
THE DIRICHLET PROBLEM

TSOGTGEREL GANTUMUR

Abstract. We present here two approaches to the Dirichlet problem: The classical method
of subharmonic functions that culminated in the works of Perron and Wiener, and the more
modern Sobolev space approach tied to calculus of variations.
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1. Brief history

Given a domain Ω ⊂ Rn and a function g : ∂Ω → R, the Dirichlet problem is to find a
function u satisfying {

∆u = 0 in Ω,

u = g on ∂Ω.
(1)

In the previous set of notes, we established that uniqueness holds if Ω is bounded and g is
continuous. We have also seen that the Dirichlet problem has a solution if Ω is a ball.

The Dirichlet problem turned out to be fundamental in many areas of mathematics and
physics, and the efforts to solve this problem led directly to many revolutionary ideas in
mathematics. The importance of this problem cannot be overstated.

The first serious study of the Dirichlet problem on general domains with general boundary
conditions was done by George Green in his Essay on the Application of Mathematical Analysis
to the Theories of Electricity and Magnetism, published in 1828. He reduced the problem into
a problem of constructing what we now call Green’s functions, and argued that Green’s
function exists for any domain. His methods were not rigorous by today’s standards, but the
ideas were highly influential in the subsequent developments. It should be noted that George
Green had basically no formal schooling when he wrote the Essay, and most probably he never
knew the real importance of his discovery, as the Essay went unnoticed by the community
until 1845, four years after Green’s death, when William Thomson rediscovered it.
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The next idea came from Gauss in 1840. He noticed that given a function ρ on ∂Ω, the
so-called single layer potential

u(y) = (V ρ)(y) ≡
ˆ
∂Ω
Eyρ, (2)

is harmonic in Ω, and hence that if we find ρ satisfying V ρ = g on ∂Ω, the Dirichlet problem
would be solved. Informally, we want to arrange electric charges on the surface ∂Ω so that
the resulting electric potential is equal to g on ∂Ω. If we imagine that ∂Ω is made of a good
conductor, then in the absence of an external field, the equilibrium configuration of charges
on the surface will be the one that produces constant potential throughout ∂Ω. The same
configuration also minimizes the electrostatic energy

E(ρ) =
1

2

ˆ
∂Ω
ρV ρ, (3)

among all ρ such that the net charge
´
∂Ω ρ is fixed. In order to solve V ρ = g, we imagine that

there is some external electric field whose potential at the surface coincides with −g. The
equilibrium configuration in this case would satisfy V ρ− g = const, and minimize the energy

E(ρ) =
1

2

ˆ
∂Ω
ρV ρ−

ˆ
∂Ω
gρ, (4)

among all ρ such that the net charge is fixed. Then we would have V (ρ− ρ′) = g for some ρ′

satisfying V ρ′ = const, or more directly, we can simply add a suitable constant to u = V ρ to
solve the Dirichlet problem. Gauss did not prove the existence of a minimizer to (4), but he
remarked that it was obvious.

Around 1847, that is just after Green’s work became widely known, William Thomson
(Lord Kelvin) and Gustav Lejeune-Dirichlet suggested to minimize the energy

E(u) =

ˆ
Ω
|∇u|2, (5)

subject to u|∂Ω = g. Note that by Green’s first identity we have

E(u) =

ˆ
∂Ω
u∂νu−

ˆ
Ω
u∆u, (6)

which explains why E(u) can be considered as the energy of the configuration, since in view
of Green’s formula

u(y) =

ˆ
Ω
Ey∆u+

ˆ
∂Ω
u∂νEy −

ˆ
∂Ω
Ey∂νu, (7)

∂νu is the surface charge density, and −∆u is the volume charge density, that produce the
field u. This and other considerations seemed to show that the Dirichlet problem is equivalent
to minimizing the energy E(u) subject to u|∂Ω = g. Moreover, since E(u) ≥ 0 for any u, the
existence of u minimizing E(u) appeared to be obvious. Riemann called these two statements
the Dirichlet principle, and used it to prove his fundamental mapping theorem, in 1851.
However, starting around 1860, the Dirichlet principle in particular and calculus of variations
at the time in general went under serious scrutiny, most notably by Karl Weierstrass and
Riemann’s former student Friedrich Prym. Weierstrass argued that even if E is bounded from
below, it is possible that the infimum is never attained by an admissible function, in which case
there would be no admissible function that minimizes the energy. He backed his reasoning by
an explicit example of an energy that has no minimizer. In 1871, Prym constructed a striking
example of a continuous function g on the boundary of a disk, such that there is not a single
function u with finite energy that equals g on the boundary. This makes it impossible even
to talk about a minimizer since all functions with the correct boundary condition would have
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infinite energy. We will see a similar example constructed by Hadamard in §4, Example 13.
Here we look at Weierstrass’ example.

Example 1 (Weierstrass 1870). Consider the problem of minimizing the energy

Q(u) =

ˆ
I
x2|u′(x)|2 dx, (8)

for all u ∈ C(I) with piecewise continuous derivatives in I, satisfying the boundary conditions
u(−1) = 0 and u(1) = 1, where I = (−1, 1). The infimum of E over the admissible functions
is 0, because obviously E ≥ 0 and for the function

v(x) =


0 for x < 0,

x/δ for 0 < x < δ,

1 for x > δ,

(9)

we have E(v) = δ
3 , which can be made arbitrarily small by choosing δ > 0 small. However,

there is no admissible function u for which E(u) = 0, since this would mean that u(x) = 0
for x < 0 and u(x) = 1 for x > 0.

Exercise 1 (Courant). Consider the problem of minimizing the energy

Q(u) =

ˆ
I

(
1 + |u′(x)|2

) 1
4 dx, (10)

for all u ∈ C1(I) ∩ C(I) satisfying u(0) = 0 and u(1) = 1, where I = (0, 1). Show that
the infimum of Q over the admissible functions is 1, but this value is not assumed by any
admissible function.

Now that the Dirichlet principle is not reliable anymore, it became an urgent matter to
solve the Dirichlet problem to “rescue” the Riemann mapping theorem. By 1870, Weierstrass’
former student Hermann Schwarz had largely succeeded in achieving this goal. He solved
the Dirichlet problem on polygonal domains by an explicit formula, and used an iterative
approximation process to extend his results to an arbitrary planar region with piecewise
analytic boundary. His approximation method is now known as the Schwarz alternating
method, and is one of the popular methods to solve boundary value problems on a computer.

The next advance was Carl Neumann’s work of 1877, that was based on the earlier work
of August Beer from 1860. The idea was similar to Gauss’, but instead of the single layer
potential, Beer suggested the use of the double layer potential

u(y) = (Kµ)(y) ≡
ˆ
∂Ω
µ∂νEy. (11)

The function u is automatically harmonic in Ω, and the requirement u|∂Ω = g is equivalent to
the integral equation (1−2K)µ = 2g on the boundary. This equation was solved by Neumann
in terms of the series

(1− 2K)−1 = 1 + 2K + (2K)2 + . . . , (12)

which bears his name now. Neumann showed that the series converges if Ω is a 3 dimensional
convex domain whose boundary does not consist of two conical surfaces. The efforts to solve
the equation (1 − 2K)µ = 2g in cases the above series does not converge, led Ivar Fredholm
to his discovery of Fredholm theory in 1900.

Since the analyticity or convexity conditions on the boundary seemed to be rather artificial,
the search was still on to find a good method to solve the general Dirichlet problem. Then in
1887, Henri Poincaré published a paper introducing a very flexible method with far reaching
consequences. Poincaré started with a subharmonic function that has the correct boundary
values, and repeatedly solved the Dirichlet problem on small balls to make the function more
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and more nearly harmonic. He showed that the process converges if the succession of balls is
chosen carefully, and produces a harmonic function in the interior. Moreover, this harmonic
function assumes correct boundary values, if each point on the boundary of the domain can
be touched from outside by a nontrivial sphere. The process is now called Poincaré’s sweeping
out process or the balayage method.

Poincaré’s work made the Dirichlet problem very approachable, and invited further work
on weakening the conditions on the boundary. For instance, it led to the work of William
Fogg Osgood, published in 1900, in which the author establishes solvability of the Dirichlet
problem in very general planar domains. While the situation was quite satisfactory, there
had essentially been no development as to the validity of the original Dirichlet principle, until
1899, when David Hilbert gave a rigorous justification of the Dirichlet principle under some
assumptions on the boundary of the domain. This marked the beginning of a major program
to put calculus of variations on a rigorous foundation.

During that period it was generally believed that the assumptions on the boundary of
the domain that seemed to be present in all available results were due to limitations of the
methods employed, rather than being inherent in the problem. It was Stanis law Zaremba
who first pointed out in 1911 that there exist regions in which the Dirichlet problem is not
solvable, even when the boundary condition is completely reasonable.

Example 2 (Zaremba 1911). Let D = {x ∈ R2 : |x| < 1} be the unit disk, and consider the
domain Ω = D\{0}. The boundary of Ω consists of the circle ∂D and the point {0}. Consider
the Dirichlet problem ∆u = 0 in Ω, with the boundary conditions u ≡ 0 on ∂D and u(0) = 1.
Suppose that there exists a solution. Then u is harmonic in Ω, and continuous in D with
u(0) = 1. Since u is bounded in Ω, one can extend u continuously to D so that the resulting
function is harmonic in D. By uniqueness for the Dirichlet problem in D, the extension must
identically be equal to 0, because u ≡ 0 on ∂D. However, this contradicts the fact that u is
continuous in D with u(0) = 1. Hence there is no solution to the original problem. In other
words, the boundary condition at x = 0 is simply “ignored”.

One could argue that Zaremba’s example is not terribly surprising because the boundary
point 0 is an isolated point. However, in 1913, Henri Lebesgue produced an example of a
3 dimensional domain whose boundary consists of a single connected piece. This example
will be studied in §3, Example 10. The time period under discussion is now 1920’s, which
saw intense developments in the study of the Dirichlet problem, then known as potential
theory, powered by the newly founded Lebesgue integration theory and functional analytic
point of view. Three basic approaches were most popular: Poincaré-type methods which
use subharmonic functions, integral equation methods based on potential representations
of harmonic functions, and finally, variational methods related to minimizing the Dirichlet
energy. While the former two would still be considered as part of potential theory, the third
approach has since separated because of its distinct Hilbert space/variational flavour. In what
follows, we will study two specific methods in detail.

