
THE CAUCHY-KOVALEVSKAYA THEOREM

TSOGTGEREL GANTUMUR

Abstract. After presenting the basic analytic theory of ordinary differential equations, we
discuss the Cauchy-Kovalevskaya theorem, characteristic surfaces, and the notion of well
posedness. We include the fundamentals of analytic functions in the appendices.
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1. First order ordinary differential equations

The Cauchy-Kovalevskaya theorem is a result on local existence of analytic solutions to a
very general class of PDEs. However, it is best to start with the ODE case, which is simpler
yet contains half the main ideas. Consider the problem

u′ = f(u), u(0) = 0, (1)

where f is a given function analytic at 0, and u is the unknown function. Cauchy’s theorem,
proved by him during 1831-35, guarantees that a unique solution exists that is analytic at 0.

Remark 1. In (1) we may think of u as either a function of a real variable x ∈ R, or a function
of a complex variable z ∈ C. If f is a real analytic function in a neighbourhood of 0 ∈ R,
then it can be uniquely extended to a complex analytic function f̃ in a neighbourhood of
0 ∈ C. Moreover, if u is a complex analytic solution of (1) in a neighbourhood of 0 ∈ C,

with f replaced by f̃ , then the restriction of u to R will be real analytic and satisfy (1) with
the original f . Thus we see that the complex analytic setting is more general, which we will
assume henceforth.

Remark 2. Another simple observation is that the initial condition u(0) = 0 in (1) is not a
loss of generality, since the initial value problem

v′ = g(v), v(0) = v0, (2)

is equivalent to (1), under the substitutions v = v0 + u and f(u) = g(v0 + u).
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With the intent of finding the Maclaurin series coefficients of u, we can repeatedly differ-
entiate u′ = f(u) to get

u′′ = [f(u)]′ = f ′(u)u′, u′′′ = [f(u)]′′ = f ′′(u)(u′)2 + f ′(u)u′′, . . . . (3)

The Faà di Bruno formula would give the precise expression for [f(u)](m), but without having
to look up or derive that formula, just from the considerations (3) it is clear that

u(k) = [f(u)](k−1) = qk(f(u), . . . , f (k−1)(u), u′, . . . , u(k−1)), (4)

where qk is a multivariate polynomial with nonnegative integer coefficients. We evaluate this
at z = 0, and use u(0) = 0, to get

u(k)(0) = qk(f(0), . . . , f (k−1)(0), u′(0), . . . , u(k−1)(0)). (5)

Now we repeatedly apply the same formula (with k having values k − 1, k − 2, etc.) to

eliminate all u(m)(0) from the right hand side, inferring

u(k)(0) = Qk(f(0), . . . , f (k−1)(0)), (6)

with another multivariate polynomial Qk having nonnegative integer coefficients. This inci-
dentally proves uniqueness of analytic solutions to (1), since (6) fixes their Maclaurin series
coefficients at 0. Moreover, provided that the Maclaurin series

u(z) =
∞∑
n=0

u(n)(0)

n!
zn, (7)

with u(n)(0) given by (6) converges in a neighbourhood of 0, the function v = u′ − f(u) is
analytic at 0, and by construction, its Maclaurin series is identically zero. Hence, by the
identity theorem v must vanish wherever it is defined, meaning that u′ = f(u) there. Now it
remains only to show that the series above converges in a neighbourhood of 0.

The heart of Cauchy’s proof is his method of majorants, which is an ingenious and a
very peculiar way of exploiting the positivity of the coefficients of Qk against the underlying
analytic setting. For two functions g and G, both infinitely differentiable at c ∈ C, we say
that G majorizes g at c, if

|g(k)(c)| ≤ G(k)(c), k = 0, 1, . . . . (8)

In other words, the Taylor series coefficients of g at c is bounded in magnitude by the corre-
sponding coefficients of G. Since our right hand side f is analytic at 0, there exist constants
M <∞ and r > 0 such that

|f (k)(0)|
k!

≤ M

rk
, k = 0, 1, . . . . (9)

Then certainly the function

F (z) =
M

1− z/r
= M +

M

r
z + . . .+

M

rk
xk + . . . , (10)

majorizes f at 0. Let us consider the initial value problem

U ′ = F (U), U(0) = 0. (11)

Then by (6) we have

U (k)(0) = Qk(F (0), . . . , F (k−1)(0)), (12)
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and

|u(k)(0)| = |Qk(f(0), . . . , f (k−1)(0))|

≤ Qk(|f(0)|, . . . , |f (k−1)(0)|)

≤ Qk(F (0), . . . , F (k−1)(0))

= U (k)(0),

(13)

where we have used the nonnegativity of the coefficients of Qk in the second an third lines,
and the majorant property of F in the third line. The conclusion is that the solution u of
the original problem (1) is majorized by the solution U of (11) at 0. Hence, if (11) has an
analytic solution, u is automatically analytic. But (11) is easily solvable, with

U(z) = r(1−
√

1−Mz/r) = Mz/2 + . . . , (14)

whose Taylor series around 0 has nonnegative coefficients. We have proved the following.

Theorem 3. The initial value problem

u′ = f(u), u(0) = η0, (15)

with f : C→ C analytic at η0, has a unique solution u that is analytic at 0.

Remark 4. From the majorant (14), the radius of convergence of the solution u can be esti-
mated as R ≥ r/M . Recalling that M > 0 and r > 0 are constants from the bounds (9), and
recalling Cauchy’s estimates (Cauchy 1831)

|f (n)(0)| ≤ n!

rn
sup
|z|=r
|f(z)|, (16)

that is valid if f is analytic on the disk |z| ≤ r, we can estimate M ≤ sup
|z|=r
|f(z)|. But there are

functions such as r/(r−Mz) that saturate Cauchy’s estimates, meaning that M is essentially
the magnitude of f in its domain of analyticity. Now, the magnitude of f is equal to the
“speed” |u′|, hence the “time” it takes for u to become of magnitude r is roughly r/M . If we
assume that f ceases to be analytic outside the disk |z| ≤ r, these considerations imply that
the convergence radius of u is roughly of order r/M , which cannot be improved in general.

Exercise 5. Give examples of f that makes the above statement precise.

Example 6. Let us consider the initial value problem

(u′)2 − u = 0, u(0) = η0. (17)

If we want to write this in the form u′ = f(u), we face the following obstacle: For each
η ∈ C \ {0} there are two values of p ∈ C such that p2 − η = 0. In other words, the function

η 7→ η
1
2 is many-valued. A way around this obstacle is to simply modify the formulation of

the problem so that a branch of the function η
1
2 near the initial datum η = η0 is also specified

(This can be thought of as part of a generalized form of the initial condition). It can be done
as follows. Notice that for any η0 ∈ C \ {0} and p0 ∈ C satisfying p2

0 − η0 = 0, there exists
a unique (analytic) function f defined in a neighbourhood U of η0, such that f(η)2 − η = 0
for η ∈ U and f(η0) = p0. We assume that u0 ∈ C \ {0} and p0 ∈ C are given, and that they

satisfy p2
0 − η0 = 0. The quantity p0 is our device to specify the desired branch of η

1
2 , and

the condition η0 6= 0 is to make sure that such a branch is unique. Then instead of (17), we
consider the problem

(u′)2 − u = 0, u(0) = η0, u′(0) = p0, (18)

which, by Theorem 3, has a unique analytic solution in a neighbourhood of 0.
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Theorem 7. Consider the initial value problem

F (u, u′) = 0, u(0) = η0, u′(0) = p0, (19)

where F : C× C→ C is analytic at (η0, p0), F (η0, p0) = 0, and

∂F

∂p
(η0, p0) 6= 0. (20)

Then there is a unique solution u that is analytic at 0.

