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Abstract. After establishing discrete spectra for a large class of elliptic operators, we
present some fundamental spectral properties of the Dirichlet and Neumann Laplace op-
erators on bounded domains, including eigenvalue comparison theorems, Weyl’s asymptotic
law, and Courant’s nodal domain theorem. Note: This is an incomplete draft.
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1. Introduction

In these notes, we will be concerned with the eigenvalue problem

−∆u = λu, (1)

in a bounded domain Ω ⊂ Rn, with either the Dirichlet u = 0 or the Neumann ∂νu = 0
condition on the boundary ∂Ω. The unknown in the problem is the pair (u, λ) where u is a
function and λ is a number. If (u, λ) is a solution then u is called an eigenfunction, and λ is
called the eigenvalue associated to u. Let us note the following.

• Since the right hand side involves λu, the problem is not linear.
• If (u, λ) is a solution then so is (αu, λ) for any number α.
• We exclude the trivial solution u = 0 from all considerations.

We have studied the problem −∆u + tu = f with the Dirichlet or Neumann boundary con-
ditions, where t ∈ R and f ∈ L2(Ω) are given. Since (1) is equivalent to −∆u+ tu = 0 with
t = −λ, we can give the following weak formulation for (1). Let V be either H1

0 (Ω) or H1(Ω),
depending on the boundary condition we wish to impose. Then the problem is to find u ∈ V
and λ ∈ R satisfying ˆ

Ω
∇u · ∇v = λ

ˆ
Ω
uv for all v ∈ V. (2)

We know that a unique weak solution u ∈ V to −∆u+tu = f exists if t is larger than a certain
threshold value t0 that depends on the type of the boundary condition and the geometry of
the domain Ω. This shows that if (2) has a nontrivial solution then −λ ≤ t0, that is, λ cannot
be less than −t0. If u ∈ V satisfies (2) then the regularity results imply that u ∈ Cω(Ω),
and so in particular u is a classical solution of (1) in Ω, and moreover that u satisfies the
desired boundary condition in the classical sense provided the boundary is regular enough.
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Now we want to write (2) as an abstract operator eigenvalue problem. We introduce the linear
operator A : V → V ′ and the bilinear form a : V × V → R by1

〈Au, v〉 = a(u, v) =

ˆ
Ω
∇u · ∇v, u, v ∈ V, (3)

where 〈·, ·〉 is the duality pairing between V ′ and V . Recall that a is continuous

|a(u, v)| ≤ ‖u‖H1‖v‖H1 , u, v ∈ V, (4)

symmetric

a(u, v) = a(v, u), u, v ∈ V, (5)

and satisfies

a(u, u) + t〈u, u〉L2 ≥ α‖u‖2H1 , u ∈ V, (6)

for all t > t0, with α > 0 possibly depending on t. The operator A is called the energy
extension of −∆ with the given boundary condition, in the sense that it is an extension of
the classical Laplacian acting on a dense subset of V . We can check that it is bounded:

‖Au‖V ′ = sup
v∈V

〈Au, v〉
‖v‖H1

= sup
v∈V

a(u, v)

‖v‖H1

≤ ‖u‖H1 . (7)

In terms of the operator A, the problem (2) can be written as

Au = λJu, (8)

where the inclusion map J : L2(Ω)→ V ′ is defined by

〈Jf, v〉 =

ˆ
Ω
fv, v ∈ V. (9)

Obviously, J is injective because Jf = 0 implies f = 0 for f ∈ L2(Ω) by the du Bois-Reymond
lemma. It is also continuous:

‖Jf‖V ′ = sup
v∈V

〈Jf, v〉
‖v‖H1

≤ sup
v∈V

‖f‖L2‖v‖L2

‖v‖H1

≤ ‖f‖L2(Ω), (10)

and hence J defines a continuous embedding of L2(Ω) into V ′. In what follows we will identify
L2(Ω) with a subspace of V ′ through J . So for instance, we write (8) simply as

Au = λu. (11)

