MATH 580 ASSIGNMENT 3

DUE MONDAY OCTOBER 27

- 1. Present a detailed proof of existence of a unique local analytic solution to the Cauchy problem for the Poisson equation $\Delta u = f$ in \mathbb{R}^n with the Cauchy data $(u, \partial_n u)$ specified on $\Gamma = \{x_n = 0\}$, given the Cauchy-Kovalevskaya theorem for first order linear systems. (We obviously need to assume that f and the specified Cauchy data are analytic.)
- 2. In this exercise, we will prove the existence of local isothermal coordinates in two dimensions, under analyticity assumptions. Consider the second order linear operator

$$A = E(x, y)\partial_x^2 + 2F(x, y)\partial_x\partial_y + G(x, y)\partial_y^2,$$

where E, F, and G are real analytic functions in a neighbourhood of $0 \in \mathbb{R}^2$, and the matrix $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$ is positive definite in the same neighbourhood. We want to find a neighbourhood $U \subset \mathbb{R}^2$ of 0, and a mapping $\phi = (u, v) : U \to \mathbb{R}^2$ such that

$$A = \psi \partial_u^2 + \psi \partial_v^2,$$

in the new coordinate system (u, v), with some positive function $\psi: U \to \mathbb{R}$.

(a) Show that the aforementioned requirement is equivalent to the differential system

$$\begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} \partial_x u & \partial_x v \\ \partial_y u & \partial_y v \end{pmatrix} = \begin{pmatrix} \psi & 0 \\ 0 & \psi \end{pmatrix}.$$
 (*)

(b) Show that (*) is satisfied in a neighbourhood of 0 for some function $\psi > 0$, if

$$\begin{pmatrix} \partial_x u \\ \partial_y u \end{pmatrix} = \frac{1}{W} \begin{pmatrix} F & G \\ -E & -F \end{pmatrix} \begin{pmatrix} \partial_x v \\ \partial_y v \end{pmatrix}, \qquad (**)$$

holds in a neighbourhood of 0, where $W = \sqrt{EG - F^2}$. What is ψ thus obtained?

(c) Show that (**) admits a solution $\phi = (u, v)$ in a neighbourhood U of 0. Make sure that ϕ defines a genuine coordinate system in U.

Historical note: This result was proved by Gauss in 1822. The analyticity assumption was removed by Korn and Lichtenstein around 1915.

3. Consider the linear operator

$$A = \sum_{|\alpha| \le q} a_{\alpha} \partial^{\alpha},$$

where $a_{\alpha} \in C^{\infty}(\Omega)$, with $\Omega \subset \mathbb{R}^n$ open. Let $\phi : \Omega \to \mathbb{R}^n$ be a diffeomorphism onto $\tilde{\Omega} = \phi(\Omega)$. We denote the generic point in Ω by x, and the generic point in $\tilde{\Omega}$ by y. Let

Date: October 28, 2014.

DUE MONDAY OCTOBER 27

 b_{α} be the coefficients of A in the y-coordinates, i.e.,

$$\sum_{|\alpha| \le q} a_{\alpha}(x) \partial_x^{\alpha} u(x) = \sum_{|\alpha| \le q} b_{\alpha}(y) \partial_y^{\alpha} u(y), \qquad u \in C^{\infty}(\Omega),$$

where $y = \phi(x)$, and for simplicity of notation, we use u(y) to mean the push-forward $u(\phi^{-1}(y))$. Show that the characteristic form is coordinate invariant, in the sense that

$$\sum_{|\alpha|=q} a_{\alpha}(x)\xi^{\alpha} = \sum_{|\alpha|=q} b_{\alpha}(y)\eta^{\alpha}, \qquad x \in \Omega, \ \eta \in \mathbb{R}^{n},$$

where $y = \phi(x)$ and $\xi_j = \partial_j \phi_k(x) \eta_k$, with summation over k assumed in the latter. We see that " ξ transforms like a gradient", so ξ is really a cotangent vector at x.

4. Let Γ be an analytic hypersurface in \mathbb{R}^n , meaning that for each $x \in \Gamma$, there exists a neighbourhood $U \subset \mathbb{R}^n$ of x, and an analytic function $\phi : U \to \mathbb{R}$ with $\nabla \phi \neq 0$ on Γ , such that $\Gamma \cap U = \phi^{-1}(\{0\})$. Let $\Omega \subset \mathbb{R}^n$ be an open set containing Γ , and let $X : \Omega \to \mathbb{R}^n$ be an analytic vector field, satisfying $X(x) \notin T_x\Gamma$ for every $x \in \Gamma$. We consider the linear differential equation

$$Au \equiv \sum_{|\alpha| \le q} a_{\alpha} \partial^{\alpha} u = f, \tag{\dagger}$$

where a_{α} ($|\alpha| \leq q$) and f are analytic functions in Ω , and we assume that Γ is nowhere characteristic for A. Prove that there exists an open set $\omega \subset \mathbb{R}^n$ containing Γ , such that there exists a unique analytic solution $u : \omega \to \mathbb{R}$ to the Cauchy problem for (†) with the Cauchy data

$$X^k u = g_k, \quad k = 0, \dots, q - 1, \qquad \text{on } \Gamma,$$

where g_k (k = 1, ..., q - 1) are analytic functions in Ω . Note that if we denote the components of X by $X_1, ..., X_n$, the differential operator X^k is understood to be

$$X^k = (X_1\partial_1 + \ldots + X_n\partial_n)^k.$$

You can assume that the Cauchy-Kovalevskaya theorem for linear equations with flat Cauchy surfaces, as we proved in class, is known.

5. Give an example of an analytic function ϕ for which the initial value problem

$$u_t = u_{xx}, \qquad u(x,0) = \phi(x),$$

does not admit any solution that is analytic at (x, t) = (0, 0). 6. Consider the initial value problem

$$u_t + u_{xx} = 0,$$
 $u(x, 0) = \phi(x),$

for the backward heat equation. For given $\varepsilon > 0$ and an integer k > 0, construct an initial datum ϕ such that

$$\|\phi\|_{\infty} + \ldots + \|\phi^{(k)}\|_{\infty} < \varepsilon,$$

and

$$\|u(\cdot,\varepsilon)\|_{\infty} > \frac{1}{\varepsilon}.$$