h}: C^{1}(Q) \rightarrow C\left(\partial Q_{h}\right)$ by $\gamma_{h} v=\left.v\right|_{\partial Q_{h}}$.
a) Prove that γ_{h} can be uniquely extended to a bounded map $\gamma_{h}: H^{1}(Q) \rightarrow L^{2}\left(\partial Q_{h}\right)$.
b) Make sense of the boundary trace $\gamma_{0} u=\lim _{h \rightarrow 0} \gamma_{h} u$ in $L^{2}(\partial Q)$ for $u \in H^{1}(Q)$.
c) Show that $\gamma_{0} u=0$ for $u \in H_{0}^{1}(Q)$.
d) Let $u \in H_{0}^{1}(Q)$ and let u be continuous at 0 . Show that $u(0)=0$.