By the Riesz representation theorem, A+ tI is invertible for t > t0, and (A+ tI)−1 : V ′ → V
is bounded. In what follows, we fix some t > t0. Then adding tu to both sides of (11), and
applying (A+ tI)−1, we get

u = (t+ λ)(A+ tI)−1u. (12)

At this point, we introduce the resolvent2

Rt = (A+ tI)−1|L2(Ω) : L2(Ω)→ L2(Ω), (13)

which is the restriction of (A+ tI)−1 to L2(Ω). Hence if u ∈ V and λ ∈ R satisfy (11), then

(t+ λ)Rtu = u. (14)

Conversely, if u ∈ L2(Ω) and λ ∈ R satisfy (14), then by applying A + tI on both sides, we
derive (11), proving the equivalence of the two formulations.

Let us derive some straightforward properties of the resolvent.

1Note that A in these notes corresponds to Ã from class. In class we denoted by A the Friedrichs extension,
but I realized later that we don’t really need it and removing it makes the presentation a bit simpler.

2The usual definition is (A− tI)−1, but we are using the plus sign for convenience.



SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS 3

• The resolvent is bounded as an operator Rt : L2(Ω)→ V , because

‖Rtf‖V ≤ c‖f‖V ′ ≤ c‖f‖L2(Ω), (15)

where the constant c may have different values at its different occurrences.
• The resolvent is positive, in the sense that 〈Rtf, f〉 > 0 for f 6= 0, where 〈·, ·〉 is the L2

inner product on Ω. To see this, let f ∈ L2(Ω) and let u = Rtf , so that f = (A+ tI)u.
Then the strict coercivity property (6) gives

〈Rtf, f〉 = 〈u, (A+ tI)u〉 = a(u, u) + t〈u, u〉 ≥ α‖u‖2H1 . (16)

• The resolvent is injective: If Rtf = 0 then f = 0.
• The resolvent is symmetric, in the sense that 〈Rtf, g〉 = 〈f,Rtg〉 for f, g ∈ L2(Ω).

With u = Rtf and v = Rtg, we have

〈Rtf, g〉 = 〈u, (A+ tI)v〉 = a(u, v) + t〈u, v〉, (17)

which clearly shows the claim.
• A function u ∈ L2(Ω) is in the range of Rt if and only if Au ∈ L2(Ω). To show this,

first let u be such that Au ∈ L2(Ω). Then (A+ tI)u ∈ L2(Ω), hence u = Rt(A+ tI)u,
which means that u ∈ RanRt. Second, let u ∈ RanRt, i.e., let u = Rtf for some
f ∈ L2(Ω). It is obvious that f = (A+ tI)u. From this, we have Au = f− tu ∈ L2(Ω).

Apart from these simple properties, a crucial property we would like to have for the resolvent
is compactness. Recall Rellich’s lemma, which says that if Ω is a bounded domain then the unit
ball in H1

0 (Ω) is relatively compact in L2(Ω), i.e., the embedding H1
0 (Ω) ↪→ L2(Ω) is compact.

Since in the Dirichlet case, i.e., when V = H1
0 (Ω), the resolvent as a map Rt : L2(Ω)→ H1

0 (Ω)
is bounded, the image of the unit ball of L2(Ω) under Rt is a bounded set in H1

0 (Ω). Hence
by Rellich’s lemma this image is relatively compact in L2(Ω), showing that the resolvent as a
map Rt : L2(Ω)→ L2(Ω) is a compact operator.

Therefore in the Dirichlet case, boundedness of Ω is sufficient for the compact resolvent. In
the Neumann case, it is known that the resolvent is not compact without additional assump-
tions on the boundary regularity of Ω.

Definition 1. An open set Ω ⊂ Rn is said to have the H1-extension property, if there exists
a bounded linear map E : H1(Ω)→ H1(Rn).

For example, it is known that Lipschitz domains have the H1-extension property.

