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Intuitively, a Minimal Surface is a surface that has minimal area, locally.
First, we will give a mathematical de�nition of the minimal surface. Then, we
shall give some examples of Minimal Surfaces to gain a mathematical under-
standing of what they are and �nally move on to a generalization of minimal
surfaces, called Willmore Surfaces. The reason for this is that Willmore Surfaces
are an active and important �eld of study in Di�erential Geometry. We will end
with a presentation of the Willmore Conjecture, which has recently been proved
and with some recent work done in this area. Until we get to Willmore Surfaces,
we assume that we are in R3.

De�nition 1: The two Principal Curvatures, k1 & k2 at a point p ∈ S,
S⊂ R3 are the eigenvalues of the shape operator at that point. In classical
Di�erential Geometry, k1 & k2 are the maximum and minimum of the Second
Fundamental Form. The principal curvatures measure how the surface bends
by di�erent amounts in di�erent directions at that point. Below is a saddle
surface together with normal planes in the directions of principal curvatures.

De�nition 2: TheMean Curvature of a surface S is an extrinsic measure
of curvature; it is the average of it's two principal curvatures: H ≡ 1

2 (k1 + k2).

De�nition 3: The Gaussian Curvature of a point on a surface S is an
intrinsic measure of curvature; it is the product of the principal curvatures:
K ≡ k1k2 of the given point. The Gaussian Curvature is intrinsic in the sense
that it's value depends only on how distances are measured on the surface, not
on the way it is isometrically embedded in space. Changing the embedding
will not change the Gaussian Curvature. Below, we have a hyperboloid (neg-
ative Gaussian Curvature), a cylinder (zero Gaussian curvature) and a sphere
(positive Gaussian curvature).
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De�nition 4: A surface S⊂ R3 isMinimal if and only if it's mean curvature
is 0. An equivalent statement is that a surface S⊂ R3 is Minimal if and only if
every point p ∈ S has a neighbourhood with least-area relative to its boundary.
Yet another equivalent statement is that the surface is Minimal if and only if
it's principal curvatures are equal in magnitude but necessarily di�er by sign.

De�nition 5: For at a point p ∈ S⊂ R3, if k1 = k2, then p is called an
umbilical point of S. In particular, in a plane, all point are umbilical points. In
addition, it can be proved that if all points of a connected surface are umbilical,
then that surface is entirely contained in a sphere or in a plane.

We shall now give some examples of minimal surfaces. A trivial minimal
surface is the plane itself. Intuitively, it is very easy to see why it has minimal
area locally (and even globally). The �rst non-trivial minimal surface is the
Catenoid, it was discovered and proved to be minimal by Leonhard Euler in
1744. The Catenoid has parametric equations:

x = c cosh v
c cosu

y = c cosh v
c sinu

z = v

It's principal curvatures are:

k1 = 1
c (cosh v

c )−1

k2 = − 1
c (cosh v

c )−1
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In 1776, Jean Baptiste Meusnier discovered the Helicoid and proved that
it was also a minimal surface. The name is derived from the helix; for every
point on the helicoid, there exists a helix in the helicoid which passes through
that point. The Helicoid shares some interesting properties with the Catenoid,
such as the ability to �bend� one into the other without �tearing� the surface.
The Helicoid has parametric equations:

x = ρ cosαθ

y = ρ sinαθ

z = θ

where ρ & θ ∈ (−∞,∞), while α is a constant. It's principal curvatures are:

k1 = 1
(1+p2)

k2 = − 1
(1+p2)
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In 1834, Heinrich Ferdinand Scherk discovered two other minimal surfaces,
which are now named Scherk's First Surface and Scherk's Second Surface.
The �rst surface is doubly periodic while the second is only singly periodic. The
surfaces are conjugate to one another. Below are both surfaces, together with
their parametrizations.