2. Perron’s method

In this section, we will discuss the method discovered by Oskar Perron in 1923, as a simpler
replacement of the Poincaré process. Recall that we want to solve the Dirichlet problem{

∆u = 0 in Ω,

u = g on ∂Ω.
(13)

In what follows, we assume that Ω ⊂ Rn is a bounded domain, and that g : ∂Ω → R is a
bounded function. Recall that a continuous function u ∈ C(Ω) is called subharmonic in Ω, if
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for any y ∈ Ω, there exists r∗ > 0 such that

u(y) ≤ 1

|∂Br|

ˆ
∂Br(y)

u, 0 < r < r∗. (14)

Let us denote by Sub(Ω) the set of subharmonic functions on Ω. The following properties
will be useful.

• If u ∈ Sub(Ω) and if u(z) = sup
Ω
u for some z ∈ Ω, then u is constant.

• If u ∈ Sub(Ω)∩C(Ω), v ∈ C(Ω) is harmonic in Ω, and u ≤ v on ∂Ω, then u ≤ v in Ω.
• If u1, u2 ∈ Sub(Ω) then max{u1, u2} ∈ Sub(Ω).
• If u ∈ Sub(Ω) and if ū ∈ C(Ω) satisfies ∆ū = 0 in B and ū = u in Ω \ B for some
B ⊂ Ω, then ū ∈ Sub(Ω).

The first two properties are simply the strong and weak maximum principles. The third
property is clear from

ui(y) ≤ 1

|∂Br|

ˆ
∂Br(y)

ui ≤
1

|∂Br|

ˆ
∂Br(y)

max{u1, u2}, i = 1, 2. (15)

For the last property, we only need to check (14) for y ∈ ∂B, as

ū(y) = u(y) ≤ 1

|∂Br|

ˆ
∂Br(y)

u ≤ 1

|∂Br|

ˆ
∂Br(y)

ū. (16)

To proceed further, we define the Perron (lower) family

Sg = {v ∈ Sub(Ω) ∩ C(Ω) : v|∂Ω ≤ g}, (17)

and the Perron (lower) solution

u(x) = (PΩg)(x) = sup
v∈Sg

v(x), x ∈ Ω. (18)

Any constant function c satisfying c ≤ g is in Sg, so Sg 6= ∅. Moreover, any v ∈ Sg satisfies
v ≤ sup∂Ω g, hence the Perron solution u is well-defined. We will show that the Perron
solution is a solution of the Dirichlet problem, under some mild regularity assumptions on the
boundary of Ω. Before doing so, let us perform a consistency check. Suppose that ∆w = 0 in
Ω and w|∂Ω = g. Then obviously w ∈ Sg. Also, the weak maximum principle shows that any
v ∈ Sg satisfies v ≤ w pointwise. Therefore we must have u = w.

Theorem 3 (Perron 1923). For the Perron solution u = PΩg, we have ∆u = 0 in Ω.

Proof. Let Br(x) be a nonempty open ball whose closure is in Ω, and let {uk} ⊂ Sg be a
sequence satisfying uk(x) → u(x) as k → ∞. Without loss of generality, we can assume
that the sequence is nondecreasing, e.g., by replacing uk by max{u1, . . . , uk}. For each k, let
ūk ∈ C(Ω) be the function harmonic in Br(x) which agrees with uk in Ω \ Br(x). We have
uk ≤ ūk, and ūk ∈ Sg hence ū(x) ≤ u(x), so ūk(x)→ u(x) as well. The sequence {ūk} is also
nondecreasing, so by Harnack’s second convergence theorem, there exists a harmonic function
ū in Br(x) such that ūk → ū locally uniformly in Br(x). In particular, we have ū(x) = u(x).

We want to show that u = ū in Br(x), which would then imply that u is harmonic in Ω.
Pick y ∈ Br(x), and let {ũk} ⊂ Sg be a sequence satisfying ũk(y) → u(y). Without loss
of generality, we can assume that the sequence is nondecreasing, that ūk ≤ ũk, and that ũk
is harmonic in Br(x). Again by Harnack’s theorem, there exists a harmonic function ũ in
Br(x) such that ũk → ũ locally uniformly in Br(x), and we have ũ(y) = u(y). Because of
the arrangement ūk ≤ ũk, we get ū ≤ ũ in Br(x), and in addition taking into account that
ũk ≤ u and that ūk(x) → u(x), we infer ũ(x) = u(x). So ū − ũ is harmonic and nonpositive
in Br(x), while ū(x) − ũ(x) = 0. Then the strong maximum principle gives ū = ũ in Br(x),
which implies that ū(y) = u(y). As y ∈ Br(x) was arbitrary, u = ū in Br(x). �



6 TSOGTGEREL GANTUMUR

Now we need to check if u satisfies the required boundary condition u|∂Ω = g. Let z ∈ ∂Ω,
and let us try to imagine what can go wrong so that u(x) 6→ g(z) as x → z. It is possible
that lim inf

x→z
u(x) < g(z), or lim sup

x→z
u(x) > g(z), or both. To rule out the first scenario, it

suffices to show that there is a sequence {wk} ∈ Sg such that wk(z) → g(z). Indeed, since
u ≥ wk pointwise, we would have lim inf

x→z
u(x) ≥ wk(z) for each k. The existence of such a

sequence {wk} means, in a certain sense, that the domain Ω is able to support a sufficiently
rich family of subharmonic functions. In a similar fashion, to rule out the second scenario,
we need to have a sufficiently rich family of superharmonic functions, and as superharmonic
functions are simply the negatives of subharmonic functions, it turns out that both scenarios
can be handled by the same method. We start by introducing the concept of a barrier.

Definition 4. A function ϕ ∈ C(Ω) is called a barrier for Ω at z ∈ ∂Ω if

• ϕ ∈ Sub(Ω),
• ϕ(z) = 0,
• ϕ < 0 on ∂Ω \ {z}.

We call the boundary point z ∈ ∂Ω regular if there is a barrier for Ω at z ∈ ∂Ω.

Lemma 5. Let z ∈ ∂Ω be a regular point, and let g be continuous at z. Then for any given
ε > 0, there exists w ∈ Sg such that w(z) ≥ g(z)− ε.
Proof. Let ε > 0, and let ϕ be a barrier at z. Then there exists δ > 0 such that |g(x)−g(z)| < ε
for x ∈ ∂Ω∩Bδ(z). Choose M > 0 so large that Mϕ(x) + 2‖g‖∞ < 0 for x ∈ ∂Ω \Bδ(z), and
consider the function w = Mϕ+g(z)−ε. Obviously, w ∈ Sub(Ω)∩C(Ω) and w(z) = g(z)−ε.
Moreover, we have

Mϕ(x) + g(z)− ε < Mϕ(x) + g(x) ≤ g(x), x ∈ ∂Ω ∩Bδ(z), (19)

and
Mϕ(x) + g(z)− ε < −2‖g‖∞ + g(z) ≤ g(x), x ∈ ∂Ω \Bδ(z), (20)

which imply that w ∈ Sg. �

Exercise 2. Why is regularity of a boundary point a local property? In other words, if z ∈ ∂Ω
is regular, and if Ω′ is a domain that coincides with Ω in a neighbourhood of z (hence in
particular z ∈ ∂Ω′), then can you conclude that z is also regular as a point of ∂Ω′?

Exercise 3. Show that if the Dirichlet problem in Ω is solvable for any boundary condition
g ∈ C(∂Ω), then each z ∈ ∂Ω is a regular point.

The following theorem implies the converse to the preceding exercise: If all boundary points
are regular, then the Dirichlet problem is solvable for any g ∈ C(∂Ω).

Theorem 6 (Perron 1923). Assume that z ∈ ∂Ω is a regular point, and that g is continuous
at z. Then we have u(x)→ g(z) as Ω 3 x→ z.

Proof. By Lemma 5, for any ε > 0 there exists w ∈ Sg such that w(z) ≥ g(z) − ε. By
definition, we have u ≥ w in Ω. This shows that

lim inf
Ω3x→z

u(x) ≥ g(z)− ε, (21)

and as ε > 0 was arbitrary, the same relation is true with ε = 0. On the other hand, again by
Lemma 5, for any ε > 0 there exists w ∈ S−g such that w(z) ≥ −g(z)− ε. Let v ∈ Sg. Then

v + w ∈ Sub(Ω) ∩ C(Ω) and v + w ≤ 0 on ∂Ω. This means that v ≤ −w in Ω. Since v is an
arbitrary element of Sg, the same inequality is true for u, hence

lim sup
Ω3x→z

u(x) ≤ g(z) + ε, (22)

and as ε > 0 was arbitrary, the same relation is true with ε = 0. �
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Exercise 4. Let us modify the definition of a barrier (Definition 4) by allowing ϕ ∈ C(Ω) and
replacing the condition after the third bullet point therein by

lim sup
Ω3x→y

ϕ(x) < 0 for each y ∈ ∂Ω \ {z}. (23)

Show that Theorem 6 is still valid when the regularity concept is accordingly modified. �

Corollary 7. Green’s function exists for the domain Ω if each point of ∂Ω is regular.

3. Boundary regularity

It is of importance to derive simple criteria for a boundary point to admit a barrier. The
following is referred to as Poincaré’s criterion or the exterior sphere condition.

Theorem 8 (Poincaré 1887). Suppose that Br(y)∩Ω = ∅ and Br(y)∩∂Ω = {z}, with r > 0.
Then z is a regular point.

Proof. For n ≥ 3, we claim that

ϕ(x) =
1

|x− y|n−2
− 1

rn−2
, x ∈ Ω, (24)

is a barrier at z. Indeed, ϕ is harmonic in Rn \{y}, ϕ(z) = 0, and ϕ(x) < 0 for x ∈ Rn \Br(y).
For n = 2, it is again straightforward to check that

ϕ(x) = log
1

|x− y|
− log

1

r
, x ∈ Ω, (25)

is a barrier at z. �

Remark 9. In fact, we have the following criterion due to Lebesgue: The point 0 ∈ ∂Ω is
regular if any x ∈ Ω near 0 satisfies xn < f(|x′|), where x′ = (x1, . . . , xn−1) and f(r) = ar1/m

for some a > 0 and m > 0. The case m = 1 is known as Zaremba’s criterion or the exterior
cone condition.

