MATH 580 ASSIGNMENT 3

DUE MONDAY NOVEMBER 11

- 1. Let $Q = (0,1)^n$ and let $Q_h = (h, 1-h)^n$. For h > 0 small, define the trace map $\gamma_h: C^1(Q) \to C(\partial Q_h)$ by $\gamma_h v = v|_{\partial Q_h}$.
 - a) Prove that γ_h can be uniquely extended to a bounded map $\gamma_h : H^1(Q) \to L^2(\partial Q_h)$.
 - b) Make sense of the boundary trace $\gamma_0 u = \lim_{h \to 0} \gamma_h u$ in $L^2(\partial \hat{Q})$ for $u \in H^1(Q)$.
 - c) Show that $\gamma_0 u = 0$ for $u \in H^1_0(Q)$.
 - d) Let $u \in H_0^1(Q)$ and let u be continuous at 0. Show that u(0) = 0.
- 2. Let $\Omega \subset \mathbb{R}^n$ be a domain, and let $W^{1,1}_{\text{loc}}(\Omega)$ be the set of locally integrable functions whose (weak) derivatives are locally integrable (that is, in $L^1_{loc}(\Omega)$).
 - a) Show that if $u, v \in W^{1,1}_{\text{loc}}(\Omega)$ and $uv, u\partial_i v + v\partial_i u \in L^1_{\text{loc}}(\Omega)$, then $uv \in W^{1,1}_{\text{loc}}(\Omega)$ and $\partial_i(uv) = u\partial_i v + v\partial_i u.$
 - b) Let $\phi: \Omega \to \Omega'$ be a C^1 -diffeomorphism between Ω and Ω' . Show that if $u \in W^{1,1}_{\text{loc}}(\Omega')$ then $v = u \circ \phi \in W^{1,1}_{\text{loc}}(\Omega)$ and $\partial_i v(x) = \sum_j \partial_i \phi_j(x)(\partial_j u)(\phi(x))$, where ϕ_j is the *j*-th component of ϕ , and $(\partial_j u)(\phi(x))$ is the evaluation of $\partial_j u$ at the point $\phi(x)$.

 - c) Let f ∈ C¹(ℝ) with both f and f' bounded, and let u ∈ W^{1,1}_{loc}(Ω). Prove that f ∘ u ∈ W^{1,1}_{loc}(Ω) and that ∂_i(f ∘ u) = (f' ∘ u)∂_iu.
 d) Let u ∈ W^{1,1}_{loc}(Ω) and let u⁺ = max{u, 0} and u⁻ = min{u, 0} pointwise. Prove that ∂_iu⁺ = θ(u)∂_iu and ∂_iu⁻ = θ(-u)∂_iu a.e., where θ is the Heaviside step function. In particular, show that $|u| \in W^{1,p}(\Omega)$ if $u \in W^{1,p}(\Omega)$.
- 3. Let H be a (real) Hilbert space, and let H' be its dual, defined as the space of continuous linear functionals on H. Let us denote the inner product of H by $\langle \cdot, \cdot \rangle$. Observe that any $y \in H$ defines an element $f \in H'$ by $f(x) = \langle y, x \rangle$ for $x \in H$. This defines a map $J: H \to H'$. The Riesz representation theorem (for Hilbert spaces)¹ states that J is invertible, that is, any continuous linear functional on H can be realized through the inner product with an element of H. We would like to prove this theorem by using a variational method. Let $f \in H'$, and let

$$E(x) = \langle x, x \rangle - 2f(x), \qquad x \in H,$$

and consider the problem of finding a minimizer of E over H.

- a) Show that a minimizing sequence for E exists and is Cauchy in H.
- b) Demonstrate that the limit minimizes E over H.

Date: Fall 2013.

¹There is another result called Riesz representation theorem that is about representing linear functionals on a space of continuous functions as measures.

DUE MONDAY NOVEMBER 11

c) Denoting by $y \in H$ the minimizer, show that $\langle y, x \rangle = f(x)$ for all $x \in H$.

- d) Finally, show that y depends continuously on f.
- 4. Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain, and consider the bilinear form

$$a(u,v) = \int_{\Omega} (a_{ij}\partial_i u\partial_j v + cuv),$$

where the repeated indices are summer over, and the coefficients a_{ij} and c are smooth functions on $\overline{\Omega}$, with a_{ij} satisfying the uniform ellipticity condition

$$a_{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2, \qquad \xi \in \mathbb{R}^n, \quad x \in \overline{\Omega},$$

for some constant $\lambda > 0$.

- a) Show that the mapping $A : H_0^1(\Omega) \to [H_0^1(\Omega)]'$, defined by $\langle Au, v \rangle = a(u, v)$, is bounded, where $\langle \cdot, \cdot \rangle$ is the duality pairing between $[H_0^1(\Omega)]'$ and $H_0^1(\Omega)$.
- b) Show that if $c \ge 0$ then

$$\langle Au, u \rangle \ge \alpha \|u\|_{H^1}^2, \qquad u \in H^1_0(\Omega),$$

for some constant $\alpha > 0$. Show also that the inequality is still true (with possibly different $\alpha > 0$) if c is slightly negative.

- c) Supposing that c ≥ 0, show that given f ∈ L²(Ω), there exists a unique function u ∈ H¹₀(Ω) satisfying a(u, v) = ∫_Ω fv for all v ∈ H¹₀(Ω).
 d) Suppose that u ∈ H¹₀(Ω) is sufficiently smooth and satisfies a(u, v) = ∫_Ω fv for all
- d) Suppose that $u \in H_0^1(\Omega)$ is sufficiently smooth and satisfies $a(u, v) = \int_{\Omega} fv$ for all $v \in H_0^1(\Omega)$. What differential equation does u satisfy in Ω ? Is u = 0 on $\partial \Omega$? In the language of variational methods, this is an *essential* boundary condition because it is incorporated into the space $H_0^1(\Omega)$.
- 5. Let a be the bilinear form as in the preceding question.
 - a) Show that the mapping $A : H^1(\Omega) \to [H^1(\Omega)]'$, defined by $\langle Au, v \rangle = a(u, v)$, is bounded, where $\langle \cdot, \cdot \rangle$ is the duality pairing between $[H^1(\Omega)]'$ and $H^1(\Omega)$.
 - b) Show that if c > 0 in $\overline{\Omega}$, then

$$\langle Au, u \rangle \ge \alpha \|u\|_{H^1}^2, \qquad u \in H^1(\Omega),$$

for some constant $\alpha > 0$.

- c) Supposing that the condition in b) holds, show that given $f \in L^2(\Omega)$, there exists a unique function $u \in H^1(\Omega)$ satisfying $a(u, v) = \int_{\Omega} fv$ for all $v \in H^1(\Omega)$.
- d) Suppose that $u \in H^1(\Omega)$ is sufficiently smooth and satisfies $a(u, v) = \int_{\Omega} fv$ for all $v \in H^1(\Omega)$. What differential equation does u satisfy in Ω ? What boundary condition does u satisfy? This is a *natural* boundary condition because it arises from the equation u has to satisfy in the weak sense.
- 6. In the context of the preceding question, assuming $c \equiv 0$, prove that there exists a function $u \in H^1(\Omega)$ satisfying $a(u, v) = \int_{\Omega} fv$ for all $v \in H^1(\Omega)$ if and only if $\int f = 0$. Moreover, show that such a function is unique up to addition of a constant.

 $\mathbf{2}$