Exercise 2. Show that in the Neumann case, if Ω ⊂ Rn is bounded and has the H1-extension
property, then the resolvent as a map Rt : L2(Ω)→ L2(Ω) is compact.

Our strategy to solve the Laplace eigenvalue problem (11) is through the equivalent formu-
lation (14) in terms of the resolvent. The main feature that makes this formulation attractive
is the fact that the resolvent is compact under some very mild assumptions on Ω.

2. Spectral theory of compact self-adjoint operators

In this section, we will prove the spectral theorem for compact, symmetric, positive opera-
tors on a real Hilbert space H. This theorem will then be applied to the resolvent in the next
section. We start with some preliminary results.

Lemma 3. Let B : H → H be a bounded symmetric operator. Then we have the following.

a) If B is positive, and if u ∈ H \ {0} and λ ∈ R satisfy Bu = λu, then λ > 0.
b) If u, v ∈ H \ {0} and λ, µ ∈ R satisfy Bu = λu, Bv = µv, and λ 6= µ, then 〈u, v〉 = 0.
c) Let {un} be a complete orthonormal basis of H, such that Bun = λnun for each n. Suppose

that u ∈ H satisfies Bu = λu with λ 6∈ {λn}. Then u = 0.



4 TSOGTGEREL GANTUMUR

Proof. a) Recall that positivity of B : H → H means that 〈Bv, v〉 > 0 for v ∈ H \ {0}. This
implies that λ〈u, u〉 = 〈Bu, u〉 > 0, hence λ > 0.

b) By symmetry, we have λ〈u, v〉 = 〈Bu, v〉 = 〈u,Bv〉 = µ〈u, v〉, hence (λ− µ)〈u, v〉 = 0.
c) Recall that completeness of {un} means that v ∈ H and 〈v, un〉 = 0 for all n imply v = 0.

But since λ 6∈ {λn}, Part b) shows that 〈u, un〉 = 0 for all n. �

Lemma 4. Let K : H → H be a compact operator. Then we have the following.

a) Each eigenvalue has a finite multiplicity.
b) The only possible accumulation point of the set of eigenvalues is 0.
c) If K is symmetric and positive, the norm of K is characterized by

‖K‖ = sup
u∈H

〈Ku, u〉
‖u‖2

. (18)

Proof. a) Suppose that there is an eigenvalue µ with infinite multiplicity, i.e., let {vk} be a
countable orthonormal set of vectors satisfying

Kvk = µvk, k = 1, 2, . . . . (19)

We can interpret the latter as {vk} being the image of the set {µ−1vk} under K. Since
{µ−1vk} is a bounded set, the set {vk} is relatively compact, meaning that after passing to a
subsequence, vk converges to some element of H. However, we have ‖vj − vk‖2 = 2 for j 6= k,
which leads to a contradiction.

b) If α 6= 0 is an accumulation point of eigenvalues, then there exists a countable orthonor-
mal set {vk} of eigenvectors with corresponding eigenvalues µk satisfying infk |µk| > 0. The
latter condition ensures that {µ−1

k vk} is a bounded set, and the argument we have used in
Part a) leads to a contradiction.

c) For any u ∈ H we have

|〈Ku, u〉| ≤ ‖Ku‖‖u‖ ≤ ‖K‖‖u‖2, (20)

which shows that

µ = sup
u∈H

|〈Ku, u〉|
‖u‖2

≤ ‖K‖. (21)

On the other hand, since K is symmetric and positive, we have

0 ≤ 〈K(u+ tv), u+ tv〉 = 〈Ku, u〉+ 2t〈Ku, v〉+ t2〈Kv, v〉, (22)

for all t ∈ R, which leads to the Cauchy-Bunyakowsky-Schwarz inequality

|〈Ku, v〉|2 ≤ 〈Ku, u〉〈Kv, v〉, u, v ∈ H. (23)

We use to to derive

〈Ku,Ku〉 ≤ 〈Ku, u〉
1
2 · 〈K2u,Ku〉

1
2 ≤ µ

1
2 ‖u‖ · µ

1
2 ‖Ku‖, (24)

which implies that ‖Ku‖ ≤ µ‖u‖ for all u ∈ H, hence ‖K‖ ≤ µ. �

Remark 5. The ratio 〈Ku, u〉/‖u‖2 is called the Rayleigh quotient of u.