The following example shows that Lebesgue’s criterion is nearly optimal in the sense that
the criterion would not be valid if f(r) = a/ log 1

r .

Example 10 (Lebesgue 1913). Let I = {(0, 0, s) : 0 ≤ s ≤ 1} ⊂ R3 and let

v(x) =

ˆ 1

0

s ds

|x− p(s)|
x ∈ R3 \ I, (26)

where p(s) = (0, 0, s) ∈ I. Note that v is the potential produced by a charge distribution on
I, whose density linearly varies from 0 to 1. Consequently, we have ∆v = 0 in R3 \ I, and in
particular, v ∈ C∞(R3 \ I). It is easy to compute

v(x) = |x− p(1)| − |x|+ x3 log(1− x3 + |x− p(1)|)− x3 log(−x3 + |x|). (27)

We will be interested in the behaviour of v(x) as x→ 0. First of all, since −x3 + |x| ≥ 2|x3|
for x3 ≤ 0, if we send x → 0 while keeping x3 ≤ 0, then v(x) → 1. To study what happens
when x3 > 0, we write

v(x) = v0(x)− x3 log
(
|x1|2 + |x2|2

)
, (28)

with
v0(x) = |x− p(1)| − |x|+ x3 log(1− x3 + |x− p(1)|) + x3 log(x3 + |x|). (29)

The function v0 is continuous in R3 \ {0, p(1)} with v0(x) → 1 as x → 0. Moreover, if we
send x → 0 in the region |x1|2 + |x2|2 ≥ |x3|n with some n, then we still have v(x) → 1.

On the other hand, if we send x → 0 along a curve with |x1|2 + |x2|2 = e−α/x3 for some
constant α > 0, then we have v(x)→ 1 + α. We also note that because of the singularity at
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x1 = x2 = 0 of the last term in (28), we see that v(x) → +∞ as x approaches I \ {0}. Now
we define Ω = {x : v(x) < 1 +α}∩B1 with a sufficiently large α > 0. Then although v(0) can
be defined so that v is continuous on ∂Ω, it is not possible to extend v to a function in C(Ω).

Next, consider the Dirichlet problem ∆u = 0 in Ω, and u = v on ∂Ω. Let M = ‖u−v‖L∞(Ω),

and for ε > 0, let Ωε = Ω \Bε. Then the function

w(x) =
Mε

|x|
± (u(x)− v(x)), (30)

satisfies ∆w = 0 in Ωε and w ≥ 0 on ∂Ωε. By the minimum principle, we have w ≥ 0 in Ωε,
which means that

|u(x)− v(x)| ≤ Mε

|x|
, x ∈ Ωε. (31)

Since ε > 0 is arbitrary, we conclude that u = v. �

If p is an isolated boundary point, i.e., if p is the only boundary point in a neighbourhood
of it, then as Zaremba observed, one cannot specify a boundary condition at p because it
would be a removable singularity for the harmonic function in the domain. It is shown by
Osgood in 1900 that this is the only possible way for a boundary point of a two dimensional
domain to be irregular.

Theorem 11 (Osgood 1900). Let Ω ⊂ R2 be open and let p ∈ ∂Ω be contained in a component
of R2 \ Ω which has more than one point (including p). Then p is regular.

Proof. It will be convenient to identify R2 with the complex plane C, and without loss of
generality, to assume that p = 0. Let w ∈ C be another point so that both p and w are
contained in the same connected component of C\Ω. After a possible scaling, we can assume
that |w| > 1. Moreover, since regularity is a local property, we can restrict attention to the
unit disk D = {z ∈ C : |z| < 1}, that is, we assume that Ω ⊂ D. Let z0 ∈ Ω and consider a
branch of logarithm near z0. This branch can be extended to Ω as a single-valued function, for
if it were not, there must exist a closed curve in Ω that goes around the origin. However, it is
impossible because there is a connected component of C \Ω that contains 0 and w. Denoting
the constructed branch by log, we claim that ϕ(z) = Re(log z)−1 is a barrier. Since log z is a
holomorphic function that vanishes nowhere in Ω, we have ∆ϕ = 0 in Ω. Moreover, we have
ϕ(z) → 0 as z → 0 and ϕ < 0 in Ω because Re(log z) = log |z| and |z| < 1 for z ∈ Ω. This
shows that ϕ is indeed a barrier at 0. �

4. The Dirichlet energy

In this section, we will be introduced to the problem of minimizing the Dirichlet energy

E(u) =

ˆ
Ω
|∇u|2, (32)

subject to the boundary condition u|∂Ω = g. Recall from the introduction that this approach
to the Dirichlet problem was originally suggested around 1847 by William Thomson and
Gustav Lejeune-Dirichlet. We start with some simple observations.

Lemma 12. Let Ω ⊂ Rn be an open set and let u ∈ C2(Ω) satisfy E(u) <∞.

• If ∆u = 0 in Ω, then E(u+ v) > E(u) for all nontrivial v ∈ D(Ω).
• Conversely, if E(u+ v) ≥ E(u) for all v ∈ D(Ω), then ∆u = 0 in Ω.

Proof. Let v ∈ D(Ω) and let ε ∈ R. Then we have

E(u+ εv) = E(u) + 2ε

ˆ
Ω
∇u · ∇v + ε2E(v) = E(u)− 2ε

ˆ
Ω
v∆u+ ε2E(v), (33)
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by Green’s first identity and the fact that supp v is compact. The first assertion of the lemma
follows by putting ∆u = 0 and ε = 1. For the second assertion, note that

2ε

ˆ
Ω
v∆u = E(u)− E(u+ εv) + ε2E(v) ≤ ε2E(v), (34)

for all ε ∈ R, implying that

2
∣∣ˆ

Ω
v∆u

∣∣ ≤ |ε|E(v), and so

ˆ
Ω
v∆u = 0. (35)

Since v is arbitrary and ∆u is continuous, we infer that ∆u = 0 in Ω. �

The second assertion of the preceding lemma tells us that in order to establish existence of
a solution to the Dirichlet problem (13), it suffices to show that E has a minimizer in

A0 = {u ∈ C2(Ω) ∩ C(Ω) : u|∂Ω = g}. (36)

In order to obtain a minimizer, one would start with a sequence {uk} ⊂ A0 satisfying

E(uk)→ µ := inf
v∈A0

E(v) as k →∞, (37)

and then try to show that this sequence (or some subsequence of it) converges to an element
u ∈ A0 with E(u) = µ. Such a sequence is called a minimizing sequence. The difficulty with
this plan is that although one can easily establish the existence of some function u such that
uk → u in a certain sense, the topology in which the convergence uk → u occurs is so weak
that we cannot imply the membership u ∈ A0 from the convergence alone. Initially, e.g., in
the works of David Hilbert and Richard Courant, this difficulty was overcame by modifying
the sequence {uk} without loosing its minimizing property, so as to be able to say more
about the properties of the limit u. However, it was later realized that the following modular
approach is more natural and often better suited for generalization.

• First, we show that E has a minimizer in a class that contains A0 as a subset.
• Then we show that the minimizer we obtained is in fact in A0.

The division of labor described here, that separates existence questions from regularity ques-
tions, has became the basic philosophy of calculus of variations. Already in 1900, Hilbert
proposed existence and regularity questions (for minimization of more general energies) as
two individual problems in his famous list.

In a few sections that follow, we will carry out this program for the Dirichlet energy. Before
setting up the problem, let us look at a counterexample due to Jacques Hadamard, which is
a variation of Friedrich Prym’s example from 1871.

Example 13 (Hadamard 1906). Let D = {x ∈ R2 : |x| < 1}, and let u : D → R be given in
polar coordinates by

u(r, θ) =
∞∑
n=1

n−2rn! sin(n!θ). (38)

It is easy to check that each term of the series is harmonic, and the series converges absolutely
uniformly in D. Hence u is harmonic in D and continuous in D. On the other hand, we have

E(u) =

ˆ
D
|∇u|2 ≥

ˆ 2π

0

ˆ ρ

0
|∂ru(r, θ)|2r dr dθ =

∞∑
n=1

πn!

2n4
ρ2n! ≥

m∑
n=1

πn!

2n4
ρ2n!, (39)

for any ρ < 1 and any integer m. This implies that E(u) = ∞. To conclude, there exists
a Dirichlet datum g ∈ C(∂D) for which the Dirichlet problem is perfectly solvable, but the
solution cannot be obtained by minimizing the Dirichlet energy. There is no full equivalence
between the Dirichlet problem and the minimization problem.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Courant.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Hadamard.html
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We are now ready to enter the full mathematical set up of the problem. With Ω ⊂ Rn a
domain (not necessarily bounded) and g ∈ C(∂Ω), we would like to minimize E over a class
of functions u satisfying the boundary condition u|∂Ω = g. However, in view of Hadamard’s
example, we want to make sure that there is at least one function u such that u|∂Ω = g and that
E(u) <∞. We will implement it by assuming from the beginning that g ∈ C1(Ω)∩C(Ω) and
that E(g) <∞, so that the boundary condition now takes the form u|∂Ω = g|∂Ω. Furthermore,
we want to give some flexibility in the way we impose boundary conditions. To be specific,
we want to include the possibility to require not only the values of u − g vanish at ∂Ω, but
also some or all of the derivatives of u − g vanish at ∂Ω. As a device to enforce boundary
conditions, we will fix once and for all a linear space X satisfying the inclusions

D(Ω) ⊂X ⊂ C1
0 (Ω) ≡ {u ∈ C1(Ω) ∩ C(Ω) : u|∂Ω = 0}. (40)

and we let

A = {u ∈ C1(Ω) ∩ C(Ω) : u− g ∈X }. (41)

Therefore, the choice X = C1
0 (Ω) corresponds to imposing u|∂Ω = g|∂Ω, whereas the choice

X = D(Ω) corresponds to requiring all derivatives of u− g vanish at ∂Ω. The textbook way
of doing this would be to simply take X = D(Ω) from the beginning, which may appear a
bit strange as it is not a priori clear why we need to impose conditions on the derivatives of
u− g near ∂Ω. However, it turns out that any choice of X , so long as D(Ω) ⊂X ⊂ C1

0 (Ω),
would lead to the same outcome. Since we will not prove this equivalence in these notes, to
be transparent, we want to keep the distinction between different choices of X at least for
a while. We remark that the differentiability condition is now C1 in (41) as opposed to C2

in (36), because the Dirichlet energy makes perfect sense for C1 functions. This is not very
relevant, because as we shall see, we will eventually be using an even larger class functions.

