
AN ELEMENTARY INTRODUCTION TO DISTRIBUTIONS

TSOGTGEREL GANTUMUR

Abstract. Textbooks on PDE usually introduce distributions as linear functionals satisfy-
ing certain properties, without saying much about where those conditions come from. The
reason is that it would become a book by itself if one starts with the general setting of
topological vector spaces. We take here an intermediate approach, that regards families of
seminorms on vector spaces as the primary objects to generate topologies.
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1. Introduction

It is well known that differentiation of functions is not a well behaved operation. For
instance, continuous, nowhere differentiable functions exist. The derivative of an integrable
function maybe not locally integrable. A related difficulty is that if a sequence fk converges to
some function f pointwise or uniformly, then in general it is not true that f ′k converges to f ′ in
the same sense. In order to use differentiation freely, one has to restrict to a class of functions
that are many times differentiable, and in the extreme this process leads us to smooth and
analytic classes. The latter classes alleviate the aforementioned difficulties somewhat, but
they are too small and cumbersome for the purposes of studying PDEs. The idea behind
distributions is that instead of restricting ourselves to a small subclass of functions, we should
expand the class of functions to include hypothetical objects that are derivatives of ordinary
functions. This will force us to extend the notion of functions, a process that is not dissimilar
to extending the reals to complex numbers. The analogy can be pushed a bit further, in
that by using distributions, we end up revealing deep and hidden truths even about ordinary
functions that would otherwise be difficult to discover or could not be expressed naturally in
the language of functions. A precise formulation of the theory of distributions was given by
Laurent Schwartz during 1940’s, with some crucial precursor ideas by Sergei Lvovich Sobolev.

To explain what distributions are, we start with a continuous function u ∈ C(R) defined on
the real line R. Let Ckc (R) denote the space of k-times continuously differentiable functions
with compact support, and define

Tu(ϕ) =

∫
uϕ, ϕ ∈ Ckc (R). (1)

We required ϕ to be compactly supported so that the above integral is finite for any continuous
function u. It is clear that Tu is a linear functional acting on the space Ckc (R). Moreover,
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this specifies u uniquely, meaning that if there is some v ∈ C(R) such that Tu(ϕ) = Tv(ϕ)
for all ϕ ∈ Ckc (R), then u = v. If we replace the space C(R) by the space L1

loc(R) of locally
integrable functions, the conclusion would be that u = v almost everywhere, which of course
means that they are equal as the elements of L1

loc(R). So we can regard ordinary functions as

linear functionals on Ckc (R). Then the point of departure now is to consider linear functionals
that are not necessarily of the form (1) as functions in a generalized sense. For example, the
Dirac delta, which is just the point evaluation

δ(ϕ) = ϕ(0), ϕ ∈ Ckc (R), (2)

is one such functional. In order to differentiate generalized functions, let us note that

Tu′(ϕ) =

∫
u′ϕ = −

∫
uϕ′ = −Tu(ϕ′), ϕ ∈ Ckc (R), (3)

for any differentiable function u, and then make the observation that the right hand side
actually makes sense even if u was just a continuous function. This motivates us to define the
derivative of a generalized function T by

T ′(ϕ) := −T (ϕ′), ϕ ∈ Ckc (R). (4)

If we want to get more derivatives of T , we need k to be large, which leads us to consider the
space C∞c (R) of compactly supported smooth functions as the space on which the functionals
T act. This space is called the space of test functions. A distribution (on R) is simply a
continuous linear functional on C∞c (R), the latter equipped with a certain topology. In order
to describe this topology, we need some preparation.

2. Locally convex spaces

In this section, we will discuss how to introduce a topology on a vector space by using a
family of seminorms.

Definition 1. A function p : X → R on a vector space X is called a seminorm if

i) p(x+ y) ≤ p(x) + p(y) for x, y ∈ X, and
ii) p(λx) = |λ|p(x) for λ ∈ R and x ∈ X.

It is called a norm if in addition p(x) = 0 implies x = 0.

The property i) is subadditivity or the triangle inequality, and ii) is positive homogeneity.

Lemma 2. Let p be a seminorm on a vector space X. Then we have

a) p(0) = 0,
b) p(x) ≥ 0,
c) |p(x)− p(y)| ≤ p(x− y), and
d) {x ∈ X : p(x) = 0} is a linear space.