Proof. By the analytic implicit function theorem, there exists a unique analytic function f
defined in a neighbourhood U of η0, such that F (η, f(η)) = 0 for η ∈ U and f(η0) = p0.
By Theorem 3, there is a unique analytic solution v in a neighbourhood of 0, to the problem
v′ = f(v) and v(0) = η0. This solution also satisfies (19) in a (possibly smaller) neighbourhood
of 0, because v′(0) = f(v(0)) = f(η0) = p0. On the other hand, any analytic solution of (19) in
a neighbourhood of 0 satisfies u(0) = η0 and u′ = f(u) in a (possibly smaller) neighbourhood
of 0. By uniqueness of v, we must have u ≡ v. �

2. Systems of ordinary differential equations

Our next step towards the Cauchy-Kovalevskaya theorem is Cauchy’s existence theorem
for the system:

u′j = fj(z, u1, . . . , um), uj(0) = 0, j = 1, . . . ,m. (21)

We could have eliminated the dependence of f on z by introducing the new variable um+1

with the equation u′m+1 = 1, but we intentionally leave it there in anticipation of the PDE
case that is considered in the next section. The above equation can be written compactly as

u′ = f(z, u), u(0) = 0, (22)

with u and f having values in Cm. We assume that the right hand side f is analytic in
its m + 1 arguments. To determine the higher derivatives of u, we start differentiating the
equation u′j = fj(z, u) as

[fj(z, u)]′ = ∂zfj + ∂uifj ·u′i, [fj(z, u)]′′ = ∂2
zfj + 2∂z∂uifj ·u′i + ∂ui∂u`fj ·u

′
iu
′
` + ∂uifj ·u′′i ,

where summation is taken over repeated indices. From here it is clear that

u
(k)
j = [fj(z, u)](k−1) = qk({∂βfj(u)}, {u(`)}), (23)

where qk is a multivariate polynomial with nonnegative coefficients, and it is understood that
the arguments of qk are all ∂βfj(u) with |β| ≤ k − 1, and all components of all u(`) with
` ≤ k − 1. We evaluate this at z = 0, and use u(0) = 0, to get

u
(k)
j (0) = qk({∂βfj(0)}, {u(`)(0)}) = Qj,k({∂βf`(0)}), (24)

with Qj,k a multivariate polynomial having nonnegative coefficients. Note that the arguments

of Qj,k are all ∂βf`(0) with |β| ≤ k − 1 and ` = 1, . . . ,m.
Having found that the derivatives of u at 0 is given by a positive coefficient polynomial of

the derivatives of f at 0, we would like to replace f by a simpler majorant of it. We say G
majorizes g at c ∈ Cn, if

|∂αg(c)| ≤ ∂αG(c), for all α. (25)

In other words, the Taylor series coefficients of g at c is bounded in magnitude by the corre-
sponding coefficients of G. Since our right hand side f is componentwise analytic at 0, there
exist constants M <∞ and r > 0 such that

|∂αfj(0)|
α!

≤ M

r|α|
, for all α, and all j. (26)
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Exercise 8. Show that any of the functions

Fj(z, v) =
M

(1− z/r)(1− v1/r) · · · (1− vm/r)
,

Fj(z, v) =
M

(1− z/r)(1− (v1 + . . .+ vm)/r)
,

Fj(z, v) =
M

1− (z + v1 + . . .+ vm)/r
,

Fj(z, v) =
M

1− (z/ρ+ v1 + . . .+ vm)/r
, with a constant ρ ∈ (0, 1],

(27)

majorizes fj at 0.

Let us consider the system

U ′j = Fj(z, U), Uj(0) = 0, j = 1, . . . ,m, (28)

with Fj being a majorant of fj . Using the positivity of the coefficients of Qj,k, we get

|∂αuj(0)| = |Qj,k({∂βf`(0)})| ≤ Qj,k({|∂βf`(0)|}) ≤ Qj,k({∂βF`(0)}) = ∂αUj(0), (29)

i.e., Uj majorizes uj at 0. To establish analyticity of uj , it only remains to solve (28) in
analytic functions. Given the supply of majorants (27), it is not hard. For example, choosing
Fj to be the second function in (27), and putting U1 = . . . = Um, we get

Uj(z) =
r

m

(
1−

√
1 + 2mM log

(
1− z

r

))
, (30)

which is analytic at least in the region |z| < (1− e−
1

2mM )r. We have proved the following.

Theorem 9 (Basic form). Consider the initial value problem

u′j = fj(z, u), uj(0) = 0, j = 1, . . . ,m. (31)

Let fj : Cn+m → C be analytic at 0, for each j. Then there exists a unique solution u that is
analytic at 0.

This theorem can easily be generalized to higher order quasilinear equations, and in a
certain sense to any ODE system that can be solved. The most general form of an ODE
system for the unknown function u : C→ Cm can be written as

Fi(z, u, u
′, u′′, . . .) = 0, i = 1, . . . ,m. (32)

Suppose that this can be written in the form

u
(qi)
i = fi(z, u, u

′, . . .), i = 1, . . . ,m, (33)

where for each i and j, the function fi depends on the derivatives of uj only up to order qj−1.
In other words, we solve for the highest over derivatives of each component of u. Note that

u
(qi)
i in (33) is not necessarily the highest order derivative of ui in (32).

Example 10. Consider the system

u′′(v′′ + 1) = 0, u′ = v′ + z. (34)

It looks like the system is second order in both u and v, so that the general solution involves
4 arbitrary constants. But one cannot be sure. Namely, differentiating u′ = v′ + z gives
u′′ = v′′ + 1, and substituting this into u′′(v′′ + 1) = 0 we get u′′ = 0 and v′′ = −1. So the
system is equivalent to

u′′ = 0, v′ = u′ − z, (35)

which makes it clear that we need only 3 arbitrary constants.
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It was observed by Carl Gustav Jacob Jacobi that the key to bringing order to the general
system (32) is to somehow write it in the form (33), which was called by him the normal
form. General methods to do such transformations that often work include using the implicit
function theorem (as we have done in Theorem 7), and differentiating the equation (32) with
respect to the independent variable. As soon as one brings the system into the normal form,
we have local existence.

Theorem 11 (Normal form). Consider the initial value problem

u
(qi)
i = fi(z, η), i = 1, . . . ,m, η(0) = η0, (36)

where η ∈ CN denotes the collection of derivatives {u(k)
i : k = 0, . . . , qi − 1; i = 1, . . . ,m},

with N =
∑

i qi. Suppose that for each i, fi : C1+N → Cm is analytic at (0, η0). Then there
exists a unique solution u that is analytic at 0.

In the spirit of Theorem 7, we can also state a fully nonlinear version that relies on the
implicit functions theorem.

Theorem 12 (Fully nonlinear form). Consider the initial value problem

F (z, η, p) = 0, η(0) = η0, p(0) = p0, (37)

where η : C → CN denotes the collection {u(k)
i : k = 0, . . . , qi − 1; i = 1, . . . ,m}, and

p : C→ Cm denotes the collection {u(qi)
i : i = 1, . . . ,m}. We suppose that F : C1+N+m → Cm

is analytic at (0, η0, p0), that F (0, η0, p0) = 0, and that the Jacobian matrix ∂F
∂p is invertible

at (0, η0, p0). Then there exists a unique solution u that is analytic at 0.

Exercise 13. Prove Theorem 11 and Theorem 12.

3. Linear partial differential equations

Along the same lines, one can establish the local existence of analytic solutions to a very
general class of systems of partial differential equations. Such a result was proved by Augustin-
Louis Cauchy in 1842 on first order quasilinear evolution equations, and formulated in its most
general form by Sofia Vasilyevna Kovalevskaya in 1874. At about the same time, Gaston
Darboux also reached similar results, although with less generality than Kovalevskaya’s work.
Both Kovalevskaya’s and Darboux’s papers were published in 1875, and the proof was later
streamlined by Édouard Jean-Baptiste Goursat in his influential calculus texts around 1900.
Nowadays these results are collectively known as the Cauchy-Kovalevskaya theorem.

Theorem 14 (Basic form). Consider the Cauchy (or initial value) problem

∂nu = A1(z)∂1u+ . . .+An−1(z)∂n−1u+A0(z)u+ a(z),

u|{zn=0} = 0,
(38)

where Aj : Cn → Cm×m, (j = 0, . . . , n − 1), and a : Cn → Cm are analytic at 0. Then there
exist an open set Ω ⊂ Cn with 0 ∈ Ω, and an analytic solution u : Ω → Cm that is unique
among the functions from Cω(Ω,Cm).