The next step is to consider a minimizing sequence. Let

µ = inf
v∈A

E(v). (42)

It is obvious that 0 ≤ µ <∞, because g ∈ A and E(g) <∞. By definition of infimum, there
exists a sequence {uk} ⊂ A satisfying

E(uk)→ µ as k →∞. (43)

We will see that there is a natural topology associated to the energy E in which we have the
convergence uk → u to some function u. However, this topology cannot be very strong, as
the following example illustrates.

Example 14 (Courant). Consider the Dirichlet problem on the unit disk D ⊂ R2 with the
homogeneous Dirichlet boundary condition. The solution is u ≡ 0, which also minimizes the
Dirichlet energy. For k ∈ N, let

uk(r, θ) =


kak for r < e−2k,

−ak(k + log r) for e−2k < r < e−k,

0 for e−k < r < 1,

(44)

given in polar coordinates. These are continuous, piecewise smooth functions with

E(uk) = 2π

ˆ 1

0
|∂ruk|2 r dr = 2πa2

k log r
∣∣e−k

e−2k = 2πka2
k. (45)

Upon choosing ak = k−2/3, we can ensure that {uk} is a minimizing sequence. However,

uk(0) = kak = k1/3 diverges as k → ∞. In any case, observe that uk converges to u ≡ 0 in
some averaged sense.
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Exercise 5. In the context of the preceding example, construct a minimizing sequence of
piecewise smooth functions satisfying the homogeneous boundary condition, which diverges
in a set that is dense in D. Show that this sequence converges to u ≡ 0 in L2.

In order to illustrate the main ideas clearly, before dealing with the Dirichlet energy (32),
we would like to consider the problem of minimizing the modified energy

E∗(u) =

ˆ
Ω

(
|∇u|2 + |u|2

)
. (46)

The admissible set A will stay the same, as in (41), and we will assume that

µ∗ = inf
v∈A

E∗(v) <∞. (47)

If Ω is bounded, µ∗ <∞ if and only if µ <∞, because the second term under the integral in
(46) is integrable for any u ∈ A . One can also show that minimizing E∗ corresponds to the
boundary value problem ∆u = u in Ω and u = g on ∂Ω.

Exercise 6. Establish an analogue of Lemma 12 for the modified energy E∗. In particular,
show that if u ∈ C2(Ω) satisfies E∗(u+ v) ≥ E∗(u) for all v ∈ D(Ω), then ∆u = u in Ω.

Pick a minimizing sequence for E∗, i.e., let {uk} ⊂ A be such that

E∗(uk)→ µ∗ as k →∞. (48)

Note that E(u) = 〈u, u〉∗, where 〈·, ·〉∗ is the symmetric bilinear form given by

〈u, v〉∗ =

ˆ
Ω

(∇u · ∇v + uv) . (49)

Any symmetric bilinear form satisfies the parallelogram law:

〈u− v, u− v〉∗ + 〈u+ v, u+ v〉∗ = 2〈u, u〉∗ + 2〈v, v〉∗, (50)

which reveals that

E∗(uj − uk) = 2E∗(uj) + 2E∗(uk)− 4E∗
(uj + uk

2

)
≤ 2E∗(uj) + 2E∗(uk)− 4µ∗, (51)

where the inequality is because of the fact that
uj+uk

2 ∈ A . Since {uj} is a minimizing
sequence, we have E∗(uj − uk)→ 0 as j, k →∞. We would have said that {uj} is a Cauchy
sequence, for instance, if there was some norm of uj − uk, rather than E∗(uj − uk), that is
going to 0. As it turns out, this is indeed true: The quantity ‖ · ‖H1(Ω) =

√
E∗, that is,

‖ · ‖H1(Ω) given by

‖u‖2H1(Ω) = ‖∇u‖2L2(Ω) + ‖u‖2L2(Ω) =

ˆ
Ω

(
|∇u|2 + |u|2

)
, (52)

is a norm for functions in

C̃1(Ω) = {u ∈ C1(Ω) : ‖u‖H1(Ω) <∞}. (53)

The space C̃1(Ω) is a proper subset of C1(Ω), for instance, by Hadamard’s example, although
much simpler examples can be constructed that exploit growth, rather than oscillation, near
the boundary of Ω. To conclude, (51) implies that the sequence {uj} is Cauchy with respect
to this new norm:

‖uj − uk‖H1(Ω) → 0, as j, k →∞. (54)

The reader must have recognized why we modified the Dirichlet energy: It is precisely to make√
E∗ a norm. For the Dirichlet energy,

√
E is still a norm for functions in C1(Ω) satisfying

the homogeneous boundary condition, but to show this one needs a bit more machinery, in
particular the Friedrichs inequality (Lemma 24 below). Note that since uj − uk satisfies the
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homogeneous boundary condition, this would have been sufficient for us. The Dirichlet energy
E will be taken up after the treatment of E∗ which is a bit simpler.

5. Strong derivatives and weak solutions

Returning back to minimizing E∗, we have shown that any minimizing sequence is a Cauchy
sequence with respect to the norm ‖ · ‖H1(Ω). Now, if C̃1(Ω) was complete with respect to the

norm ‖ · ‖H1(Ω), there would have been u ∈ C̃1(Ω) such that ‖uj − u‖H1(Ω) → 0. However, it

is a fact of life that C̃1(Ω) is not complete with respect to the norm ‖ · ‖H1(Ω).

Exercise 7. Let v(x) = log log(2/|x|) and let vk ∈ C(D) be defined by vk(x) = min{k, v(x)}.
Show that the norms ‖vk‖H1(D) are uniformly bounded. Exhibit a sequence {uk} ⊂ C̃1(D)
that is Cauchy with respect to the norm ‖ · ‖H1(D), whose limit is not essentially bounded.

If we ignore every aspect of the problem except the fact that {uj} is a Cauchy sequence,

the best thing we can do is to consider the completion of C̃1(Ω). What we get in this way is a
member of a large family of function spaces called Sobolev spaces, named in honour of Sergei
Sobolev, who initiated the systematic study of these spaces.

Definition 15. We define the Sobolev space H1(Ω) as the completion of C̃1(Ω) with respect
to the norm ‖ · ‖H1(Ω). We also define H1X as the closure of X ∩ H1(Ω) in H1(Ω). The

space H1D(Ω) is denoted by H1
0 (Ω).

If there is no risk of confusion, we will simply write ‖ · ‖H1 omitting from the notation the
domain Ω, and call this norm the H1-norm. By construction, H1X is a closed subspace of
H1(Ω). For now, H1(Ω) is a space whose elements are equivalence classes of Cauchy sequences.
We want to identify H1(Ω) with a subspace of L2(Ω), which would give us a concrete handle

on H1(Ω). We start with the following observation: If a sequence {φk} ⊂ C̃1(Ω) is Cauchy
with respect to the H1-norm, then each of the sequences {φk} and {∂iφk}, where i = 1, . . . , n,
is Cauchy in L2(Ω). In particular, since L2(Ω) is a complete space, there exists a function
u ∈ L2(Ω) such that φk → u in L2(Ω) as k →∞. This defines a map from H1(Ω) into L2(Ω):
It sends the element of H1(Ω) represented by the sequence {φk} to u ∈ L2(Ω). Let us call this
map J0 : H1(Ω)→ L2(Ω). We will eventually prove that J0 is injective, identifying H1(Ω) as
a subspace of L2(Ω). For the time being, let us look into the range of J0. It is clear that a

function u ∈ L2(Ω) is in the range of J0 if and only if there exist a sequence {φk} ⊂ C̃1(Ω)
and functions vi ∈ L2(Ω) for i = 1, . . . , n, such that

φk → u, and ∂iφk → vi, (i = 1, . . . , n), (55)

with all convergences taking place in L2(Ω). This leads to the concept of strong derivatives,
which is based on approximation.

Definition 16. For u, v ∈ L2
loc(Ω), we say that v = ∂iu in the strong L2-sense, or that v is a

strong L2 derivative of u, if for each compact set K ⊂ Ω, there exists a sequence {φk} ⊂ C1(K)
such that

φk → u and ∂iφk → v as k →∞, (56)

with both convergences taking place in L2(K).

In particular, if u ∈ L2(Ω) is in the range of J0, then u is strongly L2 differentiable.

Example 17. a) Let u ∈ C1(Ω). Then taking the constant sequence φk = u (for all k) shows
that the classical derivative ∂iu is also a strong L2 derivative of u.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Lebesgue.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Lebesgue.html
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b) Let u(x) = |x| for x ∈ R, and let φk(x) =
√
x2 + ε2 with ε = 1/k. Obviously, we have

φk ∈ C∞(R). From the Maclaurin series of
√

1 + x, we get√
x2 + ε2 = |x|

√
1 +

ε2

x2
= |x|(1 + e(x)), |e(x)| ≤ ε2

x2
, (57)

for ε < |x|, and hence∣∣φk(x)− |x|
∣∣ =

∣∣√x2 + ε2 − |x|
∣∣ ≤ ε2

|x|
for |x| > ε. (58)

On the other hand, we have φk(x) ≤
√

2ε for |x| ≤ ε, so thatˆ ε

−ε

∣∣φk(x)− |x|
∣∣2 dx ≤ (4ε2 + 2ε2) · 2ε. (59)

Together with (58) this implies that φk → u in L2
loc(R), becauseˆ a

−a

∣∣φk(x)− |x|
∣∣2 dx ≤ 12ε3 + 2aε, (60)

for any a > 0. Now we look at

φ′k(x) =
x√

x2 + ε2
, (61)

and would like to show that φ′k converges in L2
loc(R) to the sign function

sgn(x) =

{
1 for x > 0,

−1 for x < 0.
(62)

This would show that the sign function is a derivative of the absolute value function in the
strong L2-sense. Since φ′k and sgn are both odd functions, it suffices to consider only the half
line x > 0. We observe that φ′k(x) ≤ 1, and that

1− φ′k(x) =

√
x2 + ε2 − x√
x2 + ε2

≤ ε2

x2
, for |x| > ε, (63)

where we have used (58). Then for any fixed a > 0 and k large (hence ε small), we compute
ˆ a

0
|φ′k(x)− 1|2 dx =

ˆ √ε
0
|φ′k(x)− 1|2 dx+

ˆ a

√
ε
|φ′k(x)− 1|2 dx ≤ 4

√
ε+ aε, (64)

which confirms the desired convergence.