Proof. Part a) follows from positive homogeneity with λ = 0. Then we have

0 = p(0) = p(x− x) ≤ p(x) + p(−x) = p(x) + p(x), (5)

which gives b). While c) is obvious, d) is a consequence of

0 ≤ p(αx+ βy) ≤ |α|p(x) + |β|p(y), (6)

for α, β ∈ R and x, y ∈ X. �

Let X be a vector space, and let P be a family of seminorms on X. Then given a finite
collection p1, . . . , pk ∈P and given ε > 0, let us call the set

By,ε(p1, . . . , pk) = {x ∈ X : pi(x− y) < ε, i = 1, . . . , k}, (7)

the semiball of radius ε, centred at y, corresponding to the seminorms p1, . . . , pk.
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Definition 3. Let X be a vector space, and let P be a family of seminorms on X. Then
we define a topology on X by calling A ⊂ X open if for any x ∈ A, there exists a semiball
Bx,ε(p1, . . . , pk) ⊂ A with p1, . . . , pk ∈ P and ε > 0. We say that (X,P) is a locally convex
space (LCS).

The open sets in (X,P) are precisely those which are the unions of semiballs. It is easy to
verify that X itself is open, intersection of any two open sets is open, and that the union of
any collection of open sets is open. The empty set is open, because any element of the empty
set, of which there is none, satisfies any desired property. Therefore the preceding definition
indeed defines a topology on X, making it a topological space. Note also that the topology
on X does not change if we replace a seminorm p ∈ P by another seminorm p′ satisfying
p(x) ≤ cp′(x) for x ∈ X and for some constant c > 0.

The reason we called X a locally convex space is that it agrees with the same notion from
the theory of topological vector spaces. A topological vector space is a vector space which is
also a topological space, with the property that the vector addition and scalar multiplication
are continuous. Then a topological vector space X is called locally convex if A ⊂ X is open
and if x ∈ A then there is a convex open set C ⊂ A containing x. We choose not to go into
details here, and use families of seminorms as primary objects to specify topological properties
of X. This simplifies presentation and gives a quicker way to achieve our aim, and moreover
does not lose generality, because of the (nontrivial) fact that any locally convex topological
vector space has a family of seminorms that induces its topology.

Recall that a sequence {xk} ⊂ X is said to converge to x ∈ X if for any open set ω ⊂ X
containing x, we have xk ∈ ω for all large k. In terms of seminorms, this is equivalent to
saying that p(xk − x)→ 0 for any p ∈P.

Lemma 4. a) Let Y be a normed space, and let X be as above. Then a function f : X → Y is
continuous if and only if for any x ∈ X and any ε > 0, there is a finite collection p1, . . . , pk ∈
P and δ > 0 such that

z ∈ Bx,δ(p1, . . . , pk) ⇒ ‖f(x)− f(z)‖Y ≤ ε. (8)

b) In addition to what has been assumed, suppose that f is linear. Then f is continuous if
and only if there is a finite collection p1, . . . , pk ∈P and a constant C > 0 such that

‖f(x)‖Y ≤ C max
i
pi(x), x ∈ X. (9)

Proof. Recall that a map is called continuous if the preimage of any open set is open. Suppose
that f is continuous. Then for any ε > 0 and y = f(x) with x ∈ X, the preimage of By,ε ⊂ Y
contains a semiball Bx,δ(p1, . . . , pk) with δ = δ(ε, x) > 0. In the other direction, let U ⊂ Y
be open and let x ∈ f−1(U). Then with y = f(x) ∈ U , there exist a nonempty ball By,ε ⊂ U ,
and a nonempty semiball Bx,δ(p1, . . . , pk) such that f(Bx,δ(p1, . . . , pk)) ⊂ By,ε. This means
that f−1(U) is open.

For b), the condition associated to (9) immediately implies the condition associated to (8)
by linearity. Now suppose that we have the condition associated to (8). Hence there is δ > 0
and p1, . . . , pk ∈P such that

z ∈ B0,δ(p1, . . . , pk) ⇒ ‖f(z)‖Y ≤ 1. (10)

Note that z ∈ B0,δ(p1, . . . , pk) is equivalent to p(z) := maxi pi(z) < δ. Let x ∈ X, and define

z = δ
2p(x)x. Then we have p(z) = δ

2 < δ, leading to

1 ≥ ‖f(z)‖Y =
δ

2p(x)
‖f(x)‖Y , (11)

which is (9) with C = 2
δ . �
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Remark 5. The preceding lemma can easily be extended to the case where Y is a LCS endowed
with a family Q of seminorms. For instance, part b) would read: f is continuous iff for any
q ∈ Q, there is a finite collection p1, . . . , pk ∈P and a constant C > 0 such that

q(f(x)) ≤ C max
i
pi(x), x ∈ X. (12)