We are ready to prove the main result of this section.

Theorem 6. Let K : H → H be a compact, symmetric and positive operator. Then K
admits a countable set of eigenvectors {un} that forms a complete orthonormal system in H.
Moreover, denoting the corresponding eigenvalues by µ1 ≥ µ2 ≥ . . ., we have the variational
characterization

µn = sup
u∈Hn−1

‖Ku‖
‖u‖

= sup
u∈Hn−1

〈Ku, u〉
‖u‖2

, for n = 1, 2, . . . , (25)

where Hn−1 is the orthogonal complement of span{u1, . . . , un−1} in H.
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Proof. Let {vi} be a sequence in H such that ‖vi‖ = 1 and

〈Kvi, vi〉 → µ1 := ‖K‖ > 0. (26)

Since the set {Kvi} is relatively compact, possibly passing to a subsequence, we can assume
that Kvi → w in H. On the other hand, we have

0 ≤ ‖Kvi − µ1vi‖2 = ‖Kvi‖2 + µ2
1 − 2µ1〈Kvi, vi〉

≤ 2µ1 (µ1 − 〈Kvi, vi〉)→ 0, as i→∞,
(27)

which shows that µ1vi → w, that is, vi → u1 := µ−1
1 w in H, hence ‖u1‖ = 1. It is easy to

check that Ku1 = w = µ1u1, because

‖Ku1 − w‖ ≤ ‖Ku1 −Kvi‖+ ‖Kvi − w‖ ≤ ‖K‖‖u1 − vi‖+ ‖Kvi − w‖ → 0. (28)

Now let H1 = {v ∈ H : 〈v, u1〉 = 0}, which is a closed linear subspace of H. Moreover, H1

is invariant under K, because

〈Kv, u1〉 = 〈v,Ku1〉 = µ1〈v, u1〉 = 0, for v ∈ H1. (29)

So if H1 is nontrivial, we can construct as above an element u2 ∈ H1 with ‖u2‖ = 1 and
a number µ2 = ‖K‖H1 > 0 such that Ku2 = µ2u2. By induction, we have two sequences
{un} ⊂ H and µ1 ≥ µ2 ≥ . . . satisfying Kun = µnun and the formula (25). Then the
preceding lemma implies that µn → 0 and that {un} can be chosen to be orthonormal.

To show completeness of {un}, assume that u ∈ H satisfies 〈u, un〉 = 0 for all n. This
means that u ∈ Hn for any n, hence ‖Ku‖ ≤ µn‖u‖ → 0 as n → 0. Therefore, Ku = 0 and
this is only possible if u = 0 by positivity of K (or by the fact that 0 is not an eigenvalue). �

Corollary 7. For any u ∈ H, we have

Ku =
∑
n

µn〈u, un〉un, (30)

with the convergence in H.

Proof. It is obvious that the map Pj : H → span{u1, . . . , uj} defined by

Pju =
∑j

n=1〈u, un〉un, (31)

is the orthogonal projector onto span{u1, . . . , uj}. In particular, we have wj = u−Pju ∈ Hj .
In view of

Kwj = Ku−
∑j µn〈u, un〉un, (32)

we need to show that Kwj → 0 as j →∞. But this follows from

‖Kwj‖ ≤ µj+1‖wj‖ ≤ µj+1‖u‖, (33)

since Hj is invariant under K and µj+1 = ‖K‖Hj . �

3. Application to the Laplace eigenproblems

It is time to apply the general spectral theory to the Laplace eigenvalue problems. We
assume that Ω ⊂ Rn is an open set, and V = H1

0 (Ω) or V = H1(Ω). We also assume that
for some t ∈ R, the resolvent Rt : L2(Ω) → L2(Ω) is compact and positive. While the
positivity assumption is easily satisfied for t large enough, recall that in the Dirichlet case,
the compactness assumption is valid if Ω is bounded. In the Neumann case, as we know, one
needs some additional requirements on the boundary of the domain Ω.