Proceeding further, for each i ∈ {1, . . . , n}, we can define the map Ji : H1(Ω) → L2(Ω)
that captures the L2-limit of ∂iφk as k → ∞, where {φk} is a sequence representing an
element of H1(Ω). The composite map J = (J0, . . . , Jn) : H1(Ω) → L2(Ω)n+1 is clearly
injective, because if limφk = limψk and lim ∂iφk = lim ∂iψk for all i, then the mixed sequence
φ1, ψ1, φ2, ψ2, . . . is Cauchy in H1(Ω), and so the two sequences {φk} and {ψk} represent the
same element of H1(Ω). We see that the injectivity of J0 would follow once we have shown
that for any U ∈ H1(Ω), the components J1U, . . . , JnU are uniquely determined by J0U alone.
The following result confirms this.

Lemma 18. Strong derivatives are unique if they exist. Moreover, if u ∈ L2
loc(Ω) is strongly

L2 differentiable, then we have the integration by parts formulaˆ
Ω
ϕ∂iu = −

ˆ
Ω
u∂iϕ, ϕ ∈ C1

c (Ω). (65)
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Proof. Suppose that both v, w ∈ L2
loc(Ω) are strong L2 derivative of u ∈ L2

loc(Ω). We want
to show that v = w almost everywhere. Let ϕ ∈ C1

c (Ω), and put K = suppϕ. Then there is
a sequence {vk} ⊂ C1(K) such that vk → u and ∂ivk → v as k → ∞, both convergences in
L2(K). From the usual integration by parts, we haveˆ

Ω
vϕ =

ˆ
Ω

(v − ∂ivk)ϕ+

ˆ
Ω
ϕ∂ivk =

ˆ
Ω

(v − ∂ivk)ϕ−
ˆ

Ω
vk∂iϕ, (66)

hence ∣∣ ˆ
Ω
vϕ+

ˆ
Ω
u∂iϕ

∣∣ ≤ ˆ
Ω
|v − ∂ivk||ϕ|+

ˆ
Ω
|u− vk||∂iϕ|

≤ ‖v − ∂ivk‖L2(K)‖ϕ‖L2 + ‖u− vk‖L2(K)‖∂iϕ‖L2 ,

(67)

showing that the formula (65) is valid. The same reasoning applies to w, which means thatˆ
Ω

(v − w)ϕ =

ˆ
Ω

(u− u)∂iϕ = 0. (68)

Since ϕ ∈ C1
c (Ω) is arbitrary, by the du Bois-Reymond lemma (Lemma 27 in §7) we conclude

that v = w almost everywhere. �

Remark 19. The heart of the uniqueness argument was the integration by parts formula (65).
We will see in §8 that in fact the property (65) characterizes strong derivatives.

In terms of the new concepts we have just defined, we can say that the minimizing sequence
{uj} ⊂ A converges to some u ∈ H1(Ω). Moreover, from the definition (41), the sequence
{vk} defined by vk = uk − g is in X , and it is Cauchy in H1(Ω), hence u − g ∈ H1X . We
emphasize here that the only part of the boundary condition that survives the limit process is
u− g ∈ H1X , and this must be understood as a generalized form of the Dirichlet boundary
condition. The energy E∗ is a continuous function on C̃1(Ω) with respect to the H1-norm,
that can be seen, for instance, from the inequality

|E∗(φ)− E∗(ψ)| ≤ ‖φ+ ψ‖H1(Ω)‖φ− ψ‖H1(Ω), φ, ψ ∈ C̃1(Ω). (69)

Hence E∗ can be extended to a continuous function on H1(Ω) in a unique way. Keeping the
notation E∗ for this extension, we have

E∗(u) = E∗(limuj) = limE∗(uj) = µ∗. (70)

We cannot say that u minimizes the energy E∗ over A , because we have not ruled out the
possibility u 6∈ A . What we can say though is that u minimizes E∗ over the set

Ã = {g + v : v ∈ H1X } ⊃ A , (71)

since u − g ∈ H1X and for any w ∈ Ã there is a sequence {wk} ∈ A converging to w in
H1(Ω), meaning that

E∗(w) = E∗(limwk) = limE∗(wk) ≥ µ∗. (72)

Let us now try to derive a differential equation from the minimality of u, as was done in
Lemma 12. It is easy to see that E∗(w) can be calculated by the same formula

E∗(w) =

ˆ
Ω

(
|∇w|2 + |w|2

)
, (73)

also for w ∈ H1(Ω), with ∇w = (∂1w, . . . , ∂nw) understood in the strong L2-sense. In light
of this, we have

E∗(u) ≤ E∗(u+ εv) = E∗(u) + ε2E∗(v) + 2ε

ˆ
Ω

(∇u · ∇v + uv) , (74)
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for ε ∈ R and v ∈ H1X , which then implies that

〈u, v〉H1 :=

ˆ
Ω

(∇u · ∇v + uv) = 0, for all v ∈ H1X . (75)

We cannot go any further because we cannot quite move the derivatives from v to u in such
a low regularity setting (cf. Exercise 6). Until we can prove that u is indeed smooth, we will
have to work with (75) as it is.

Definition 20. If u ∈ H1(Ω) satisfies (75), then we say that u solves ∆u = u in Ω in the
weak sense, or that u is a weak solution of ∆u = u in Ω. In the same spirit, we call (75) the
weak formulation of the equation ∆u = u in Ω.

We have practically proved the following result.

Theorem 21. Let g ∈ H1(Ω). Then there exists a unique u ∈ H1(Ω) satisfying (75) and
u− g ∈ H1X . In other words, there is a unique weak solution of ∆u = u with u− g ∈ H1X .

Proof. For uniqueness, let us start as usual by assuming that there exist two such functions
u1, u2 ∈ H1(Ω). Then w = u1 − u2 ∈ H1X , and by linearity, we haveˆ

Ω
(∇w · ∇v + wv) = 0, (76)

for all v ∈ H1X . Taking v = w gives ‖w‖H1 = 0, hence w = 0.
Existence had already been established, modulo the fact that we now allow g ∈ H1(Ω).

For completeness, let us sketch a proof. We define the admissible set Ã as in (71), and take

a minimizing sequence {uj} ⊂ Ã , that is, a sequence satisfying

E∗(uj)→ µ∗ = inf
v∈Ã

E∗(v). (77)

We have 0 ≤ µ∗ < ∞, since E∗(g) = ‖g‖2H1 < ∞. The argument (51) shows that {uj} is

Cauchy in H1(Ω), and hence there is u ∈ H1(Ω) such that uj → u in H1. By continuity of
E∗, i.e., the argument (70), we have E∗(u) = µ∗. Moreover, the sequence {uj − g} is Cauchy
in H1(Ω), and H1X is a closed subspace of H1(Ω), implying that u− g ∈ H1X . Finally, the
argument (74) confirms that (75) is satisfied. �

Exercise 8 (Stability). Let u1 ∈ H1(Ω) and u2 ∈ H1(Ω) be the weak solutions of ∆u = u
satisfying u1 − g1 ∈ H1

0 (Ω) and u2 − g2 ∈ H1
0 (Ω), where g1, g2 ∈ H1(Ω). Show that

‖u1 − u2‖H1 ≤ ‖g1 − g2‖H1 . (78)

6. Minimization of the Dirichlet energy

We have proved that the energy E∗ attains its minimum over the set Ã , and that the
minimizer is the weak solution to ∆u = u in Ω. If we can show that u is smooth, then this
would imply that ∆u = u pointwise in Ω. Leaving the smoothness question aside for the
moment, now we would like to return to our original goal, that is to minimize the Dirichlet
energy E over Ã . To this end, let us try to imitate and adapt the proof of Theorem 21.
Recall that the admissible set Ã is defined in (71) with some g ∈ H1(Ω). Let {uj} ⊂ Ã be
a minimizing sequence, i.e., let

E(uj)→ µ = inf
v∈Ã

E(v). (79)

We have 0 ≤ µ <∞, since E(g) = ‖∇g‖2L2 <∞. Repeating the argument (51), we find that

‖∇(uj − uk)‖L2 → 0, as j, k →∞. (80)
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As ‖∇ · ‖L2 is only a part of the H1-norm, we cannot directly say that the sequence {uj} is
Cauchy in H1. In particular, the fact that ‖∇v‖L2 = 0 would only mean that v is a constant
function. However, if we know that v = 0 on ∂Ω, then this constant must be 0. This is the
intuitive reason behind the Friedrichs inequality1

‖v‖H1 ≤ c‖∇v‖L2 , v ∈ H1X , (81)

where c > 0 is a constant. Under the assumption that the Friedrichs inequality is true, from
(80) it is immediate that {uj} is Cauchy in H1, because uj − uk ∈ H1X . Proceeding as
in the proof of Theorem 21, we conclude that uj → u in H1 for some u ∈ H1(Ω) satisfying
E(u) = µ and u− g ∈ H1X .

Exercise 9. Show that the function u from the preceding paragraph satisfiesˆ
Ω
∇u · ∇v = 0, for all v ∈ H1X . (82)

Show also that there is a unique u ∈ H1(Ω) satisfying (82) and u− g ∈ H1X . �

Definition 22. If u ∈ H1(Ω) satisfies (82), then we say that u solves ∆u = 0 in Ω in the
weak sense, or that u is a weak solution of ∆u = 0 in Ω. We call (82) the weak formulation of
the equation ∆u = 0 in Ω.

Modulo the proof of Friedrichs’ inequality that will follow, we have established the following.