Notice how the quantifiers differ on the domain and the range of the function. If X ⊂ Y
as sets, by taking f : X → Y to be the inclusion map f(x) = x we derive the following
criterion: the embedding X ⊂ Y is continuous iff for any q ∈ Q, there is a finite collection
p1, . . . , pk ∈P and a constant C > 0 such that

q(x) ≤ C max
i
pi(x), x ∈ X. (13)

Remark 6. Part b) of Lemma 4 is valid for checking continuity of seminorms q : X → R,
because of their positive homogeneity and the property in Lemma 2c). So a seminorm q on
(X,P) is continuous iff there is a finite collection p1, . . . , pk ∈P and a constant C > 0 such
that

q(x) ≤ C max
i
pi(x), x ∈ X. (14)

Comparing this with the previous remark, we conclude that the embedding X ⊂ Y is contin-
uous iff the restriction of every seminorm of (Y,Q) to X is continuous on (X,P).

Definition 7. Let (X,P) be a locally convex space. We define the following notions.

• {xk} is Cauchy if for any p ∈P, p(xj − xk)→ 0 as j, k →∞.
• A ⊂ X is bounded if for any p ∈P, supx∈A p(x) <∞.

A straightforward but useful observation is that every Cauchy sequence is bounded. Indeed,
if {xk} is Cauchy then, with an arbitrary p ∈P, for a sufficiently large j we have p(xj−xk) < 1
hence p(k) < p(j) + 1 for all k ≥ j.

Definition 8. The family P of seminorms on X is called separating if for any x ∈ X \ {0},
there exists p ∈P such that p(x) 6= 0.

The significance of this is that if (X,P) is a LCS with P separating, then the topology
of X is Hausdorff, meaning that for any x, y ∈ X distinct, there are open sets A ⊂ X and
B ⊂ X with x ∈ A and y ∈ B. Indeed, let p ∈ P be such that δ := p(x − y) > 0. Then
A = {z ∈ X : p(z − x) < δ

2} and B = {z ∈ X : p(z − y) < δ
2} satisfy the desired properties.

Lemma 9. A locally convex space (X,P) is metrizable if P is countable and separating.

Proof. Let P = {p1, p2, . . .}, and let {αk} be a sequence of positive numbers satisfying αk → 0.
Then we claim that

d(x, y) = max
k

αkpk(x− y)

1 + pk(x− y)
, (15)

defines a metric that induces the topology of X. First observe that the maximum is well-
defined, since pk/(1 + pk) < 1 and αk → 0. Also, because αk > 0 for all k, d(x, y) = 0 implies
pk(x − y) = 0 for all k, which then gives x = y by the separating property. The triangle
inequality for d follows from the elementary fact

a ≤ b+ c ⇒ a

1 + a
≤ b

1 + b
+

c

1 + c
(a, b, c ≥ 0), (16)

which can easily be verified, e.g., by contradiction.
For each k, we have

pk(x− y)

1 + pk(x− y)
≤ d(x− y), (17)
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which tells us that any semiball contains a metric ball. To get the other direction, let ε > 0,
and let n be an index such that αk < ε for all k > n. Then we have

d(x− y) ≤ ε+ max
1≤k≤n

αkpk(x− y)

1 + pk(x− y)
≤ ε+ α max

1≤k≤n
pk(x− y), (18)

where α = maxαk. This means that the semiball Bx,ε(p1, . . . , pn) is contained in the metric
ball B(1+α)ε(x) = {y ∈ X : d(x− y) < (1 + α)ε}. �

3. Test functions

In this section, we will establish some basic properties of the so-called inductive limit
topology on the space of test functions.

We start with introducing the multi-index notation, which is a convenient shorthand
notation for partial derivatives and multivariate polynomials. A multi-index is a vector
α = (α1, . . . , αn) ∈ Nn0 whose components are nonnegative integers. Then we use

xα = xα1
1 . . . xαnn , and ∂α = ∂α1

1 . . . ∂αnn , (19)

for multivariate monomials and partial derivatives. The length of a multi-index α is defined
as |α| = α1 + . . .+ αn, which corresponds to the total degree of a monomial or the order of a
differential operator.