Remark 15. The zero initial condition in (38) is not a restriction, since the Cauchy problem

∂nv = B1(z)∂1v + . . .+Bn−1(z)∂n−1v +B0(z)v + b(z),

v|{zn=0} = φ|{zn=0},
(39)

with φ analytic near 0, is equivalent to (38) under the substitutions v = u + φ, Aj = Bj ,
(j = 0, . . . , n− 1), and

a = −∂nφ+B1∂1φ+ . . .+Bn−1∂n−1φ+B0φ+ b. (40)
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Proof of Theorem 14. Since the initial condition is identically zero, we have

∂αu(0) = 0, if αn = 0. (41)

The derivatives ∂αu with αn > 0 can be found by differentiating the equation (38). For
example, we have

∂k∂nu = ∂ka+ (∂kA0)u+ (∂kA1)∂1u+ . . .+ (∂kAn−1)∂n−1u+A0∂ku

+A1∂1∂ku+ . . .+An−1∂n−1∂ku.
(42)

In general, for α with αn > 0, we have

∂αuj = qj,α({∂βAk}, {∂βa}, {∂γu}), (43)

where qj,α is a polynomial with nonnegative coefficients, depending on the individual com-

ponents of ∂βAk with |β| ≤ |α| − 1 and k = 0, . . . , n − 1, of ∂βa with |β| ≤ |α| − 1, and of
∂γu with |γ| ≤ |α| and γn ≤ αn − 1. Exactly as before, we can eliminate the terms ∂γu and
evaluate the result at 0 to get

∂αuj(0) = qj,α({∂βAk(0)}, {∂βa(0)}, {∂γu(0)}) = Qj,α({∂βAk(0)}, {∂βa(0)}), (44)

where Qj,α is a polynomial with nonnegative coefficients, depending on the individual com-

ponents of ∂βAk(0) with |β| ≤ |α| − 1 and k = 0, . . . , n− 1, and of ∂βa(0) with |β| ≤ |α| − 1.
Now we consider the system

∂nU = B1(z)∂1U + . . .+Bn−1(z)∂n−1U +B0(z)U + b(z),

U |{zn=0} = 0,
(45)

with Bj majorizing Aj componentwise at 0 for each j = 0, . . . , n − 1, and b majorizing a
componentwise at 0. Then for all multi-indices α with αn > 0, we have

|∂αuj(0)| = |Qj,α({∂βAk(0)}, {∂βa(0)})| ≤ Qj,α({|∂βAk(0)|}, {|∂βa(0)|})

≤ Qj,α({∂βBk(0)}, {∂βb(0)}) = ∂αUj(0),
(46)

where it is understood that the absolute values of matrices and vectors are taken componen-
twise. This shows that Uj majorizes uj as a function of z ∈ Cn at 0.

Since Ak (k = 0, . . . , n − 1) and a are componentwise analytic at 0, there exist constants
M <∞ and r > 0 such that

|∂βAk(0)|∞ ≤M
β!

r|β|
, and |∂βa(0)|∞ ≤M

β!

r|β|
, for all β, (47)

where |X|∞ denotes the magnitude of the largest component (in magnitude) of X. Then we
set each component of Bk (k = 0, . . . , n− 1) and of b to be equal to

f(z) =
M ′

1− z1+...+zn
r

, (48)

with M ′ ≥ M to be chosen in a moment. Putting s = z1 + . . .+ zn and v = U1 = . . . = Um,
the equation (45) reduces to

v′(s) = mf(s)v(s) + (n− 1)mf(s)v′(s) + f(s), (49)

where

f(s) =
M ′r

r − s
. (50)

Now we choose1 M ′ = max{M, 3
m(n−1)}, so that (n− 1)m|f(s)| > 2 for |s| < r

2 , and hence

v′(s) =
f(s)(mv(s) + 1)

1− (n− 1)mf(s)
=

M ′r(mv(s) + 1)

(1− (n− 1)mM ′)r − s
, (51)

1This argument was suggested by Mikhail Karpukhin.
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has an analytic solution in a neighbourhood of 0, with v(0) = 0. It is also clear that the
radius of convergence of the Maclaurin series for v depends only on M , r, m, and n. �

It is easy to generalize the preceding theorem to higher order equations, and to solve them
near an open subset of the hyperplane {zn = 0}.

Theorem 16 (Linear equations). Consider the linear equation

Au ≡
∑
|α|≤q

aα∂
αu = f, (52)

where aα and f are analytic at 0 ∈ Cn, with a(0,...,0,q)(0) 6= 0. Furthermore, consider the
Cauchy problem of finding a solution to (52) with the prescribed initial values

∂knu(ζ, 0) = ψk(ζ), ζ ∈ Cn−1, k = 0, . . . , q − 1, (53)

where the functions ψk are analytic at 0 ∈ Cn−1. Then there exists a unique solution u to the
Cauchy problem that is analytic at 0 ∈ Cn.

Proof. First, let us transform the equation into a first order system amenable to Theorem 14,
by introducing the new variables uα = ∂αu for |α| ≤ q − 1. We need equations for ∂nuα. For
|α| ≤ q − 2, we simply use the definitions

∂nuα = u(α1,...,αn−1,αn+1). (54)

For |α| = q − 1 with αn < q − 1, we necessarily have α` > 0 for some ` 6= n. So we can use
the equation

∂nuα = ∂`u(...,α`−1,...,αn+1). (55)

Let us denote the dependence of ` on α by ` = `(α). What remains is an equation for
∂nu(0,...,0,q−1). Of course, this is supplied by (52), which becomes

a(0,...,0,q)∂nu(0,...,0,q−1) = f −
∑
|α|≤q−1

aαuα −
∑
|α|=q

aα∂`u(...,α`−1,...), (56)

where in the last sum, ` is chosen, depending on α, so that α` > 0 and ` 6= n.
The initial condition for uα is obtained from that of ∂αn

n u by applying the “spatial” dif-
ferential operator ∂α1

1 · · · ∂
αn−1

n−1 . Hence the equation is reduced to a first order system, and
Theorem 14 guarantees a nonempty ball B ⊂ Cn centred at 0, such that a unique analytic
solution {uα} exists on B.

What remains to be shown is ∂αu0 = uα for |α| ≤ q − 1, so that u := u0 would satisfy the
equation (52) together with the initial conditions (53). First, we observe that (54) implies

∂knu0 = u(0,...,0,k), k = 0, . . . , q − 1. (57)

Then, (55) gives ∂nuα = ∂`u(...,α`−1,...,αn+1) = ∂n∂`u(...,α`−1,...,αn), meaning that

∂n[uα − ∂`u(...,α`−1,...,αn)] = 0. (58)

Since uα = ∂`u(...,α`−1,...,αn) at {zn = 0}, we have uα,i ≡ ∂`u(...,α`−1,...,αn). This in turn gives
us ∂nu(...,αn−1) = ∂n∂`u(...,α`−1,...,αn−1), leading to u(...,αn−1) ≡ ∂`u(...,α`−1,...,αn−1) etc., we get

u(α1...αn−1,k) ≡ ∂`u(α1...α`−1,α`−1,α`+1...,αn−1,k), k = 0, . . . , αn. (59)

Now, let α be a multi-index with 0 < |α| ≤ q−1. If αn = |α|, then we have ∂αu0 = uα by (57).
Suppose that αn = 0. Then there is a multi-index α∗ such that α∗k = αk for all k = 1, . . . , n−1,
and |α∗| = q − 1. Namely, we have α∗n = q − 1− |α|, which satisfies 0 ≤ α∗n < q − 1. Invoking
(55) and (59), we conclude that there is an index β with |β| = |α| − 1 and βn = 0, such that
∂α−βuβ = uα. If β 6= 0, then we repeat this procedure for β, and so on, until we reach the
multi-index 0. This implies that ∂αu0 = uα for α with αn = 0. For general α, we combine
this result with (57), to get ∂αu0 = uα, completing the proof. �
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In the preceding theorem, apart from the analyticity conditions which are natural, there is
the condition on the allowed derivatives of u appearing in the right hand side. The following
counterexample due to Kovalevskaya illustrates that this condition is necessary.