Since Rt is symmetric, the results from the preceding section imply the existence of an
orthonormal basis of L2(Ω) consisting of eigenfunctions of Rt. Moreover, each eigenvalue
has a finite multiplicity, they are all positive and accumulate at 0. Now the equivalence
between the Laplace eigenvalue problem (11) and the resolvent formulation (14) leads us to
the following result, which can be regarded as a special case of the Hodge theorem.
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Theorem 8. There exists an orthonormal basis {uk} of L2(Ω) consisting of eigenfunctions of
A. Each eigenvalue has a finite multiplicity, and with {λk} denoting the eigenvalues, we have
λk > −t for all k, and λk →∞ as k →∞. Moreover, the eigenfunctions are real analytic in
Ω, and smooth up to the boundary if ∂Ω is smooth.

Proof. Let {uk} be an orthonormal basis of L2(Ω) consisting of eigenfunctions of Rt, and
denote by {µk} the corresponding eigenvalues. Then by the equivalence between (11) and
(14), the functions {uk} are also eigenfunctions of A, with the eigenvalues {λk} given by

λk =
1

µk
− t. (34)

Positivity of µk implies λk > −t, and µk → 0 implies λk →∞. The regularity statements are
consequences of the regularity theory of Poisson’s equation (with a lower order term). �

Remark 9. In the Dirichlet case, since we can take t = 0, all eigenvalues are strictly positive.
In the Neumann case, we can take any t < 0, hence all eigenvalues are nonnegative. The
latter estimate is sharp, since λ = 0 is a Neumann eigenvalue with the eigenfunction u ≡ 1.

Lemma 10. The eigenfunctions {uk} form an orthogonal basis of V with respect to the
standard inner product inherited from H1(Ω). In particular, for u ∈ V , the expansion

u =
∑

k〈u, uk〉uk, (35)

converges in V .

Proof. Orthogonality of the eigenfunctions with respect to the H1 inner product follows fromˆ
Ω
∇uj · ∇uk = a(uj , uk) = 〈Auj , uk〉 = λjδjk. (36)

For u ∈ V , we have

a(uj , u) = 〈Auj , u〉 = λj〈uj , u〉, so that 〈u, uj〉H1 = (1 + λj)〈u, uj〉. (37)

Since λj ≥ 0, if u ∈ V satisfies 〈u, uj〉H1 = 0 for all j, then 〈u, uj〉 = 0 for all j, hence by
completeness of the eigenfunctions in L2(Ω), we get u = 0. This shows the eigenfunctions are
complete in V . The convergence of (35) is basic Hilbert space theory: One first shows the
convergence of the right hand side by deriving Bessel’s inequality, and then uses completeness
to infer that the difference between the left and the right hand sides is 0. �

Before closing this section, we want to derive simple variational characterizations of the
eigenvalues in terms of the Rayleigh quotient

ρ(u) ≡ ρ(u,Ω) =
‖∇u‖2L2(Ω)

‖u‖2
L2(Ω)

, u ∈ H1(Ω). (38)

In what follows, these characterizations will provide the basic device by which we extract
precise spectral information.