Given a set A ⊂ Ω, and a function u on A, the uniform norm on A is

‖u‖C0(A) = sup
x∈A
|u(x)|, (20)

and the Ck-norm on A is
‖u‖Ck(A) = max

|α|≤k
‖∂αu‖C0(A), (21)

whenever they make sense. If ϕ : M → R is a continuous function, we define its support as

suppϕ = {x ∈M : ϕ(x) 6= 0}. (22)

Furthermore, for K ⊂ Rn compact, we define the space

DK = {ϕ ∈ C∞(Rn) : suppϕ ⊂ K}, (23)

and endow it with the seminorms

pm(ϕ) = ‖ϕ‖Cm , m = 0, 1, . . . . (24)

The question arises if there exists any infinitely differentiable function with compact support.
This is something we should check since a nonzero analytic function cannot have compact
support, and being smooth is only slightly weaker than being analytic. We claim that the
function ϕ on Rn defined by

ϕ(x) =

{
e−1/(1−|x|2) for |x| < 1,

0 for |x| ≥ 1,
(25)

is in C∞(Rn). It is clear that ϕ(x)→ 0 as |x| ↗ 1. As for the derivatives, we have

∂αϕ(x) =
p(x)e−1/(1−|x|2)

(1− |x|2)|α|
, |x| < 1, (26)

where p is some polynomial. From this it is also clear that ∂αϕ(x) → 0 as |x| ↗ 1. So
ϕ ∈ C∞(Rn). If K contains an open ball, we can fit infinitely many open balls inside K.
Then scaling and translating ϕ, we can place them in K so that their supports are contained
in K and do not intersect with each other. This implies that DK is infinite dimensional.

Lemma 10. Let K ⊂ Rn be a compact set. Then the space DK is metrizable and complete,
i.e., DK is a Fréchet space.
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Proof. DK is metrizable by Lemma 9, since {pm} is countable and separating.
Let {ϕk} be a Cauchy sequence in DK . This means that each sequence {∂αϕk} is Cauchy

in the uniform norm, hence ∂αϕk → ψα ∈ C(Rn) and suppψα ⊂ K. Now the question is
if ∂αψ(0,...,0) = ψα holds, which then boils down to checking if ∂jϕ = ψj holds given that
ϕk → ϕ and ∂jϕk → ψj , both uniformly. Let x ∈ Rn and let h be a (small) vector along the
j-th coordinate axis. Then we have

∂jϕk(ξ) =
ϕk(x+ h)− ϕk(x)

h
, (27)

for some ξ on the line segment [x, x+h]. Let ε > 0. By continuity, we have |ψj(x)−ψj(ξ)| < ε
if h is sufficiently small. Moreover, we have |ψj(ξ)− ∂jϕk(ξ)| < ε and ‖ϕk − ϕ‖C0 < ε|h| if k
is sufficiently large. Combining all this we get∣∣ψj(x)− ϕ(x+ h)− ϕ(x)

h

∣∣ < 4ε, (28)

for all sufficiently small h, which finishes the proof. �

A nonempty, open, and connected subset Ω ⊂ Rn is called a domain.

Definition 11. Let Ω ⊂ Rn be a domain. Then we define the space of test functions by

D(Ω) =
⋃
KbΩ

DK , (29)

where we used the notation K b Ω to mean that K is compact and is a subset of Ω.

Note that if K1 ⊂ K2 ⊂ . . . ⊂ Ω are compact sets and
⋃
mKm = Ω, then

D(Ω) =
⋃
m

DKm . (30)

Such a sequence {Km} can be constructed easily, for instance, by

Km = {x ∈ Ω : dist(x, ∂Ω) ≥ 1

m
} ∩Bm, (31)

where
Bm = {x ∈ Rn : |x| < m}, (32)

is the open ball of radius m, centred at the origin.
Our next task is to introduce a topology on D(Ω). In doing so, we want the inclusions

DK ⊂ D(Ω) to be continuous. This means, by Remark 6 that for every seminorm p from
(D(Ω),P), where P is the hypothetical family inducing a topology on D(Ω), the restriction
p|DK must be continuous on DK . The family P = {pm} has the desired property, but the
following remark shows that it would not be a very convenient choice.