Example 17. Consider the heat equation

∂tu = ∂2
xu, (60)

to be solved in a neighbourhood of the origin in (x, t) ∈ C2, with an analytic initial datum
u(x, 0) prescribed on the line {t = 0}. Differentiating the equation with respect to t gives

∂t∂tu = ∂t∂
2
xu = ∂2

x∂tu = ∂4
xu, (61)

and by repeated differentiations, we get

∂kt u = ∂2k
x u, ⇒ ∂kt u(0, 0) = ∂2k

x u(0, 0). (62)

The strongest bounds on ∂2k
x u(0, 0) for general analytic initial data u(x, 0) are of the form

M(2k)!/rk. On the other hand, in order for u to be analytic in the t-direction, the derivatives
∂kt u(0, 0) must necessarily have a bound of the form Ck!/ρk. The moral of the story is that
by equating more spatial derivatives on the right hand side with less time derivatives on the
left hand side, we generate faster growth in the right hand side than is allowed for the left
hand side to be analytic.

Exercise 18. Cook up an initial datum u(x, 0) for the heat equation that is analytic for all x
such that the function u(0, t) is not analytic at t = 0.

4. Characteristic surfaces

In this section we discuss how one can adapt the Cauchy-Kovalevskaya theorem if one were
to specify Cauchy data on a general analytic surface. Since the theorem concerned is a local
result, local considerations will suffice. So locally, an analytic surface is the zero level set of
an analytic function. More precisely, Γ ⊂ Cn is an analytic surface if there is an analytic
function ϕ : U → C with U an open subset of Cn, such that Γ = {z ∈ U : ϕ(z) = 0} and
∂ϕ = (∂1ϕ, . . . , ∂nϕ) is nonzero on Γ. In order to specify Cauchy data on Γ, we assume
that there is an analytic injection w : U → Cn with wn ≡ ϕ, i.e., that there is an analytic
coordinate system (w1, . . . , wn) in a neighbourhood of Γ, that makes Γ = {wn = 0}. This
is always possible locally at any given point z ∈ Γ, by shrinking the neighbourhood U if
necessary. For example, it suffices to take a rectilinear coordinate system with its n-th axis
having the same direction as the normal of Γ at z, and then adjust the n-th coordinate so
that Γ becomes {wn = 0}. The approach we take in this section is to specify the Cauchy data
on Γ in the w-coordinate system. Then since in the w-coordinates Γ is just {wn = 0}, the
Cauchy-Kovalevskaya theorem readily applies, provided that the equation can be solved for
the term ∂qwnu. Looking at what this tells us in the original z-coordinates, we will obtain an
important insight on what type of initial surfaces the equation “prefers”.

For simplicity, let us consider the q-th order linear equation

Au ≡
∑
|α|≤q

aα∂
αu = f. (63)

Denote by bα the coefficients of the q-th order derivatives in w-coordinates, i.e.,∑
|α|≤q

aα(z)∂αz u =
∑
|α|≤q

bα(w)∂αwu. (64)

What is important for us is the particular coefficient bα∗ with α∗ = (0, . . . , 0, q), because if,
say, bα∗(w) 6= 0, we can solve for the term ∂qwnu in a neighbourhood of w, and therefore can
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apply the Cauchy-Kovalevskaya theorem at w. Considerations such as

∂u

∂zi
=

∂u

∂wk

∂wk
∂zi

,
∂2u

∂zi∂zj
=

∂2u

∂wk∂wl

∂wk
∂zi

∂wl
∂zj

+
∂u

∂wk

∂2wk
∂zi∂zj

, (65)

imply that

bα∗ =
∑
|α|=q

aα

(
∂wn
∂z1

)α1

· · ·
(
∂wn
∂zn

)αn

. (66)

Shifting back to z-coordinates and using the notation ϕ ≡ wn, we see that if∑
|α|=q

aα

(
∂ϕ

∂z1

)α1

· · ·
(
∂ϕ

∂zn

)αn

6= 0, (67)

at some point z ∈ Γ, then the Cauchy problem with initial data on Γ is locally solvable at z.
It is a good time to introduce some terminologies.

Definition 19. The function

CA(z, ξ) =
∑
|α|=q

aα(z)ξα ≡
∑
|α|=q

aα(z)ξα1
1 · · · ξ

αn
n , (68)

defined for z ∈ U and ξ ∈ Cn, is called the characteristic form of the operator A.

The characteristic form is a homogeneous function of degree q in ξ, i.e.,

CA(z, λξ) = λqC(z, ξ), λ ∈ C. (69)

In terms of the characteristic form, the condition (67) becomes

CA(z, ∂zϕ(z)) 6= 0. (70)

Definition 20. If CA(z, ∂zϕ(z)) = 0 for z ∈ Γ, then Γ is said to be characteristic at z to the
equation (63). If Γ is characteristic at each of its points, it is called a characteristic surface.

The Cauchy problem for (63) has a unique analytic solution near a hypersurface Γ, if Γ is
nowhere characteristic.

Exercise 21. Let Γ be an analytic hypersurface in Rn, meaning that for each x ∈ Γ, there
exists a neighbourhood U ⊂ Rn of x, and an analytic function φ : U → R with ∇φ 6= 0 on Γ,
such that Γ ∩ U = φ−1({0}). Let Ω ⊂ Rn be an open set containing Γ, and let X : Ω → Rn
be an analytic vector field, satisfying X(x) 6∈ TxΓ for every x ∈ Γ. We consider the linear
differential equation

Au ≡
∑
|α|≤q

aα∂
αu = f, (†)

where aα (|α| ≤ q) and f are analytic functions in Ω, and we assume that Γ is nowhere
characteristic for A. Prove that there exists an open set ω ⊂ Rn containing Γ, such that there
exists a unique analytic solution u : ω → R to the Cauchy problem for (†) with the Cauchy
data

Xku = gk, k = 1, . . . , q − 1, on Γ,

where gk (k = 1, . . . , q−1) are analytic functions in Ω. Note that if we denote the components
of X by X1, . . . Xn, the differential operator Xk is understood to be

Xk = (X1∂1 + . . .+Xn∂n)k.

Definition 22. We can also introduce the characteristic cone at z ∈ U as

CharzA = {ξ : C(z, ξ) = 0}. (71)

Then a surface is characteristic at a point if the normal to the surface at that point belongs
to the characteristic cone at the same point.
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Example 23. The characteristic form of the Laplace operator is

C∆(z, ξ) =
n∑
i=1

ξ2
i .

There is no nonzero real vector ξ ∈ Rn that makes C∆(z, ξ) = 0, so the generators of the
characteristic cones cannot be parallel to any real vector. Let us denote the characteristic cone
by Charz∆n, which is of course independent of z. To reiterate, we have Charz∆n ∩Rn = {0},
and any real surface cannot be characteristic to the Laplace equation. Equations without real
characteristic surfaces are called elliptic equations.

Example 24. The cone Charz∆n can easily be described as a whole as an object in Cn, but
the most relevant to us is the behaviour of the cone on the hyperplanes Rn and Rn−1 × iR.
The former is trivial and has just been discussed. For the latter, it is convenient to make the
substitution zn 7→ izn, called the Wick rotation, under which the Laplace equation becomes
the wave equation, and the set Rn−1 × iR becomes Rn. For the wave equation, we have

C�(z, ξ) = −ξ2
n +

n−1∑
i=1

ξ2
i .

Restricting every variable to the reals, the characteristic cone in this case is called the light
cone, and any surface whose normal makes an angle π/4 with the direction of zn is a charac-
teristic surface.

Example 25. The heat and Schrödinger equations transform into each other by Wick rota-
tions. The both equations have

C(z, ξ) =
n−1∑
i=1

ξ2
i ,

as their characteristic form, and the characteristic cone is exactly Charz∆n−1×C. Restricted
to the reals, the characteristic cone is the vertical line {ξ : ξ1 = . . . = ξn−1 = 0}, and so the
characteristic surfaces are the horizontal planes {x : xn = const}.