First surface: Second surface:

x(u, v) = a u x(r, v) = a log( r2+2r cos v+1
r2−2r cos v+1 )

y(u, v) = a v y(r, v) = a log( r2−2r sin v+1
r2+2r sin v+1 )

z(u, v) = a ln(cosu sec v) z(r, v) = 2a tan−1( 2r2 sin 2v
r4−1 )

In 1855, as part of his work on minimal regular surfaces, the Belgian mathe-
matician Eugene Charles Catalan created a minimal surface containing an entire
family of parabolae, now called the Catalan Minimal Surface.

x(u, v) = a(u− sin(u) cosh(v))

y(u, v) = a(1− cos(u) cosh(v))

z(u, v) = 4a sin
(
u
2

)
sinh

(
v
2

)
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In 1864, Alfred Enneper discovered a minimal surface conjugate to itself,
now called the Enneper Surface. Below is the surface, together with it's
parametric equations.

x(r, φ) = r cosφ− 1
3r

3 cos 3φ

y(r, φ) = − 1
3r(r

2 sin 3φ+ 3 sinφ

z(r, φ) = r2 cos 2φ

Until now, we have only presented minimal surfaces whose parametrizations
are simple. A more challenging one isCosta's Minimal Surface, discovered by
Celso Costa in 1982. Topologically, it is a thrice-punctured ring torus. Costa's
surface also belongs to D4, the dihedral group of symmetries, in Algebra. While
Costa is the �rst to have imagined the surface, parametrizing it would turn out
to be very di�cult and the �rst parametrization had to wait until 1996. We do
not present it here as it is very complicated and beyond the scope of this paper.
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On the other hand, while intuitively, the sphere minimizes area locally, it
does not have zero mean curvature and is therefore not a minimal surface. The
ring torus is another example of a surface that is not minimal. We will not give
the principal curvatures or mean curvatures for these two, since the calculations
are more complicated. However, while the ring torus is not a minimal surface,
there are two other kinds of tori which are minimal surfaces, the Cli�ord Torus
and the Otsuki Torus. The Otsuki Torus' parametrization is too complicated
so we omit this surface here. However, many properties of Otsuki tori are to be
found in [2]. We present the Cli�ord Torus now and use it as an introduction
to Willmore surfaces. We now leave R3.

The Cli�ord Torus is a special kind of Torus in R4. Since topologically,
C2 ∼= R4, we can view the Cli�ord Torus as sitting inside C2. Every point of the
Cli�ord Torus lies at a �xed distance from the origin and it can therefore also
be embedded in S3. In R4, the Cli�ord Torus is:

S1 × S1 = {(cos θ sin θ cosφ sinφ) | 0 ≤ θ < 2π, 0 ≤ φ < 2π}

The Cli�ord Torus is important as it is used to de�ne the Willmore Con-
jecture, an important conjecture in the Calculus of Variations, which uses it's
stereographic projection into R3. We now present this conjecture.
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A Willmore Surface is a generalization of a minimal surface. Willmore
surfaces Σ in R3 are stationary immersed submanifolds for theWillmore Func-
tional orWillmore Energy. The Willmore Energy is a way of measuring how
much a surface in R3 deviates from a sphere. Essentially, it is a measure of area,
taking it's minimum value at the round sphere. In biology, it is used to study
cell membranes.

W (Σ) =
´

Σ
H2dA

where H is the mean curvature of Σ and dA is the area form. The Willmore
Functionals are the solutions to the Euler-Lagrange Equation:

4H + 2H(H2 −K) = 0

where K is the Gaussian Curvature of Σ. In the Calculus of Variations, the
solutions of the Euler-Lagrange Equation are the functions for which a given
functional is stationary. The minimal surfaces are special cases of Willmore
functionals, and they are, therefore, also solutions to the Euler-Lagrange Equa-
tion. In the early 1960s, Willmore formulated the problem of minimizing the
Willmore functional. However, smooth surfaces which are critical points of the
Willmore functional with respect to normal variations have been studied since
the �rst quarter of the previous century. First, it is easy to see that a natural
lower bound for the Willmore functional is:

W ≥ 4π

for immersed surfaces of any genus, with equality precisely for round embed-
ded spheres. To get this result, we de�ne Σ+ = {x ∈ Σ |K ≥ 0}, where K : Σ→
R is the Gaussian curvature and we use the fact that H2−K = 1

4 (k1−k2)2 ≥ 0.
This gives:

W (Σ) ≥
´

Σ+
H2dA ≥

´
Σ+

KdA ≥ 4π

In the case of equality, we clearly have H2−K = 0. We know that the only
totally umbilic compact surfaces in R3 are round spheres, for which we clearly
have equality (see de�nition 5). However, for surfaces of genus greater than
zero, we expect a bound somewhat stronger than the one above. In particular,
calculations ofW for tori with various symmetries led Willmore to the following
conjecture, in 1965:
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The Willmore Conjecture: Given any smooth immersed torus in R3, the
Willmore functional should be bound by the inequality

W ≥ 2π2

Equality is achieved above for the stereographic projection of the Cli�ord
Torus into R3, given by:

(θ, φ) −→ ((
√

2 + cosφ) cos θ, (
√

2 + cosφ) sin θ, sinφ)

The conjecture has only very recently been proved, despite serious attempts
to solve it. Willmore guessed the correct bound, but we had to wait 47 years for
the actual proof. Li & Yau proved [6] a stronger lower bound than 4π and their
work was later generalized by Peter Topping [5], in a complex Lemma involving
also the area of the surface Σ. We do not state the entire Lemma here, or it's
proof, but only the result of the stronger upper bound:

W ≥ 4kπ

where k is a constant, which varies depending on the surface Σ chosen.
Particularly, the Willmore functional of a surface admitting self-intersections
has an even stronger lower bound:

W ≥ 8π

i.e. k = 2 for such surfaces. Now, in the Willmore Conjecture W = 2π2 <
8π. Therefore, the Willmore Conjecture only needs to be proven for tori that
are embedded. In addition, Rosenberg & Langevin [7] have proven, using the
Gauss-Bonnet Formula:

W (Σ) ≥
´

Σ+
H2dA ≥

´
Σ+

KdA = 1
2

´
Σ
|K|dA ≥ 8π

Therefore, the conjecture only needs to be proven for embedded tori which
are isotopic to the stereographic projection of the Cli�ord Torus into R3, given
above. The existence of a torus which attains this minimum value has been
proven, but unfortunately, this was not su�cient in bringing down the conjec-
ture. We end with a list of special cases in which the Willmore Conjecture has
been proven, including the full result, which was proven in the beginning of this
year.
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1. In the early 1970s, Willmore [8] and independently Shiohama and Takagi
proved the conjecture for tube tori with constant radius. A tube torus
is formed by carrying a small circle around a closed space curve so that
the centre moves along the curve and the plane of the circle is the normal
plane to the curve at each point [9].

2. Hertrich-Jeromin and Pinkall generalized the result above (1) by allowing
the radius of the circle to vary along the curve. This was done in a German
Mathematics Journal which I cannot access (or read), but their work was
mentionned by Willmore.

3. Langer and Singer proved the conjecture for tori of revolution.

4. The work of Li & Yau in �nding a stronger lower bound was mentionned
above and in [6]. In the same paper, they also introduced the concept
of conformal volume and proved the conjecture for tori whose conformal
structure are de�ned by lattices generated by certain classes of vectors. A
special case of two vectors produces the Cli�ord torus.

5. Ros proved in [11] that any immersed torus in S3 which remains invariant
when composed with the antipodal map of S3, produces, after stereo-
graphic projection, a Willmore surface with W = 2π2. Therefore, Ros
proved that there exists a Willmore surface reaching this bound, but not
that this is the lowest any surface admitted by the Willmore functional
can go. The result by Ros, we state formally, followed by a very brief
proof, since the proof relies on other complicated results by Ros:

(a) Theorem [Ros, 1997]: For any compact surface Σ in S3 of odd
genus, which is antipodal invariant, we have

´
Σ

1 + H2dA ≥ 2π2.
Equality holds if and only if Σ is the minimal Cli�ord Torus.

(b) Proof: The genus of Σ is odd. In the same paper, Ros proved that
the antipodal map preserves components in S3 − Σ. Therefore, the
quotient surface Σ′ = Σ/± separates the projective space P3. From
additional results also by Ros,

´
Σ

1 +H2dA = 2
´

Σ′ 1 +H2dA ≥ 2π2,
with equality holding only for the Cli�ord Torus.

6. In February 2012, Fernando Codá Marques and André Neves announced a
full proof of the Willmore conjecture and published it pre-print on arXiv.
The full proof is 96 pages long and relies on advanced notions such as
homotopy.
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