Theorem 11. Suppose that the eigenvalues are ordered so that λ1 ≤ λ2 ≤ . . ., counting
multiplicities. For each k, we have

λk = min
Hk−1

ρ, (39)

where Hk−1 = {u ∈ V : 〈u, uj〉 = 0, j = 1, . . . , k − 1}, and if u ∈ Hk−1 satisfies ρ(u) = λk
then Au = λku. We also have

λk = max
span{u1,...,uk}

ρ, (40)

with the maximum attained only by the eigenfunctions corresponding to λk.
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Proof. For u ∈ L2(Ω), the series
∑

k〈u, uk〉uk converges in L2(Ω) to u. This in combination
with continuity of the L2 inner product implies Plancherel’s identity

‖u‖2L2(Ω) = 〈u, u〉 = 〈
∑

k〈u, uk〉uk, u〉 =
∑

k |〈u, uk〉|2. (41)

Similarly, for u ∈ V , by continuity of a : V × V → R we have

‖∇u‖2L2(Ω) = a(u, u) = a(
∑

k〈u, uk〉uk, u) =
∑

k〈u, uk〉a(uk, u) =
∑

k λk|〈u, uk〉|2, (42)

where we have used a(uk, u) = λk〈uk, u〉 and the fact that λk ≥ 0. If in addition, u ∈ Hj−1,
i.e., if u ⊥L2 span{u1, . . . , uj−1}, then

‖∇u‖2L2(Ω) =
∑
k≥j

λk|〈u, uk〉|2 ≥ λj
∑
k≥j
|〈u, uk〉|2 = λj‖u‖2L2(Ω), (43)

with the equality occurring if and only if u is in the eigenspace of λj . We have established
(39), and the fact that u ∈ Hj−1 satisfies ρ(u) = λj if and only if Au = λju.

The characterization (40) follows from the fact that for u ∈ span{u1, . . . , uj}, we have

‖∇u‖2L2(Ω) =
∑
k≤j

λk|〈u, uk〉|2 ≤ λj
∑
k≤j
|〈u, uk〉|2 = λj‖u‖2L2(Ω), (44)

with the equality occurring if and only if u is in the eigenspace of λj . �

Remark 12. We deduce from the previous theorem that the best constant c in the inequality

‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω) for all u ∈ Hk−1, (45)

is c = λ
− 1

2
k . Note that when V = H1

0 (Ω) and k = 1 the inequality reduces to the Friedrichs
inequality, and when V = H1(Ω) and k = 2 it reduces to the Poincaré inequality. Hence the
first Dirichlet eigenvalue and respectively the second Neumann eigenvalue characterize the
sharp constants in those classical inequalities.

Exercise 13. Compute the sharp constant of the Poincaré inequality for a rectangle.

Exercise 14. Let Ω ⊂ Rn be a bounded open set having the H1 extension property. Show
that the dimension of the eigenspace corresponding to the first Neumann eigenvalue (i.e., the
multiplicity of λ1) is equal to the number of connected components of Ω.

4. Eigenvalue comparison theorems

Note that the variational characterizations

λk = max
u∈span{u1,...,uk}

ρ(u) = min
u∈Hk−1

ρ(u), (46)

given by Theorem 11 involve the eigenfunctions {uj}, so it is not very convenient if, e.g.,
one is only interested in the eigenvalues. In any case, it is possible to remove the depen-
dence on eigenfunctions altogether by adding one more layer of extremalization, because the
space span{u1, . . . , uk} is positioned in an optimal way inside the manifold of k dimensional
subspaces of V (this manifold is called the k-th Grassmannian of V ).

Theorem 15 (Courant’s minimax principle). We have

λk = min
X∈Φk

max
X

ρ, (47)

where Φk = Φk(V ) = {X ⊂ V linear subspace : dimX = k}.
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Proof. The first equality in (46) shows that

λk ≥ min
X∈Φk

max
u∈X

ρ(u). (48)

On the other hand, if X ∈ Φk, then X∩Hk−1 is nontrivial by dimensional considerations. This
means that there is a nonzero v ∈ X ∩Hk−1, hence ρ(v) ≥ λk by the second characterization
in (46), that is, max

X
ρ ≥ λk. As X ∈ Φk was arbitrary, we conclude

λk ≤ min
X∈Φk

max
u∈X

ρ(u), (49)

establishing the theorem. �

Since H1
0 (Ω) is a subspace of H1(Ω), it is clear that Φk(H

1
0 (Ω)) ⊂ Φk(H

1(Ω)). This obser-
vation leads to the following simple inequality between Dirichlet and Neumann eigenvalues.

