MATH 580 ASSIGNMENT 2

DUE FRIDAY OCTOBER 12

- 1. Let Ω be a bounded domain in \mathbb{R}^n .
 - (a) Show that if the Dirichlet problem in Ω is solvable for any boundary condition $g \in C(\partial \Omega)$, then each boundary point $z \in \partial \Omega$ admits a barrier.
 - (b) Is regularity of a boundary point a local property? In other words, if $z \in \partial \Omega$ is regular, and if Ω' is a domain that coincides with Ω in a neighbourhood of z (hence in particular $z \in \partial \Omega'$), then is z also regular as a point on $\partial \Omega'$?
- 2. (Poincaré 1887) In this exercise, we will implement Poincaré's method of sweeping out (méthode de balayage) to solve the Dirichlet problem. Let Ω be a bounded domain in \mathbb{R}^n , and let $g \in C(\Omega)$. Suppose that $u_0 \in C(\overline{\Omega})$ is a function subharmonic in Ω and $u_0 = g$ on $\partial\Omega$. The idea is to iteratively improve the initial approximation u_0 towards a harmonic function by solving the Dirichlet problem on a suitable sequence of balls.
 - (a) Show that there exist countably many open balls B_k such that $\Omega = \bigcup_k B_k$.
 - (b) Consider the sequence B₁, B₂, B₁, B₂, B₃, B₁,..., so that each B_k is occurring infinitely many times, and let us reuse the notation B_k to denote the k-th member of this sequence. Then we define the functions u₁, u₂, ... ∈ C(Ω) by the following recursive procedure: For k = 1, 2, ..., put u_k = u_{k-1} in Ω \ B_k, and let u_k be the solution of Δu_k = 0 in B_k with the boundary condition u_{k-1}|∂B_k. Prove that u_k → u locally uniformly in Ω, for some u ∈ C[∞](Ω) that is harmonic in Ω.
 - (c) Show that if there exists $v \in C(\overline{\Omega})$ satisfying $\Delta v = 0$ in Ω and v = g on $\partial \Omega$, then indeed u = v, where u is the function we constructed in (b). So if there exists a solution, then our method would produce the same solution. However, we want to demonstrate existence without any prior assumption on existence.
 - (d) Prove that if there exists a barrier at $z \in \partial\Omega$, then $u(x) \to g(z)$ as $\Omega \ni x \to z$, where u is the function we constructed in (b). Recall that a function $\varphi \in C(\overline{\Omega})$ is called a *barrier for* Ω at $z \in \partial\Omega$ if
 - φ is subharmonic in Ω ,
 - $\varphi(z) = 0$,
 - $\varphi < 0$ in $\overline{\Omega} \setminus \{z\}$.
 - We call the boundary point $z \in \partial \Omega$ regular if there is a barrier for Ω at $z \in \partial \Omega$.
 - (e) Assuming that all boundary points are regular, this procedure reduces the Dirichlet problem into the problem of constructing a subharmonic function u_0 with $u_0|_{\partial\Omega} = g$. Instead of constructing such u_0 for the given g directly, let us approximate g by functions for which such a construction is simpler. Show that if $\{v_i\} \subset C(\bar{\Omega})$ is

Date: Fall 2018.

DUE FRIDAY OCTOBER 12

a sequence with $\Delta v_j = 0$ in Ω and $v_j \to g$ uniformly on $\partial \Omega$, then there exists a function $u \in C(\overline{\Omega})$ satisfying $\Delta u = 0$ in Ω and u = g on $\partial \Omega$.

- (f) Show that any polynomial can be written as the difference of two subharmonic functions in Ω . Hence it suffices to extend g into a continuos function on $\overline{\Omega}$, and approximate the resulting function by polynomials (explain why). State what standard results we need in order to realize this.
- 3. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $u \in C^2(\Omega)$ satisfy

$$E_*(u) := \int_{\Omega} (|\nabla u|^2 + |u|^2) < \infty.$$

Prove the followings.

- (a) If $\Delta u = u$ in Ω , then $E_*(u+v) > E_*(u)$ for all nontrivial $v \in C_c^1(\Omega)$.
- (b) Conversely, if $E_*(u+v) \ge E_*(u)$ for all $v \in C_c^1(\Omega)$, then $\Delta u = u$ in Ω .
- 4. Consider the problem of minimizing the energy

$$Q(u) = \int_{I} \left(1 + |u'(x)|^2 \right)^{\frac{1}{4}} \mathrm{d}x,$$

for all $u \in C^1(I) \cap C(\overline{I})$ satisfying u(0) = 0 and u(1) = 1, where I = (0, 1). Show that the infimum of Q over the admissible functions is 1, but this value is not assumed by any admissible function.

5. Consider the Dirichlet problem on the unit disk $\mathbb{D} \subset \mathbb{R}^2$ with the homogeneous Dirichlet boundary condition. The solution is $u \equiv 0$, which also minimizes the Dirichlet energy

$$E(u) = \int_{\mathbb{D}} |\nabla u|^2.$$

Construct a sequence $\{u_k\} \subset C(\overline{\mathbb{D}})$ of functions satisfying all of the following conditions.

- u_k is piecewise smooth and $u_k|_{\partial \mathbb{D}} = 0$ for all k,
- $E(u_k) \to 0$ as $k \to \infty$, and
- u_k diverges as $k \to \infty$ in a set that is dense in \mathbb{D} .

Then show that $u_k \to 0$ in $H^1(\mathbb{D})$.

6. Exhibit a sequence $\{v_k\} \subset \tilde{C}^1(\mathbb{D})$ that is Cauchy with respect to the H^1 -norm, whose limit is not essentially bounded.