MATH 580 ASSIGNMENT 4

DUE MONDAY NOVEMBER 17

1. Show that in R3, the wave propagators form a one parameter group of linear operators.
That is, defining the operator W (t) for each t € R as the operator that sends the pair
(p,1) of initial data to the pair (u(-,t), dyu(-,t)), where u is the solution of the wave
equation in R3 with the initial data (u(-,0), dyu(-,0)) = (¢,v), show that

W(s+t)=W(s)W(), steR.

You can make reasonable growth and regularity assumptions on the initial data.
2. Let u be a sufficiently smooth function satisfying

n
Ou:=0fu— Y girdij0ku =0, (%)
jk=1
where (g;i) is a real symmetric positive definite n x n matrix whose entries depend
smoothly on z € R™. Let

n
¢ i=sup Y gjk(x)&&r < 00,
k=1

where the supremum is taken over all x € R" and || = 1. Suppose that
u(z,0) = dyu(z,0) =0, for x€Q,
where 2 C R" is an open set. Then show that u(z,t) = 0 whenever

clt] < dist(z, R*"\ Q) = inf |z —y|.
f < dist(a R\ Q) = inf ]
3. In this exercise, we will construct high frequency asymptotics for the variable coefficient
wave equation ().
(a) Assuming the form

u(z, t) = a(w, t)e@D/E, a=ap+ %al +...+ (%)kak,

derive the eikonal equation for the phase function 1, and the transport equations
for the amplitudes a;.

(b) Write down canonical equations for the method of characteristics to solve the eikonal
equation with initial data ¢(x,0) = ¢(z).
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(c) By requiring that we use ¢ as the parameter in the canonical equations, derive an
eikonal equation for ¢. Alternatively, assume the form ¢ (x,t) = t — p(z) and derive
an eikonal equation for ¢. Write down the transport equations for the amplitudes
a; in terms of .

(d) Write down canonical equations for the eikonal equation for ¢. Show that they are
equivalent to the geodesic equation

d2$i 1 da:j d$k
a2 Gie (gazbjk - agbkz) O At
1 dz; dxy
= —g; bir, — Oibry — Opbiy) —L ——=
59t (Oebjr, — Ojbre — Okbje) T @

where the repeated indices are summed over, and the matrix [b;;] is the inverse of
the matrix [g;¢], pointwise in R™.
. Consider the function v(x,t) = E(z,t) for z € R and ¢ > 0, where

1 ||
E(x,t):me_Tt (.%'GR,t>O),

is the heat kernel of R. Show that d;v = Av in R x (0,00), and that v(z,t) — 0 as
t — 0% for each fixed z € R. How do we reconcile this with Tychonov’s uniqueness
theorem?

. Let g € C(R™) be a function satisfying

l9(z)| < M (z e R,
where M and « are constants. Show that

u(z,t) = A E(r —y,t)g(y) dy,
satisfies the heat equation

Ou — Au =0, in R"x(0,7),

for some T' > 0, and u(-,t) — g locally uniformly in R" as ¢t — 07. Can you take T
arbitrarily large? Here
n \x|2
E(x,t) = (4mt)"2e 4t (x € R", t > 0),
is the heat kernel of R".
. With © C R™ a bounded open set, consider the initial-boundary value problem

ou=Au+au in Qx(0,00),
u=0 on 00 x (0,00),
u=g on x {0},

where g € C(2) and a € L>(£2 x (0,00)) are given functions. Assume the existence of
a solution u in the class C?(€2 x (0,00)) N C( x [0,00)).
(a) Show that the solution is unique in the same class.
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(b) Assuming a = 0, show that
(s )l oo () < (Gmt) 2 lgllpr),  forall >0

u(+,t) decays exponentially in time. You can use the following Friedrich’s inequality:
There is a constant C' such that

(c) Show that there exists ¢ > 0 with the property that if ||a||s < ¢ then the L?-norm of

[0llL2(0) < ClIVollL2(0),
for all v € C1(2) N C(Q) with v|sq = 0.



