MATH 580 TAKE HOME MIDTERM EXAM 1

DUE WEDNESDAY OCTOBER 23

- 1. Let Ω be a domain, and let $\Sigma = \partial \Omega \cap B$ be a smooth and nonempty portion of the boundary, where B is an open ball. Let $u \in C^2(\Omega) \cap C^1(\Omega \cup \Sigma)$ satisfy $\Delta u = 0$ in Ω and $u = \partial_{\nu} u = 0$ on Σ . Show that u is identically zero in Ω .
- 2. Consider the problem of minimizing the energy

$$Q(u) = \int_{I} \left(1 + |u'(x)|^2 \right)^{\frac{1}{4}} \mathrm{d}x,$$

for all $u \in C^1(I) \cap C(\overline{I})$ satisfying u(0) = 0 and u(1) = 1, where I = (0, 1). Show that the infimum of Q over the admissible functions is 1, but this value is not assumed by any admissible function.

3. Consider the Dirichlet problem on the unit disk $\mathbb{D} \subset \mathbb{R}^2$ with the homogeneous Dirichlet boundary condition. The solution is $u \equiv 0$, which also minimizes the Dirichlet energy

$$E(u) = \int_{\mathbb{D}} |\nabla u|^2$$

Construct a sequence $\{u_k\} \subset C(\overline{\mathbb{D}})$ of functions satisfying all of the following conditions.

- u_k is piecewise smooth and $u_k|_{\partial \mathbb{D}} = 0$ for all k,
- $E(u_k) \to 0$ as $k \to \infty$, and
- u_k as $k \to \infty$ diverges in a set that is dense in \mathbb{D} .

Then show that $u_k \to 0$ in $H^1(\mathbb{D})$.

- 4. Exhibit a sequence $\{v_k\} \subset \tilde{C}^1(\mathbb{D})$ that is Cauchy with respect to the H^1 -norm, whose limit is not essentially bounded.
- 5. In this exercise we will study Sobolev spaces on the interval I = (0, 1). Let $1 \le p < \infty$, and define the norm

$$||u||_{1,p} = \left(||u||_{L^p}^p + ||u'||_{L^p}^p \right)^{1/p},$$

for $u \in C^1(\overline{I})$. Let $H^{1,p}(I)$ be the completion of $C^1(\overline{I})$ with respect to the norm $\|\cdot\|_{1,p}$. a) Show that there is a continuous injection of $H^{1,p}(I)$ into $L^p(I)$.

b) Prove the Sobolev inequality

$$||u||_{L^{\infty}} \le 2^{1-1/p} ||u||_{1,p}, \qquad u \in H^{1,p}(I).$$

c) Since $H^{1,p}(I)$ is a subspace of $L^p(I)$, an element of $H^{1,p}(I)$ is an equivalence class of functions that differ on sets of measure zero. So one can change the values of a function on a set of measure zero, and it would still correspond to the same element

Date: Fall 2013.

DUE WEDNESDAY OCTOBER 23

in $H^{1,p}(I)$. Make sense of, and prove the statement that the elements of $H^{1,p}(I)$ are continuous functions.

d) Prove the Friedrichs inequality

$$|u||_{L^p}^p \le 2^{p-1} ||u'||_{L^p}^p + 2^{p-1} |u(\xi)|^p, \qquad u \in H^{1,p}(I), \quad \xi \in [0,1].$$

In particular, make sense of the derivative u' appearing in the right hand side. e) Let $H_0^{1,p}(I)$ be the closure of $C_c^1(I)$ in $H^{1,p}(I)$. Show that

$$H_0^{1,p}(I) = \{ u \in H^{1,p}(I) : u(0) = u(1) = 0 \}.$$

f) Prove the *Poincaré inequality*

$$||u||_{L^p}^p \le 2^{p-1} ||u'||_{L^p}^p + 2^{p-1} |\int_I u|^p, \qquad u \in H^{1,p}(I).$$

6. a) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $g \in H^1(\Omega)$. Give a detailed proof of the fact that there exists a unique $u \in H^1(\Omega)$ satisfying $u - g \in H^1_0(\Omega)$ and

$$\int_{\Omega} \nabla u \cdot \nabla v = 0 \quad \text{for all} \quad v \in \mathscr{D}(\Omega).$$

b) In the context of a), let us denote the map that sends g to u by

$$S: g \mapsto u: H^1(\Omega) \to H^1(\Omega).$$

Show that S is linear and is Lipschitz continuous in the sense that there is a constant c such that

$$|S(g_1) - S(g_2)||_{H^1} \le c ||g_1 - g_2||_{H^1}, \qquad g_1, g_2 \in H^1(\Omega).$$

c) Exhibit an example of an unbounded domain Ω and a sequence $\{u_k\} \subset H_0^1(\Omega)$ such that $\{u_k\}$ minimizes the Dirichlet energy on Ω and that it is not Cauchy with respect to the H^1 -norm.