Theorem 23. Let Ω ⊂ Rn be a bounded domain, and let g ∈ H1(Ω). Then there exists a
unique u ∈ H1(Ω) satisfying u− g ∈ H1X and (82). In other words, there is a unique weak
solution of ∆u = 0 with u− g ∈ H1X .

Now we prove the Friedrichs inequality.

Lemma 24 (Friedrichs inequality). Let Ω ⊂ Rn be a bounded domain. Then we have

‖v‖L2 ≤ diam(Ω)‖∇v‖L2 , for all v ∈ H1C1
0 (Ω). (83)

Proof. First, we will prove the inequality for v ∈ C1
0 (Ω). Let us extend v by 0 outside Ω

so that we have v ∈ C(Rn). This function is C1 except possibly at ∂Ω. Without loss of
generality, assume that Ω ⊂ (0, a)n for some a > 0. Then for x ∈ Ω, we have

|v(x)| =
∣∣ˆ xn

0
∂nv(x′, t) dt

∣∣ ≤ ˆ a

0
|∂nv(x′, t)| dt, (84)

where x = (x′, xn) with x′ = (x1, . . . , xn−1) ∈ Rn−1. The function t 7→ |∂nv(x′, t)| is Riemann
integrable because it has at most countable many discontinuities. Now using the Cauchy-
Bunyakowsky-Schwarz inequality and squaring, we get

|v(x)|2 ≤ a
ˆ a

0
|∂nv(x′, t)|2 dt, (85)

which, upon integrating along x′ = const, givesˆ a

0
|v(x′, t)|2 dt ≤ a2

ˆ a

0
|∂nv(x′, t)|2 dt. (86)

Then we integrate over x′ ∈ (0, a)n−1, and obtainˆ
Ω
|v|2 =

ˆ
(0,d)n

|v|2 ≤ a2

ˆ
(0,a)n

|∂nv|2 = a2

ˆ
Ω
|∂nv|2 ≤ a2

ˆ
Ω
|∇v|2. (87)

This establishes the inequality for v ∈ C1
0 (Ω).

1It is sometimes called the Poincaré inequality, although the latter term is used more commonly to refer to
the same inequality for functions v ∈ H1(Ω) with vanishing mean.
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Now let v ∈ H1
0 (Ω). Then by definition there exists a sequence {vk} ⊂ C1

0 (Ω) such that
vk → v in H1(Ω). The triangle inequality gives

‖v‖L2 ≤ ‖vk‖L2 + ‖v − vk‖L2 ≤ a‖∇vk‖L2 + ‖v − vk‖L2

≤ a‖∇v‖L2 + a‖∇vk −∇v‖L2 + ‖v − vk‖L2 ,
(88)

and since the last two terms can be made arbitrarily small, the lemma follows. �

7. Interior regularity: Weyl’s lemma

Now that we have established the existence of a minimizer for the Dirichlet energy, in this
section, we want to look at how smooth the minimizer is, and if the minimizer satisfies the
equation ∆u = 0 in the classical sense. Both questions can be answered simultaneously and
affirmatively, as was done by Hermann Weyl in 1940.

Our approach will be to construct a sequence {uj} of harmonic functions such that uj → u
in L1

loc, which would then establish the desired result since harmonic functions are closed
under the convergence in L1

loc. To construct such an approximating sequence, we will employ
the technique of mollifiers due to Jean Leray, Sergei Sobolev and Kurt Otto Friedrichs, as
it is also useful in many other problems. Let ρ ∈ D(B1) where B1 ⊂ Rn is the unit ball,
satisfying ρ ≥ 0 and

´
ρ = 1. Then we define ρε ∈ D(Bε) for ε > 0 by

ρε(x) = ε−nρ(x/ε). (89)

It is easy to see that
´
ρε = 1. Given u ∈ L1

loc(Ω) with Ω ⊂ Rn open, let

uε(x) =

ˆ
Ω
ρε(x− y)u(y) dy, x ∈ Ω. (90)

Note that for each x ∈ Ω, the integral defining uε(x) makes sense for all sufficiently small
ε > 0. The function uε could be called a mollified version of u, because it is the outcome of
a local averaging process, and as we shall see, uε is a smooth function.

Theorem 25. In this setting, we have the followings.

a) If u ∈ C(Ω), then uε → u locally uniformly as ε→ 0.
b) If u ∈ Lqloc(Ω) for some 1 ≤ q <∞, then uε → u in Lqloc(Ω) as ε→ 0.

Proof. a) Making use of the facts
´
ρε = 1 and ρε ≥ 0, we can write

|u(x)− uε(x)| ≤
ˆ

Ω
ρε(x− y)|u(x)− u(y)| dy ≤ sup

y∈Bε(x)
|u(x)− u(y)| = ω(x, ε), (91)

where the last equality defines the function ω : K × (0, ε0) → R, with K ⊂ Ω an arbitrary
compact set and ε0 > 0 small, depending on K. Since u is continuous, ω is continuous in
K×(0, ε0), and moreover ω can be continuously extended to K× [0, ε0) with ω(·, 0) = 0. This
shows that ω(x, ε)→ 0 as ε→ 0 uniformly in x ∈ K, and part a) follows.

b) Let K ⊂ Ω and K ′ ⊂ Ω be compact sets, with K contained in the interior of K ′. Then
the Hölder inequality gives

|uε(x)|q ≤
( ˆ

ρε
)q−1

ˆ
K′
ρε(x− y)|u(y)|q dy, (92)

and integrating over x ∈ K, we getˆ
K
|uε|q ≤

ˆ
K′

( ˆ
K
ρε(x− y) dx

)
|u(y)|q dy ≤

ˆ
K′
|u|q, (93)

for small ε > 0. Now let δ > 0 be an arbitrary small number, and let φ ∈ C(K ′) be such
that ‖φ− u‖Lq(K′) < δ. The existence of such φ is guaranteed by the standard density result,

http://www-history.mcs.st-andrews.ac.uk/Biographies/Weyl.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Leray.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Friedrichs.html
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which we recall below in Lemma 26. From the bound we just proved, taking into account the
linearity of the mollification process, we have

‖φε − uε‖Lq(K) ≤ ‖φ− u‖Lq(K′) < δ. (94)

Finally, we use the triangle inequality to obtain

‖uε − u‖Lq(K) ≤ ‖uε − φε‖Lq(K) + ‖φε − φ‖Lq(K) + ‖φ− u‖Lq(K)

< ‖φε − φ‖Lq(K) + 2δ

≤ vol(K)1/q sup
K
|φε − φ|+ 2δ,

(95)

which, by part a), implies that ‖uε − u‖Lq(K) < 3δ for all sufficiently small ε, and since δ > 0
is arbitrary, the claim follows. �

We now give a proof of the density result we have used.

Lemma 26. Let K ⊂ Rn be a compact set, and let 1 ≤ q <∞. Then the space of continuous
functions on K is dense in Lq(K).

Proof. Strictly speaking, an element of Lq(K) is an equivalence class of functions that differ on
sets of measure zero. We assume that g : K → R is a member of such an equivalence class, and
shall prove that for any ε > 0, there is v ∈ C(K) such that ‖g− v‖Lq(K) < ε. This will suffice
since for any other member g̃ of the same class, it holds that ‖g − v‖Lq(K) = ‖g̃ − v‖Lq(K).
By decomposing g into its positive and negative parts, we can assume that g takes only
nonnegative values, i.e., that g : K → [0,∞). Then for m ∈ N, we define

vm =
22m−1∑
k=0

k

2m
χAk

+ 2mχB, (96)

where Ak = {x ∈ K : k
2m < g(x) ≤ k+1

2m } and B = {x ∈ K : g(x) > 2m}. For any set S,
the characteristic function χS is defined as χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. By
construction, the sequence vm is nondecreasing, and vm → g pointwise. Since g is measurable,
the sets Ak and B are also measurable, and so are the functions vm. Moreover, we have

|g − vm|q ≤ 2q−1|g|q + 2q−1|vm|q ≤ 2q|g|q, (97)

which, combined with Lebesgue’s dominated convergence theorem, implies that

‖g − vm‖qLq(K) =

ˆ
K
|g − vm|q → 0, as m→∞. (98)

Thus, the functions of the form (96), that is, the simple functions, are dense in Lq(K). To
complete the proof, it suffices to approximate simple functions by continuous functions, or
simpler still, approximate the characteristic function of an arbitrary measurable set A ⊂ K
by continuous functions. By regularity of the Lebesgue measure, for any given ε > 0, there
exist a compact set K and an open set O ⊂ Rn, such that K ⊂ A ⊂ O and |O \K | < ε,
where | · | denotes the Lebesgue measure. Now we define

f(x) =
dist(x,Rn \ O)

dist(x,K ) + dist(x,Rn \ O)
, x ∈ Rn, (99)

where dist(x,B) = infy∈B |x − y| for any set B ⊂ Rn. We have 0 ≤ f ≤ 1 everywhere,
f(x) = 1 for x ∈ K and f(x) = 0 for x ∈ Rn \ O. Therefore

‖χA − f‖qLq(K) ≤ ‖χA − f‖
q
Lq(Rn) =

ˆ
Rn

|χA − f |q ≤ |O \K | < ε, (100)

and moreover, f is continuous because of the property

|dist(x,B)− dist(y,B)| ≤ |x− y|, x, y ∈ Rn, (101)
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which holds for any set B ⊂ Rn. The proof is completed. �

As a simple application of mollifiers, let us prove the following important result known as the
fundamental lemma of calculus of variations, which is attributed to Paul du Bois-Reymond.

Lemma 27 (du Bois-Reymond). Let u ∈ L1
loc(Ω) and letˆ

Ω
uϕ = 0 for all ϕ ∈ D(Ω). (102)

Then u = 0 almost everywhere in Ω.

Proof. Since mollification (90) is the integration against a function from D(Ω) for small ε > 0,
it follows that uε(x) = 0 eventually for each x ∈ Ω. Let K ⊂ Ω be a compact set. Then uε
converges to u in L1(K), meaning that u = 0 almost everywhere in K. As K ⊂ Ω was an
arbitrary compact set, we conclude that u = 0 almost everywhere in Ω. �

In order to study differentiability properties of uε, we need to be able to differentiate an
integral with respect to a parameter. The following result is appropriate for our purposes.