Exercise 26. For each of the following cases, determine the characteristic cones and charac-
teristic surfaces, restricted to the reals.

a) Tricomi-type equation: uxx + yuyy = 0.
b) Wave equation with wave speed c > 0: uxx + uyy + uzz = c−2utt. How many regions does

the characteristic cone divide R4 into?
c) Ultrahyperbolic “wave” equation: uxx + uyy = uzz + utt. How many regions does the

characteristic cone divide R4 into?
d) Linear transport equation:

∑n
i=1 αi(x)∂iu = 0.

Example 27. As a prototypical example of what happens when one tries to prescribe initial
data on a characteristic surface, let us look at the linear transport equation from part d) of the
preceding exercise. There it is found that if Γ is characteristic at x ∈ Γ, then the vector α(x)
is tangent to Γ. Let us assume that Γ is everywhere characteristic. Then all our transport
equation tells us is the behaviour of u along Γ, and what u does in the transversal direction
is completely “free”. This means that the existence is lost unless the initial condition on Γ
satisfies certain constraints, and if a solution exists, it will not be unique. The situation is
entirely analogous to solving the linear system Ax = b with a non-invertible square matrix
A. Now let us forget about specifying initial conditions and take a slightly different point of
view. Imagine that the graphs of several solutions to the transport equation are drawn in
Rn+1, and imagine also several surfaces in Rn, which is to be understood as the base of the
space Rn+1 in which the graphs live. Then we see that the characteristic surfaces are the only
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surfaces along which two different solutions can touch each other, for if two solutions are the
same on a non-characteristic surface, by uniqueness they must coincide in a neighbourhood
of the surface.

5. Well posedness

The complex analytic setting is completely natural for the Cauchy-Kovalevskaya theorem.
This is because any real analytic function uniquely extends to a complex analytic one in a
neighbourhood of Rn considered as a subset of Cn, and more importantly this point of view
offers a better insight on the behaviour of analytic functions. Hence the complex analytic
treatment contains the real analytic case as a special case. However, it is known that if we
allowed only analytic solutions, we would be missing out on most of the interesting properties
of partial differential equations. For instance, since analytic functions are completely deter-
mined by its values on any open set however small, it would be extremely cumbersome, if not
impossible, to describe phenomena like wave propagation, in which initial data on a region
of the initial surface are supposed to influence only a specific part of space-time. A much
more natural setting for a differential equation would be to require its solutions to have just
enough regularity for the equation to make sense. For example, the Laplace equation ∆u = 0
already makes sense for twice differentiable functions. Actually, the solutions to the Laplace
equation, i.e., harmonic functions, are automatically analytic, which has a deep mathematical
reason that could not be revealed if we restricted ourselves to analytic solutions from the
beginning. In fact, the solutions to the Cauchy-Riemann equations, i.e., holomorphic func-
tions, are analytic by the same underlying reason, and complex analytic functions are nothing
but functions satisfying the Cauchy-Riemann equations. From this point of view, looking for
analytic solutions to a PDE in Rn would mean coupling the PDE with the Cauchy-Riemann
equations and solving them simultaneously in R2n. In other words, if we are not assuming
analyticity, Cn is better thought of as R2n with an additional algebraic structure. Hence the
real case is more general than the complex one, and from now on, we will be working explicitly
in real spaces such as Rn, unless indicated otherwise.

As soon as we allow non-analytic data and/or solutions, many interesting questions arise
surrounding the Cauchy-Kovalevskaya theorem. First, assuming a setting to which the
Cauchy-Kovalevskaya theorem can be applied, we can ask if there exists any (necessarily
non-analytic) solution other than the solution given by the Cauchy-Kovalevskaya theorem. In
other words, is the uniqueness part of the Cauchy-Kovalevskaya theorem still valid if we now
allow non-analytic solutions? For linear equations an affirmative answer is given by Holm-
gren’s uniqueness theorem. Moreover, uniqueness holds for first order equations, but fails in
general for higher order equations and systems. Such a uniqueness result can also be thought
of as a regularity theorem, in the sense that if u is a solution then it would be automatically
analytic by uniqueness.

The second question is whether existence holds for non-analytic data, and again the answer
is negative in general. A large class of counterexamples can be constructed, by using the
fact that some equations, such as the Laplace and the Cauchy-Riemann equations, have only
analytic solutions, therefore their initial data, as restrictions of the solutions to an analytic
hypersurface, cannot be non-analytic. Hence such equations with non-analytic initial data
do not have solutions. In some cases, this can be interpreted as one having “too many”
initial conditions that make the problem overdetermined, since in those cases the situation
can be remedied by removing some of the initial conditions. For example, with sufficiently
regular closed surfaces as initial surfaces, one can remove either one of the two Cauchy data
in the Laplace equation, arriving at the Dirichlet or Neumann problem. Starting with Hans
Lewy’s celebrated counterexample of 1957, more complicated constructions along similar lines
have been made that ensure the inhomogeneous part of a linear equation to be analytic, thus
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exhibiting examples of linear equations with no solutions when the inhomogeneous part is non-
analytic, regardless of initial data. The lesson to be learned from these examples is that the
existence theory in a non-analytic setting is much more complicated than the corresponding
analytic theory, and in particular one has to carefully decide on what would constitute the
initial data for the particular equation.

Indeed, there is an illuminating way to detect the poor behaviour of some equations dis-
cussed in the previous paragraph with regard to the Cauchy problem, entirely from within
the analytic setting, that runs as follows. Suppose that in the analytic setting, for a generic
initial datum ψ it is associated the solution u = S(ψ) of the equation under consideration,
where S : ψ 7→ u is the solution map. Now suppose that the datum ψ is non-analytic, say,
only continuous. Then by the Weierstrass approximation theorem, for any ε > 0 there is
a polynomial ψε that is within an ε distance from ψ. Taking some sequence ε → 0, if the
solutions uε = S(ψε) converge locally uniformly to a function u, we could reasonably argue
that u is a solution (in a generalized sense) of our equation with the (non-analytic) datum ψ.
The counterexamples from the preceding paragraph suggest that in those cases the sequence
uε cannot converge. Actually, the situation is much worse, as the following example due to
Jacques Salomon Hadamard shows.

Example 28. Consider the Cauchy problem for the Laplace equation

utt + uxx = 0, u(x, 0) = aν sin νx, ut(x, 0) = bν sin νx, (72)

whose solution is given by

u(x, t) = (aν cosh νt+
bν
ν

sinh νt) sin νx. (73)

Choosing, e.g., aν = 1/ν and bν = 0 with ν large, we see that the solution grows arbitrarily
fast, although the initial data are arbitrarily small. In a certain sense, the relation between
the solution and the Cauchy data becomes more and more difficult to invert as we add higher
and higher frequencies. The initial data could be, for instance, the error of an approximation
of non-analytic initial data in the uniform norm, with the approximation getting better as
ν → ∞. Then the solutions with initial data given by the approximations diverge unless aν
and bν decay faster than exponential. But functions that can be approximated by analytic
functions with such small errors form a severely restricted class, being between the smooth
functions C∞ and the analytic functions Cω.

Exercise 29. Consider the problem

utt + uxx = 0, u(x, 0) = φ(x), ut(x, 0) = ψ(x).

For given ε > 0 and an integer k > 0, construct initial data φ and ψ such that

‖φ‖∞ + . . .+ ‖φ(k)‖∞ + ‖ψ‖∞ + . . .+ ‖ψ(k)‖∞ < ε,

and

‖u(·, ε)‖∞ >
1

ε
.

Let us contrast the preceding example with the following.

Example 30. Consider the Cauchy problem for the wave equation

utt − uxx = 0, u(x, 0) = φ(x), ut(x, 0) = ψ(x), (74)

whose solution is given by the d’Alambert formula

u(x, t) =
φ(x− t) + φ(x+ t)

2
+

1

2

ˆ x+t

x−t
ψ(y) dy, (75)



14 TSOGTGEREL GANTUMUR

where if t < 0, the integral over (x − t, x + t) is understood to be the minus of the integral
over (x+ t, x− t). From this, it is easy to deduce the bound

|u(x, t)| ≤ sup
y∈[x−t,x+t]

|φ(y)|+ |t| sup
y∈[x−t,x+t]

|ψ(y)|, (76)

making it clear that small initial data lead to small solutions. Moreover, one can show
uniqueness by an energy argument, meaning that the solution given by the d’Alambert formula
is the only one.