Corollary 16. Supposing that Ω is a bounded domain having the H1 extension property, let
us denote by µ1(Ω) ≤ µ2(Ω) ≤ . . . the Dirichlet eigenvalues of Ω, and by ν1(Ω) ≤ ν2(Ω) ≤ . . .
the Neumann eigenvalues of Ω. Then we have νk(Ω) ≤ µk(Ω) for all k.

Remark 17. In 1991, Leonid Friedlander proved that νk+1 ≤ µk.

The next corollary is based on the observation that if Ω1 ⊂ Ω2 then H1
0 (Ω1) ⊂ H1

0 (Ω2).

Corollary 18 (Domain monotonicity). If Ω1 ⊂ Ω2 are bounded domains, then we have
µk(Ω2) ≤ µk(Ω1) for all k.

Proof. For u ∈ H1
0 (Ω1), let us denote by ũ ∈ L2(Ω2) the extension of u by 0 outside Ω1.

We claim that ũ ∈ H1
0 (Ω2) with ‖ũ‖H1(Ω2) = ‖u‖H1(Ω1). If the claim is true, H1

0 (Ω1) can be

considered as a subspace of H1
0 (Ω2), and

ρ(u,Ω2) =
‖∇u‖2L2(Ω2)

‖u‖2
L2(Ω2)

=
‖∇u‖2L2(Ω1)

‖u‖2
L2(Ω1)

= ρ(u,Ω1), (50)

for u ∈ H1
0 (Ω1), where extension of u by 0 outside Ω1 is understood in necessary places.

To see that the claim is true, let {φk} ⊂ D(Ω1) be a sequence converging to u in H1(Ω1).
Passing to a subsequence if necessary, we can arrange that φk converges almost everywhere in
Ω1 to u. Then we extend each φk by 0 outside Ω1, and note that φk converges almost every-
where in Ω2 to ũ. Now the equality ‖φj − φk‖H1(Ω1) = ‖φj − φk‖H1(Ω2) and the completeness

of H1
0 (Ω2) imply that φk converges in the H1(Ω2) norm to some v ∈ H1

0 (Ω2). Again passing to
a subsequence if necessary, the convergence is almost everywhere in Ω2. Hence v = ũ almost
everywhere in Ω2, which means that ũ ∈ H1

0 (Ω2). �

As it turns out, domain monotonicity does not hold for Neumann eigenvalues.

Example 19. The Neumann eigenvalues of the rectangle with sides a and b are

νk,` =
(πk)2

a2
+

(π`)2

b2
, k, ` ∈ N0. (51)

So assuming that a > b, the first 3 eigenvalues are

ν1 = 0, ν2 =
π2

a2
, and ν3 =

π2

b2
. (52)

We pick 1 < a <
√

2, and choose b > 0 small, so that the rectangle can be placed inside the
unit square. For the unit square, the first 3 Neumann eigenvalues are

ν ′1 = 0, ν ′2 = π2, and ν ′3 = π2. (53)

Since a > 1, we have ν2 < ν ′2, which could not happen if domain monotonicity were true. �
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Even though domain monotonicity is not true in the strict sense, a weakened form of domain
monotonicity holds for the Neumann eigenvalues.

Corollary 20 (Weak domain monotonicity). Suppose that Ω1 is a bounded domain having
the H1 extension property, and let Ω2 be another bounded domain such that Ω̄1 ⊂ Ω2. Then
there exists a constant c such that νk(Ω2) ≤ µk(Ω2) ≤ cνk(Ω1) for all k.

With the extension operator E : H1(Ω1) → H1
0 (Ω2) playing the role of an injection, the

proof of the preceding corollary is similar to that of Corollary 18.

Exercise 21 (Maximin principle). Show that

λk = max
X∈Φk−1

inf
u∈X⊥

ρ(u), (54)

where X⊥ is understood as {u ∈ V : u ⊥L2 X}.
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