MATH 580 FALL 2013 PRACTICE PROBLEMS

DECEMBER 3, 2013

- 1. Let $\Omega \subset \mathbb{R}^n$ be an open set, and let $u \in C^2(\Omega)$ be a nonconstant harmonic function. Show that u cannot have a local maximum in Ω .
- 2. Let $\Omega \subset \mathbb{R}^n$ be an open set, and let $u \in H^1_{\text{loc}}(\Omega)$ satisfy

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = 0, \quad \text{for all} \quad \varphi \in \mathscr{D}(\Omega).$$

Show that $u \in C^{\omega}(\Omega)$ and that u is harmonic.

3. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and consider the *Friedrichs inequality*

$$\int_{\Omega} |u|^2 \le C \int_{\Omega} |\nabla u|^2,$$

that holds for all $u \in H_0^1(\Omega)$, and for some constant $C = C(\Omega) > 0$.

- a) Characterize the best constant C via an eigenvalue problem.
- b) Compute the best constant for the cube $\Omega = (0, 1)^n$.
- 4. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set having the H^1 extension property.
 - a) Show that the first Neumann eigenvalue of Ω is $\lambda_1 = 0$, and the dimension of the eigenspace corresponding to this eigenvalue (i.e., the multiplicity of λ_1) is equal to the number of connected components of Ω .
 - b) Show that Ω has finitely many connected components.