Triggered by considerations such as the preceding ones, Hadamard introduced the concept
of well-posedness of a problem. To define this concept abstractly, we assume a set D, that
represents all possible data in the problem, a second set S, that represents all possible solu-
tions, and finally a relation R(f, u) ∈ {0, . . .}, defined for f ∈ D and u ∈ S. Then we consider
the following problem: Given f ∈ D, find u ∈ S such that R(f, u) = 0. This problem is said
to be well-posed if

• For any f ∈ D there exists a unique solution u ∈ S, and
• Varying f a bit results in a small variation of u, i.e., u depends on f continuously.

In order make the second point precise, we need to define what we mean by continuity of
maps σ : D → S, i.e., we need to choose topologies for the sets D and S. We can introduce
some flexibility on the choice of the sets D and S too, leading to the meta-problem: Find
“reasonable” topological spaces D and S such that the problem R(f, u) = 0 with f ∈ D
and u ∈ S is well-posed. Usually, the “correct” topologies on D and S are suggested by the
structure of the problem itself, or what is essentially the same, by the real world or mathe-
matical phenomenon the problem is supposed to model. The concept of well-posedness has
proved to be very useful in revealing the true nature of the equations, especially in identifying
the “correct” initial and/or boundary conditions. Of course, one important motivation of the
well-posedness concept is that in modelling of real world phenomena, the problem data always
have some measurement or computational error in it, so without well-posedness, we cannot
say that the solution corresponding to imprecise data is anywhere near the solution we are
trying to capture. Thus, a necessary condition for a physics theory to have any predictive
power is that it must produce well-posed problems. One might wonder if a counterexample to
this statement can be exhibited by mentioning the fact that in practice people routinely solve
what are normally considered as ill-posed problems, i.e., problems that are not well-posed.
However, in those situations “solving a problem” has a broader meaning, and as part of this
process one replaces the original ill-posed problem by a well-posed one, with the aid of a reg-
ularization procedure. For example, from Hadamard’s example we have seen that essentially
the “trouble makers” are initial data that oscillate rapidly in space, and a bit more analysis
shows that if the initial data has frequencies not exceeding ν, then the Cauchy problem can
be solved without trouble for time of order 1/ν. This offers a good theory provided that in
the particular situation under consideration, we know for sure there will not be frequencies
higher than ν present in any realistic initial data, and we do not need to solve the Cauchy
problem for time intervals much longer than 1/ν.

6. The general Cauchy-Kovalevskaya theorem

For completeness, we include here a proof of the Cauchy-Kovalevskaya theorem for general
(nonlinear) partial differential equations. The following is the most basic form of the theorem,
from which all more general forms can be deduced.

Theorem 31 (Basic form). Consider the Cauchy (or initial value) problem

∂nuj = fj(z, u, ∂1u, . . . , ∂n−1u), uj(ζ, 0) = 0, ζ ∈ Cn−1, j = 1, . . . ,m. (77)
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Let fj : Cn+m+(n−1)×m → C be analytic at 0, for all j. Then there exists a unique solution u
that is analytic at 0.

Proof. Without loss of generality, we can assume that fj(0) = 0 for all j, by replacing uj(z)
with uj(z)− znfj(0). Also, it will be convenient to label by pik the slot of fj that takes ∂iuk
as its argument, i.e., fj = fj(z, u, p) with z ∈ Cn, u ∈ Cm, and p ∈ C(n−1)×m. Since the initial
condition is identically zero, we have

∂αu(0) = 0, if αn = 0. (78)

The derivatives ∂αu with αn > 0 can be found by differentiating the equation (77). For
example, we have

∂k∂nuj =
∂fj
∂zk

+
∂fj
∂uq

∂uq
∂zk

+
∂fj
∂piq

∂2uq
∂zi∂zk

,

where implicit summations over q = 1, . . . ,m, and i = 1, . . . , n− 1, are assumed in the terms
they appear. In general, for α with αn > 0, we have

∂αuj = qα(∂βfj , ∂
γu), (79)

where qα is a polynomial with nonnegative coefficients, depending on ∂βfj with |β| ≤ |α| − 1,
and ∂γu with |γ| ≤ |α| and γn ≤ αn − 1. Exactly as before, we can eliminate the terms ∂γu
and evaluate the result at 0 to get

∂αuj(0) = qα(∂βfj(0), ∂γu(0)) = Qj,α(∂βf(0)), (80)

where Qj,α is a polynomial with nonnegative coefficients, depending on ∂βfj with |β| ≤ |α|−1.
Now it is time to consider the system

∂nUj = Fj(z, U, ∂1U, . . . , ∂n−1U), j = 1, . . . ,m, (81)

with Fj majorizing fj at 0 for each j. Then for all multi-indices α with αn > 0, we have

|∂αuj(0)| = |Qj,α(∂βf(0))| ≤ Qj,α(|∂βf(0)|) ≤ Qj,α(∂βF (0)) = ∂αUj(0). (82)

If in addition, Uj |zn=0 majorizes 0 as a function of (z1, . . . , zn−1) ∈ Cn−1 at 0, then Uj
majorizes uj as a function of z ∈ Cn at 0.

Supposing that fj satisfies the bound (26), let us try the following majorant of fj .

Fj(z, u, p) =
M(

1− z1+...+zn−1+zn/ρ+u1+...+um
r

)(
1− 1

r

∑
i,k pik

) −M, (83)

where ρ ∈ (0, 1] is a constant whose value is to be adjusted later. Put s = z1 + . . . + zn−1,
t = zn, and v := U1 = . . . = Um, to get

∂tv =
M(

1− s+t/ρ+mv
r

)(
1− (n−1)m

r ∂sv
) −M. (84)

Defining the new variable σ = t+ ρs, and assuming v depends only on σ, this becomes

∂σv =
M(

1− σ/ρ+mv
r

)(
1− (n−1)mρ

r ∂σv
) −M, (85)

or, after rearranging(
1− (n− 1)mMρ

r

)
∂σv −

(n− 1)mρ

r
(∂σv)2 =

M

1− σ/ρ+mv
r

−M. (86)
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We choose ρ ∈ (0, 1] so small that 1 − (n−1)mMρ
r > 0. Then the preceding equation can be

solved for ∂σv, in the power series

∂σv = c1(σ/ρ+mv) + c2(σ/ρ+mv)2 + . . . , (87)

convergent for some σ/ρ+mv 6= 0, with all coefficients nonnegative: ck ≥ 0. In other words,
there is a function g analytic at 0, with nonnegative Maclaurin series coefficients and with
g(0) = 0, such that

∂σv = g(σ/ρ+mv). (88)

Now we can apply Cauchy’s theorem for analytic ODEs from the previous section to infer that
the above equation has a solution v analytic at 0, satisfying v(0) = 0, whose Maclaurin series
coefficients are nonnegative. Rewinding everything, the vector function U with components

Uj(z) = v(ρ(z1 + . . .+ zn−1) + zn), (89)

solves (81). Since the Maclaurin series coefficients of v are nonnegative, the same holds for
Uj , implying that Uj |zn=0 majorizes 0 at 0. This establishes the proof. �

Remark 32. The choice of our majorant in this proof is one introduced by Goursat, that
allows us to treat the right hand side f directly. We refer to Folland’s book for an alternative
proof that is based on transforming the equations into a quasilinear form.

It is easy to generalize the preceding theorem to higher order equations, and to solve them
near an open subset of the hyperplane {zn = 0}.

Theorem 33 (Standard form). Consider the equations

∂qin ui = fi(z, {∂βu}), i = 1, . . . ,m, (90)

where for each i and j, the function fi depends on the derivatives of uj only up to order qj, is

independent of ∂
qj
n uj, and analytic in all of its arguments. Furthermore, consider the Cauchy

problem of finding a solution to (90) with the prescribed initial values

∂knui(ζ, 0) = ψi,k(ζ), ζ ∈ Ω, k = 0, . . . , qi − 1, i = 1, . . . ,m, (91)

where Ω ⊂ Cn−1 is open, and all ψi,k are analytic on Ω. Then there exists a unique solution
u to the Cauchy problem that is analytic in an open set of Cn containing Ω× {0}.