Theorem 28 (Leibniz rule, version 2). Let Ω ⊂ Rn be a measurable set, and let I ⊂ R be an
open interval. Suppose that f : Ω× I → R is a function satisfying

• f(·, t) ∈ L1(Ω) for each fixed t ∈ I,
• f(y, ·) ∈ C1(I) for almost every y ∈ Ω,
• There is g ∈ L1(Ω) such that |ft(y, t)| ≤ g(y) for almost every y ∈ Ω and for each
t ∈ I, where ft is the derivative of f with respect to t ∈ I.

Then the function F : I → R defined by

F (t) =

ˆ
Ω
f(y, t) dy (t ∈ I), (103)

satisfies F ∈ C1(I), and

F ′(t) =

ˆ
Ω
ft(y, t) dy, t ∈ I. (104)

Proof. First, we claim that

G(t) =

ˆ
Ω
ft(y, t) dy, t ∈ I, (105)

is continuous in t. Since ft(y, t)− ft(y, s)→ 0 as |t− s| → 0 for almost every y, it suffices to
bound |ft(y, t)− ft(y, s)| by an integrable function, uniformly in s and t. But this is exactly
what we have assumed in the third bulleted item.

Now let a ∈ I be an arbitrary but fixed point. Since G is continuous on I, from the
fundamental theorem of calculus we have

G(t) =
d

dt

ˆ t

a
G(s) ds, (106)

which leads to ˆ
Ω
ft(y, t) dy =

d

dt

ˆ t

a

ˆ
Ω
ft(y, s) dy ds

=
d

dt

ˆ
Ω

ˆ t

a
ft(y, s) ds dy

=
d

dt

ˆ
Ω

(f(y, t)− f(y, a)) dy

=
d

dt

ˆ
Ω
f(y, t) dy,

(107)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Du_Bois-Reymond.html
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where we have used Fubini’s theorem in the second equality and the fundamental theorem of
calculus for almost every y ∈ Ω in the third equality. �

Exercise 10. Show that the preceding theorem is true when Ω is an arbitrary complete measure
space. Moreover, in the context of the theorem, replace the conditions on f by

• f(·, t) ∈ L1(Ω) for almost every t ∈ I,
• f(y, ·) is absolutely continuous on I, for almost every y ∈ Ω,
• ft ∈ L1(Ω× I),

and prove that F is absolutely continuous on I and F ′ = G almost everywhere on I, where
G is as in (105).

Corollary 29. In the context of mollification, cf. (89) and (90), let u ∈ L1
loc(Ω) and let

K ⊂ Ω be a compact set. Then for all sufficiently small ε > 0, we have uε ∈ C∞(K) and

∂αuε(x) =

ˆ
Rn

∂αρε(x− y)u(y) dy (x ∈ K), (108)

for any α ∈ Nn0 .

Proof. What we need to show is for φ ∈ D(Bε) with ε > 0 sufficiently small,

∂

∂xi

ˆ
Rn

φ(x− y)u(y) dy =

ˆ
Rn

∂

∂xi
φ(x− y)u(y) dy (x ∈ K). (109)

With t = xi, the conditions are easily verified. For instance, we have∣∣ ∂
∂xi

φ(x− y)u(y)
∣∣ ≤ |u(y)| sup

Bε

|∂iφ|, (110)

which confirms the condition after the third bullet point. �

Now we can prove the main result of this section, the result known as Weyl’s lemma.

Lemma 30 (Weyl 1940). Let Ω ⊂ Rn be an open set, and let u ∈ H1(Ω) satisfyˆ
Ω
∇u · ∇ϕ = 0, for all ϕ ∈ D(Ω). (111)

Then up to a modification on a set of measure zero, u is harmonic in the classical sense. In
particular, we have u ∈ Cω(Ω).

Proof. For ε > 0, let uε be the mollified version of u, cf. (89) and (90). Let K ⊂ Ω be
a compact set, and let ε > 0 be sufficiently small. Then from Corollary 29, we know that
uε ∈ C∞(K), and

∆uε(x) =

ˆ
∆ρε(x− y)u(y) dy (x ∈ K). (112)

Developing this further, we get

∆uε(x) =

ˆ
∆ρε(x− y)u(y) dy =

ˆ
∆yρε(x− y)u(y) dy

= −
ˆ
∇yρε(x− y) · ∇u(y) dy = 0,

(113)

where we have used integration by parts for strong derivatives in the second equality, and the
property (111) in the last equality. We also have used ∆y and ∇y to indicate that the implied
derivatives are with respect to the y variable. Hence the functions uε are harmonic in K.

On the other hand, Theorem 25b) tells us that uε → u in L1(K) as ε→ 0. From the mean
value property, it is easy to see that {uε} forms a Cauchy sequence in the uniform norm on any
compact set contained in the interior of K. This shows that uε converges locally uniformly to
some harmonic function w in the interior of K. But uε also converges to u in L1(K), which
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means that u = w almost everywhere in K. As K ⊂ Ω was an arbitrary compact set, we
conclude that u = w almost everywhere in Ω, with w a harmonic function in Ω. �

Exercise 11. Show that if u ∈ L1
loc(Ω) satisfiesˆ

Ω
u∆ϕ = 0, for all ϕ ∈ D(Ω), (114)

then u is harmonic in the classical sense.

8. Weak derivatives

Recall that for functions u, v ∈ L2
loc(Ω), we say v = ∂iu strongly in L2 if for each compact

set K ⊂ Ω, there exists a sequence {φk} ⊂ C1(K) such that φk → u and ∂iφk → v in L2(K).
Strong derivatives are defined in terms of approximation. In order to show that a particular
function is strongly differentiable by using the definition directly, one needs to construct a
suitable approximating sequence, cf. Example 17. On the other hand, in the process of
showing that string derivatives are unique, in Lemma 18 we proved that strong derivatives
satisfy an integration by parts formula, namelyˆ

Ω
ϕ∂iu = −

ˆ
Ω
u∂iϕ, ϕ ∈ C1

c (Ω). (115)

We can turn this around and introduce a new concept of derivative, which is a priori more
general than strong derivatives.

Definition 31. For u, v ∈ L1
loc(Ω), we say v = ∂iu in the weak sense, or that v is a weak

derivative of u, if ˆ
Ω
vϕ = −

ˆ
Ω
u∂iϕ, (116)

for all ϕ ∈ D(Ω).

Weak derivatives are defined in terms of duality. It is immediate from the du Bois-Reymond
lemma that the weak derivatives are unique.

Example 32. a) Let us try to find the weak derivative of u(x) = |x|, x ∈ R. We have
ˆ
R
|x|ϕ′(x) dx = −

ˆ 0

−∞
xϕ′(x) dx+

ˆ ∞
0

xϕ′(x) dx

=

ˆ 0

−∞
ϕ(x) dx−

ˆ ∞
0

ϕ(x) dx

= −
ˆ
R
ϕ(x) sgn(x) dx,

(117)

for ϕ ∈ D(R), implying that |x|′ = sgn(x) in the weak sense. Note that as expected, the
result is the same as that of Example 17.

b) Suppose that v ∈ L1
loc(R) is the weak derivative of sgn. Then we would have

ˆ
R
v(x)ϕ(x) dx = −

ˆ
R
ϕ′(x) sgn(x) dx = −

ˆ ∞
0

ϕ′(x) dx+

ˆ 0

−∞
ϕ′(x) dx = 2ϕ(0), (118)

for ϕ ∈ D(R). In particular, it is true for ϕ ∈ D(R \ {0}), which by the du Bois-Reymond
lemma implies that v = 0 almost everywhere in R \ {0}. This of course means that v = 0
almost everywhere in R, and for such functions, the integral in the left hand side of (118) is
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equal to 0. Hence (118) cannot be satisfied if ϕ(0) 6= 0, meaning that the sign function is not
weakly differentiable.2

The following theorem shows that in the L2-context, strong and weak derivatives coincide.

Theorem 33 (Friedrichs 1944). Let u, v ∈ L2
loc(Ω). Then v = ∂iu in the strong L2-sense if

and only if v = ∂iu in the weak sense.

Proof. The integration by parts formula (115) that we proved in Lemma 18 shows that if
v = ∂iu in the strong L2-sense, then v = ∂iu also in the weak sense.

Let v = ∂iu in the weak sense, and let K ⊂ Ω be a compact set. We will employ the
technique of mollifiers, cf. (89) and (90). Let uε and vε be the mollified versions of u and v,
respectively. We know that uε → u and vε → v in L2(K) as ε→ 0. What remains is to show
that ∂iuε → v in L2(K) as ε→ 0, but it follows from

∂iuε(x) =

ˆ
Rn

∂

∂xi
ρε(x− y)u(y) dy = −

ˆ
Rn

∂

∂yi
ρε(x− y)u(y) dy

=

ˆ
Rn

ρε(x− y)v(y) dy = vε(x),

(119)

where in the third equality we have used the fact that v is the weak derivative of u. �

Definition 34. We define the Sobolev space W 1,2(Ω) as

W 1,2(Ω) = {u ∈ L2(Ω) : ∂iu ∈ L2(Ω), i = 1, . . . , n}, (120)

and equip it with the norm ‖ · ‖H1 .

Theorem 35 (Meyers-Serrin 1964). For Ω ⊂ Rn open, C∞(Ω)∩H1(Ω) is dense in W 1,2(Ω).
In particular, we have H1(Ω) = W 1,2(Ω).