Exercise 34. Prove this theorem.

Example 35. Let us consider the Cauchy problem

(ut)
2 − ux = 0, u(x, 0) = ψ(x), (92)

to be solved near the origin in (x, t) ∈ C2. This is of course a variation of Example 6. If
there is an analytic solution to this problem, in a small neighbourhood of the origin, ux will

be close to ψx(0). Therefore, we can specify a branch of η
1
2 in ut = (ux)

1
2 by choosing the

value of this branch at ψx(0). In other words, instead of (92), we consider the problem

(ut)
2 − ux = 0, u(x, 0) = ψ(x), ut(0) = p0, (93)

where we assume that ψx(0) 6= 0, and that p0 ∈ C is a given number satisfying p2
0 = ψx(0).

Since there is a unique analytic function f defined in a neighbourhood U of ψx(0) satisfying
f(η)2 = η for η ∈ U and f(ψx(0)) = p0, Theorem 31 guarantees a unique analytic solution in
a neighbourhood of 0.

Theorem 36 (Fully nonlinear form). Consider the Cauchy problem

F (z, η, p) = 0, η(ζ, 0) = η0(ζ), p(0) = p0, (94)

where η : Cn → CN denotes the collection {∂αui : |α| ≤ qi−1; αn ≤ qi−1; i = 1, . . . ,m}, and
p : Cn → Cm denotes the collection {∂qin ui : i = 1, . . . ,m}. Suppose that F : Cn+N+m → Cm is
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analytic at (0, η0(0), p0), that F (0, η0(0), p0) = 0, and that the Jacobian matrix ∂F
∂p is invertible

at (0, η0(0), p0). Then there exists a unique solution u that is analytic at 0.

Exercise 37. Prove this theorem.

Remark 38. Let us note that the notion of characteristic surfaces can be extended without
much difficulty to nonlinear equations, where whether or not a surface is characteristic now
may depend on what function we plug into the differential operator, just as in the case of first
order nonlinear equations. For more details we recommend Jeffrey Rauch’s book.

Appendix A. Multivariate power series

Let K = R or K = C, and depending on this choice, let X be a real or complex Banach
space. In what follows, assuming X = K would not lose generality, and might simplify reading.
An n-variable power series with values in X is an expression of the form

f(z) =

∞∑
α1=0

. . .

∞∑
αn=0

aα1,...,αn(z1 − c1)α1 · · · (zn − cn)αn , (95)

with the coefficients aα1,...,αn ∈ X, and the centre c ∈ Kn. Introducing the multi-index
α = (α1, . . . , αn) ∈ Nn0 , and the convention zα = zα1

1 · · · zαn
n for z ∈ Kn, this series can also be

written as
f(z) =

∑
α

aα(z − c)α. (96)

We talk about real power series in case K = R, and complex power series in case K = C.
If the preceding series converges for some z and for some linear ordering of the multi-indices

α, then obviously there is a constant M < ∞, such that ‖aα‖|z1 − c1|α1 · · · |zn − cn|αn ≤ M
for all α, where ‖aα‖ is the Banach space norm of aα. In particular, if this series converges
in a neighbourhood of c, then taking z with z1 − c1 = . . . = zn − cn, we infer the existence of
constants M < ∞ and r > 0, such that ‖aα‖ ≤ Mr−|α| for all α, where |α| = α1 + . . . + αn.

On the other hand, if we have ‖aα‖ ≤ Mr−|α| for all α, then the series converges absolutely
and uniformly in each compact subset of the polydisk Dr(c) = {z ∈ Kn : |zi − ci| < r, ∀i}.
Note that if K = R then the polydisk Dr(c) is simply a cube centred at c. Let us clarify what
we mean by absolute and uniform convergence of the series (96).

Definition 39. Given a set K ⊂ Kn, and a countable family {fi : i ∈ I} of functions
fi : K → X, the series ∑

i∈I
fi, (97)

is said to converge absolutely and uniformly in K if there is a constant M <∞ such that∑
i∈J
‖fi‖K ≤M, (98)

for any finite subset J ⊂ I, where

‖fi‖K = sup
z∈K
‖fi(z)‖. (99)

For the power series (96), the family of functions is {fα}, where fα(z) = aα(z − c)α.

Remark 40. We use the term absolute convergence to remind ourselves the fact that we are
not far from the basic cases X = R and X = C. However, especially when X is infinite
dimensional, the term normal convergence may be more appropriate.

Exercise 41. Show that if ‖aα‖ ≤ Mr−|α| for all α, then the series (96) converges absolutely
and uniformly in each compact subset of Dr(c).
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Exercise 42. Show that if the series (96) converges absolutely and uniformly in a compact set
K ⊂ Kn, then the partial sums

fk(z) =
∑
|α|≤k

aα(z − c)α, (100)

converge uniformly to some f ∈ C(K,X), that is, ‖f − fk‖K → 0 as k →∞.

In what follows, we shall see that if a power series converges absolutely and uniformly then
summing the series in any reasonable way leads to the same result.

Theorem 43. Let fk,` : K → X for k, l ∈ N with some K ⊂ Kn, and let σ : N2 → N be a
bijection. Define the sequence {gm} by gσ(k,`) = fk,`. Then the followings are equivalent:

(a) The series
∑

m gm converges absolutely and uniformly in K.
(b) The series

∑
k(
∑

` ‖fk,`‖K) converges. In particular, for each k ∈ N, the series
∑

` fk,` is
absolutely and uniformly convergent in K.

(c) The series
∑

`(
∑

k ‖fk,`‖K) converges. In particular, for each ` ∈ N, the series
∑

k fk,` is
absolutely and uniformly convergent in K.

If any (so all) of the above conditions is satisfied, then we have∑
`

(∑
k

fk,`
)

=
∑
k

(∑
`

fk,`
)

=
∑
m

gm.

Proof. First we prove the implication (a) ⇒ (b). Let N =
∑

n ‖gn‖K < ∞. This obviously
implies that for each k ∈ N, Mk =

∑
` ‖fk,`‖K < ∞. Let ε > 0 and let mk be such that∑

`>mk
‖fk,`‖K ≤ 2−kε. So for any m we have∑

k≤m
(
∑
`

‖fk,`‖K) ≤
∑
k≤m

(
∑
`≤mk

‖fk,`‖K) + 2ε ≤ N + 2ε.

Now we shall prove that g =
∑

p gp is equal to f =
∑

k(
∑

` fk,`). To this end, let m be such

that
∑

k>m(
∑

` ‖fk,`‖K) ≤ ε, and let f̃ε =
∑

k≤m
∑

`≤mk
fk,`. Then we have

‖f − f̃ε‖K ≤
∑
k>m

(
∑
`

‖fk,`‖K) +
∑
k≤m

(
∑
`>mk

‖fk,`‖K) ≤ 3ε.

Similarly, for sufficiently large p, the partial sum g̃p =
∑

q≤p gq satisfies

‖g̃p − f̃ε‖K ≤
∑
k>m

(
∑
`

‖fk,`‖K) +
∑
k≤m

(
∑
`>mk

‖fk,`‖K) ≤ 3ε,

and so we have
‖f − g‖K ≤ ‖g − g̃p‖K + 6ε.

Since g̃p → g and ε is arbitrary, we conclude f = g.
For the other direction (b) ⇒ (a), we start with Mk =

∑
` ‖fk,`‖K <∞ and the condition

M =
∑

kMk <∞. Then for any p we have∑
q≤p
‖gq‖K ≤

∑
k≤m

∑
`≤m
‖fk,`‖K ≤M,

where m is such that {` ≤ m}2 ⊃ σ−1({q ≤ p}). This completes the proof, since the
equivalence of (a) and (c) follows by considering hk,` = f`,k. �

By induction on the number of nested sums, we get the following result.

Corollary 44. Let fα : K → X for α ∈ Nn0 with some K ⊂ Kn, and let σ : Nn0 → N be a
bijection. Define the sequence {gm} by gσ(α) = fα. Then the followings are equivalent:

(a) The series
∑

m gm converges absolutely and uniformly in K.
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(b) The series
∑

α1
(
∑

α2
. . . (

∑
αn
‖fα‖K) . . .) converges.

If any (so both) of the above conditions is satisfied, then we have∑
α1

(∑
α2

. . .
(∑
αn

fα
)
. . .
)

=
∑
m

gm.

Theorem 43 implies the following very strong result on rearrangements of absolutely uni-
formly convergent series.

Corollary 45. Suppose that the series
∑

p gp converges to g absolutely and uniformly. Let

N =
⋃
kMk be a disjoint decomposition of N, where k is from a countable set and each

Mk = {mk,`} is countable. Then for each k, the series g̃k =
∑

` gmk,`
converges absolutely and

uniformly, and moreover the series
∑

k g̃k converges to g absolutely and uniformly.

Proof. Let us say k runs over N ⊂ N, and for each k ∈ N , ` runs over Lk ⊂ N. Define the
set M ⊂ N2 by M = {(k, `) : k ∈ N and ` ∈ Lk}, and let fk,` = gmk,`

if (k, `) ∈ M , and
fk,` = 0 otherwise. Then we get the proof by applying Theorem 43 with, e.g., σ(k, `) = 2mk,`

for (k, `) ∈ M , and σ(k, `) = 2τ(k, `) − 1 for (k, `) ∈ N2 \M , where τ : N2 \M → N is a
bijection. �

By choosing each Mk to have a single element, we get the following.

Corollary 46. Suppose that the series
∑

p gp converges absolutely and uniformly to g. Then

given any bijection τ : N → N, the rearranged series
∑

p gτ(p) also converges absolutely and
uniformly to g.

Appendix B. Analytic functions

We keep the setting of the previous section intact. In particular, we have K = R or K = C,
and X is a real or complex Banach space.

Definition 47. Let Ω be an open subset of Kn. A function f : Ω → X is called analytic at
c ∈ Ω if it is developable into a power series around c, i.e, if there are coefficients aα ∈ X,
(α ∈ Nn0 ), such that the power series (96) converges in a neighbourhood of c. Moreover, f is
said to be analytic in Ω if it is analytic at each c ∈ Ω. The set of analytic functions in Ω with
values in X is denoted by Cω(Ω, X).

The following lemma shows that a convergent power series defines an analytic function in
a neighbourhood of its centre.

Lemma 48. Suppose that the power series f(z) =
∑
aα(z−c)α converges absolutely uniformly

in each compact subset of Dr(c) for some r > 0, and let d ∈ Dr(c). Then we have

f(z) =
∑
β

∑
α≥β

(
α

β

)
aα(d− c)α−β

 (z − d)β,

which converges absolutely uniformly in each compact subset of Dr−|d−c|(d). Here α ≥ β

means that αi ≥ βi for each i, and
(
α
β

)
=
(
α1

β1

)
· · ·
(
αn

βn

)
.

Proof. We have

(z − c)α = (z − d+ d− c)α =
∑
β≤α

(
α

β

)
(z − d)β(d− c)α−β,

so that the proof is established upon justifying∑
α

aα
∑
β≤α

(
α

β

)
(z − d)β(d− c)α−β =

∑
β

∑
α≥β

(
α

β

)
aα(z − d)β(d− c)α−β,
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for z ∈ DR(d) with R = r − |d − c|. This can be done by applying Corollary 45 if the left
hand side converges absolutely uniformly in each compact subset of DR(d). To this end, let
|z − d| ≤ ρ− |d− c| with ρ < r. Then we have∑

β≤α

(
α

β

)
|z1 − d1|β1 · · · |zn − dn|βn |d1 − c1|α1−β1 · · · |dn − cn|αn−βn

= (|z1 − d1|+ |d1 − c1|)α1 · · · (|zn − dn|+ |dn − cn|)αn ≤ ρ|α|,

and since aαρ
|α| = aαr

|α|(ρ/r)|α| we obtain the desired absolute uniform convergence. �

Now we turn to the question of termwise differentiating power series.

Theorem 49. Suppose that the power series f(z) =
∑
aα(z − c)α converges absolutely uni-

formly in each compact subset of Dr(c) for some r > 0. Then the series

g(z) =
∑
α

αkaα(z1 − c1)α1 · · · (zk − ck)αk−1 · · · (zn − cn)αn , (101)

converges absolutely uniformly in each compact subset of Dr(c), and g = ∂kf in Dr(c).

Proof. Let ρ < r. Then for any ε > 0 there is a constant Cε > 0 such that

αk‖aα‖ρ|α|−1 ≤ Cε(1 + ε)|α|‖aα‖ρ|α| ≤ Cε(1 + ε)|α|(ρ/r)|α|‖aα‖r|α|,

and choosing ε small enough we see that (101) converges absolutely uniformly in Dρ(c).
Now we will show that ∂kf = g in Dr(c), i.e., that for each z ∈ Dr(c) one has

f(z + hek) = f(z) + g(z)h+ o(|h|).

Without loss of generality, assuming that k = n and c = 0, we write

f(z + hen)− f(z) =
∑
α

aα ((z + hen)α − zα)

= h
∑
α

aαz
α1
1 · · · z

αn−1

n−1

αn−1∑
j=0

(zn + h)jzαn−1−j
n

=: hλz(h).

Let ρ < r be such that z ∈ Dρ(0), and consider all h satisfying |zn + h| ≤ ρ. Then∑
α

‖aα‖|z1|α1 · · · |zn−1|αn−1

αn−1∑
j=0

|zn + h|j |zn|αn−1−j ≤
∑
α

‖an‖αnρ|α|−1 <∞,

so the series for λz converges absolutely uniformly in a neighbourhood of the origin. Hence
λz is continuous at 0, and moreover from λz(0) = g(z), we infer

λz(h) = g(z) + o(1),

with o(1)→ 0 as |h| → 0. Therefore

f(z + hen)− f(z) = h(g(z) + o(1)) = hg(z) + o(|h|),

and the proof is established. �

By repeatedly applying Theorem 49 we see that the coefficients of the power series of f
about c ∈ Ω are given by

aα =
∂αf(c)

α!
≡ ∂α1

1 . . . ∂αn
n f(c)

α1! · · ·αn!
, (102)
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where we have introduced the convention α! = α1! · · ·αn!. In other words, if f ∈ Cω(Ω) and
c ∈ Ω then the following Taylor series converges in a neighbourhood of c.

f(z) =
∑
α

∂αf(c)

α!
(z − c)α. (103)

We have the identity theorem for multivariate analytic functions, which is necessarily a
bit weaker than its single variable counterpart. Namely, the zeros of a multivariate analytic
function can form a non-discrete set. For example, the zero set of f(z) = z1 in R2 is {0}×R.

Theorem 50 (Identity theorem). Let f ∈ Cω(Ω, X) with Ω a connected open set in Kn,
and with some b ∈ Ω, let ∂αf(b) = 0 for all α. Then f ≡ 0 in Ω. In particular, the same
conclusion holds if f vanishes on some open subset of Ω.

Proof. Each Σα = {z ∈ Ω : ∂αf(z) = 0} is relatively closed in Ω, so the intersection Σ =⋂
α Σα is also closed. But Σ is also open, because z ∈ Σ implies that f ≡ 0 in a neighbourhood

of z by a Taylor series argument. Since b ∈ Σ, Σ is nonempty, implying that Σ = Ω. �

Exercise 51. Let X and Y be Banach spaces, and let

F (z) =
∑
α

Aαz
α, and g(z) =

∑
α

bαz
α, (104)

be two powers series convergent in Dr(0), with values in L(X,Y ) and X, respectively. Show
that

F (z)g(z) =
∑
α

∑
β≤α

Aβbα−β

 zα, (105)

with the series converging absolutely and uniformly in each compact subset of Dr(0).

Exercise 52. Assume the same setting as in the previous exercise, except that now g is a Y -
valued power series. Assume also that the coefficient A0 ∈ L(X,Y ) of F is invertible. Then
show that

[F (z)]−1g(z) =
∑
α

eαz
α, with eα = A−1

0

bα − ∑
{β≤α, β 6=α}

Aα−βeβ

 , (106)

where the power series converges in a neighbourhood of 0.
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