Proof. Let u ∈ W 1,2(Ω), and let ε > 0. We will show that there exists φ ∈ C∞(Ω) such that
‖u − φ‖H1 ≤ ε. Consider a sequence {Ωk} of bounded domains, such that Ω =

⋃
k Ωk and

Ωk ⊂ Ωk+1 for k = 1, 2, . . .. Moreover, for each k, let χk be a smooth nonnegative function
satisfying suppχk ⊂ Ωk+2 \ Ωk, and globally,

∑
k χk ≡ 1 in Ω. Then for each k, we define

φk = (χku)εk by mollification, with εk > 0 so small that suppφk ⊂ Ωk+3 \ Ωk−1 (with the
convention Ω0 = ∅) and ‖φk − χku‖H1 ≤ ε/2k. This is possible because χku ∈ W 1,2(Ω) and
∂iφk = (∂i(χku))εk . Finally, we define φ =

∑
k φk. There is no issue of convergence because

the sum is locally finite. We have

‖u− φ‖H1 ≤ ‖
∑

k(χku− φk)‖H1 ≤
∑

k ‖χku− φk‖H1 ≤ ε, (121)

which establishes the proof. �

9. Boundary values of weak solutions

To summarize what we have accomplished so far on the Dirichlet problem with the Sobolev
space approach, for any given g ∈ H1(Ω) with Ω ⊂ Rn a bounded domain, we have constructed
a harmonic function u ∈ H1(Ω) satisfying u− g ∈ H1X . Recall from (40) that X is a linear
space satisfying

D(Ω) ⊂X ⊂ C1
0 (Ω) ≡ {u ∈ C1(Ω) ∩ C(Ω) : u|∂Ω = 0}, (122)

and from Definition 15 that H1X is the closure of X ∩ H1(Ω) in H1(Ω). We also know
from Weyl’s lemma that u is harmonic in the classical sense in Ω. From now on, we will
only consider the case X = D(Ω), and hence H1X = H1

0 (Ω). This is because the choice

2However, we have sgn′ = 2δ in the sense of distributions. From this perspective, the reason why sgn is not
weakly differentiable is that by definition weak derivatives are locally integrable functions and δ is not a locally
integrable function.
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X = D(Ω) is simpler and already enough to guarantee harmonicity of u in the interior of the
domain. Moreover, although we do not give a proof, it is true that H1X does not depend on
X , as long as it satisfies (122).

The condition u−g ∈ H1
0 (Ω) is supposed to be a generalized form of the Dirichlet boundary

condition (u− g)|∂Ω = 0. We want to clarify what it would mean, at least when ∂Ω is not so
irregular. To get some insight, let us consider the one dimensional case first.

Lemma 36. Let u ∈ H1
0 (Σ), with Σ = (0, 1). Then there is w ∈ C(Σ̄) with w(0) = w(1) = 0

such that u = w almost everywhere in Σ.

Proof. There exists a sequence {uk} ⊂ D(Σ) such that uk → u in H1. From the fundamental
theorem of calculus, for v ∈ D(Σ) and for 0 < h < 1 we have

v(h) =

ˆ h

0
v′(t) dt, (123)

which implies that

|v(h)|2 ≤ h
ˆ h

0
|v′(t)|2 dt ≤ h‖v′‖2L2 . (124)

Applying this inequality to the differences uj − uk, we conclude that {uk} is Cauchy in the
uniform norm on I and that uk → w uniformly for some w ∈ C(I). This means that u = w
almost everywhere. We want to see if the boundary value w(0) can be defined. By continuity,
we have

|w(h)| ≤
√
h‖u′‖L2 ≤

√
h‖u‖H1 , (125)

and so

w(0) = lim
h→0

w(h) = 0, (126)

establishing the lemma. �

Now we look at the two dimensional case, where a new phenomenon arises.

Lemma 37. Let Σ = (0, 1) and Q = Σ × Σ. For 0 < h < 1, define γh : D(Q) → D(Σ) by
(γhϕ)(x) = ϕ(x, h). Then γh can be uniquely extended to a bounded map γh : H1

0 (Q)→ L2(Σ),
and for u ∈ H1

0 (Q), we have γhu→ 0 in L2(Σ) as h→ 0.

Proof. For v ∈ D(Q) and for 0 < h < 1 we have

v(x, h) =

ˆ h

0
∂yv(x, t) dt, (127)

which implies that

|v(x, h)|2 ≤ h
ˆ h

0
|∂yv(t)|2 dt ≤ h

ˆ 1

0
|∂yv(x, t)|2 dt, (128)

and upon integrating over x, thatˆ 1

0
|v(x, h)|2 dx ≤ h

ˆ
Q
|∂yv(x, t)|2 dt dx ≤ h‖∇v‖2L2(Q). (129)

This means that ‖γhv‖L2(Σ) ≤
√
h‖v‖H1(Q) and that γh can be uniquely extended to a bounded

map γh : H1
0 (Q)→ L2(Σ). �

The map γh in the preceding lemma is called the trace map, in the sense that functions
defined on Q leave their traces on the lower dimensional manifold Σ×{h}. Then the boundary
trace γ0u of u is defined in terms of the limit γhu as h→ 0.
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Example 38. Let u ∈ D(Q) be a function with γhu 6≡ 0 for some 0 < h < 1, and let φ ∈ D(R)
be a function satisfying φ(0) = 1 and 0 ≤ φ ≤ 1. Then vk(x, y) = u(x, y)[1 − φ(k(y − h))]
satisfies vk ∈ D(Q) and γhvk = 0. Moreover, it is easy to see that vk → u in L2(Q), because
the area of the region on which vk differs from u shrinks to 0. This shows that the trace
map γh cannot be extended to L2(Q) as a continuous map, because γhvk = 0 for all k, while
γhuk = γhu 6≡ 0 for the constant sequence uk = u.

Example 39. Let φ ∈ D(R) be an even function with φ(0) = 1, and let u(ρ, ϕ, z) = φ(ρ/z)
be defined in the region {0 < z < 1} ⊂ R3 in cylindrical coordinates. Then γhu = u|z=h
satisfies ‖γhu‖L2(R2) → 0 as h→ 0, because

‖γhu‖2L2(R2) = 2π

ˆ ∞
0
|φ(ρ/h)|2ρ dρ = 2πh2

ˆ ∞
0
|φ(t)|2 t dt. (130)

However, (γhu)(0) = 1 for all h > 0, hence γhu does not go to 0 pointwise. This is an example
where the boundary trace vanishes in the L2-sense, but does not vanish pointwise. Moreover,
we have u ∈ H1({0 < z < 1}), sinceˆ ∞

0
|∂ρu|2ρdρ = z−2

ˆ ∞
0
|φ′(ρ/z)|2ρdρ =

ˆ ∞
0
|φ′(t)|2 t dt, (131)

and ˆ ∞
0
|∂zu|2ρdρ = z−4

ˆ ∞
0
|φ′(ρ/z)|2ρ3 dρ =

ˆ ∞
0
|φ′(t)|2 t3 dt. (132)

Exercise 12. Find a function u ∈ H1
0 (H) where H ⊂ R2 is the upper half plane, whose

boundary trace vanishes in the L2-sense, but does not vanish pointwise.

The general case is not more complicated than the two dimensional case.

Theorem 40. Let Q = (0, 1)n and Σh = (0, 1)n−1 × {h}. Let Ω ⊂ Rn be a domain, and let
Φ : Q̄→ Ω̄ be an injective C1 map, satisfying Φ(Q) ⊂ Ω and Φ(Σ0) ⊂ ∂Ω. With Γh = Φ(Σh)
for 0 < h < 1, define the trace map γh : D(Ω) → C(Γh) by γhϕ = ϕ|Γh

. Then γh can be
uniquely extended to a bounded map γh : H1

0 (Ω)→ L2(Γh), and moreover, for u ∈ H1
0 (Ω) we

have ‖γhu‖L2(Γh) → 0 as h→ 0.

Proof. Let X = {v ∈ C1(Q̄) : v|Σ0 = 0}, and define γ̂h : X → C(Σh) by γ̂hv = v|Σh
. Then as

in the preceding lemma, we have ‖γ̂hv‖L2(Σh) ≤
√
h‖∇v‖L2(Q) for v ∈ X. Now let u ∈ D(Ω).

Then the pull-back û = Φ∗u defined by û(x̂) = u(Φ(x̂)) satisfies û ∈ X. Moreover, from the
transformation properties of the first derivatives, we have

‖∇û‖L2(Q) ≤ c‖∇u‖L2(Ω), where c = sup
Q
| detDΦ|−

1
2 |DΦ|, (133)

and |DΦ| is the spectral norm of the Jacobian matrix DΦ. We also have

‖γhu‖L2(Γh) ≤ c′‖γ̂hû‖L2(Σh), (134)

where c′ depends only on the Jacobian DΦ. Combining all three estimates, we infer

‖γhu‖L2(Γh) ≤ C
√
h‖∇u‖L2(Ω), (135)

and the theorem follows. �

Finally, we include a complementary result which basically says that if a function u ∈ H1
0 (Ω)

is continuous at a boundary point z ∈ ∂Ω, then u(z) = 0.

Lemma 41 (Nirenberg 1955). In the setting of the preceding theorem, let u ∈ H1
0 (Ω), and let

u be continuous at z ∈ Φ(Σ0). Then u(z) = 0.
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Proof. Without loss of generality we assume that Ω = {x ∈ Rn : |x| < 1, xn > 0} and z = 0.
Let u ∈ D(Ω), and with h > 0, let E = B × (0, h) ⊂ Ω be a cylinder, where B ⊂ Rn−1 is a
ball centred at 0 whose volume is |B| = h. For x ∈ E, we have

|u(x)| =
∣∣ˆ xn

0
∂nu(x′, t) dt

∣∣ ≤ ˆ h

0
|∂nu(x′, t)|dt, (136)

where x = (x′, xn) with x′ = (x1, . . . , xn−1) ∈ Rn−1. Now using the Cauchy-Bunyakowsky-
Schwarz inequality and squaring, we get

|u(x)|2 ≤ h
ˆ h

0
|∂nu(x′, t)|2 dt, (137)

which, upon integrating along x′ = const, givesˆ h

0
|u(x′, t)|2 dt ≤ h2

ˆ h

0
|∂nu(x′, t)|2 dt. (138)

Then we integrate over x′ ∈ B, and obtainˆ
E
|u|2 ≤ h2

ˆ
E
|∂nu|2 ≤ h2

ˆ
E
|∇u|2 = |E|

ˆ
E
|∇u|2, (139)

which means
1

|E|

ˆ
E
|u|2 ≤

ˆ
E
|∇u|2. (140)

The same inequality is true for u ∈ H1
0 (Ω) by density, and the right hand side goes to 0 as

h → 0 by the fact that u ∈ H1(Ω). Since u is continuous at 0, the left hand side goes to
|u(0)|2 as h→ 0, which proves the lemma. �
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