Remark 12. D(Ω) is not complete with respect to the topology induced by {pm}. We illustrate
it in the case Ω = R. Take a nonzero function ϕ ∈ D(R) whose support is small and
concentrated near 0, and consider the sequence

ϕk(x) = ϕ(x) + 2−1ϕ(x− 1) + . . .+ 2−kϕ(x− k), k = 1, 2, . . . . (33)

Obviously, this sequence is Cauchy with respect to the family {pm}, but the support of the
limit function is not compact.

This failure indicates that the family {pm} has not enough seminorms to prevent Cauchy
sequences from “leaking” towards the boundary of Ω. So we can add more seminorms to the
family, and hope that things get better. Having a large family of seminorms will have the
added benefit that it becomes easier for a function f : D(Ω)→ Y to be continuous, meaning
that we will have a large supply of continuous functions on D(Ω). Of course there is a limit in
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expanding the family P because of the aforementioned requirement that p|DK be continuous.
These two competing requirements give rise to a unique family P as follows.

Definition 13. We define the collection P of seminorms on D(Ω) by the condition that a
seminorm p on D(Ω) is in P iff p|DK is continuous for each compact K ⊂ Ω.

The topology generated by P on D(Ω) is called the inductive limit topology. Looking back,
this topology is completely natural, given that D(Ω) is the union of {DK : K b Ω}, and that
each DK has its own topology.

Lemma 14. The topology of DK is exactly the one induced by the embedding DK ⊂ D(Ω).

Proof. Let A ⊂ D(Ω) be open and let K ⊂ Ω be compact. We will show that A∩DK is open
in DK . Let ψ ∈ A ∩ DK . Let us denote the semiballs in DK by Bψ,ε(pm; DK) etc., and the
semiballs in D(Ω) by Bψ,ε(p) etc. Then there exists p ∈P such that Bψ,ε(p) ⊂ A with ε > 0.
By construction, there exists pm such that p ≤ cpm on DK , with some constant c > 0. Hence
Bψ,ε/c(pm,DK) ⊂ Bψ,ε(p) ∩DK ⊂ A ∩DK , showing that A ∩DK is open in DK .

On the other hand, since {pm} ⊂ P, any semiball Bψ,ε(pm; DK) in DK is equal to the
intersection of the semiball Bψ,ε(pm) in D(Ω) with DK , i.e.,

Bψ,ε(pm; DK) = Bψ,ε(pm) ∩DK . (34)

This immediately implies that any open set in DK can be written as the intersection of an
open set of D(Ω) with DK . �

Let us ask the question: Does P have any seminorm that is not one of {pm}? An example
of such a seminorm is given by

p(ϕ) = sup
j
cj |ϕ(xj)|, ϕ ∈ D(Ω), (35)

where {xj} ⊂ Ω is a sequence having no accumulation points in Ω, and {cj} is a sequence
of positive numbers. We can easily check that p is a seminorm, and that p|DK is continuous
on DK for any compact K ⊂ Ω, so that p ∈ P. Seminorms such as this give a very strong
control near the boundary of Ω, because {xj} concentrate towards the boundary and cj can
grow arbitrarily fast. The following result illustrates this phenomenon.

Theorem 15. The set A ⊂ D(Ω) is bounded if and only if there is a compact set K ⊂ Ω
such that A ⊂ DK and that A is bounded in DK . Recall that the latter means that each pm is
bounded on A.

Proof. Suppose that A is bounded in DK for some compact set K ⊂ Ω. We claim that
continuity of the embedding DK ⊂ D(Ω) implies that A is also bounded in D(Ω). To prove
it, let p ∈P. Then there is pm such that

p(ϕ) ≤ Cpm(ϕ), ϕ ∈ DK . (36)

By assumption, pm(ϕ) ≤ M for ϕ ∈ A and for some constant M , which implies that p is
bounded on A.

To prove the other direction, suppose that A 6⊂ DK for any compact K ⊂ Ω. Then there
exist sequences {ϕm} ⊂ A and {xm} ⊂ Ω such that ϕ(xm) 6= 0, and that {xm} has no
accumulation points in Ω. Let

p(ϕ) = sup
m

m|ϕ(xm)|
|ϕm(xm)|

, ϕ ∈ D(Ω). (37)

Obviously it is a seminorm, and p ∈P because for any compact K ′ ⊂ Ω there is a constant
C such that

p(ϕ) ≤ C‖ϕ‖C0 , ϕ ∈ DK′ . (38)

However, we have p(ϕm) ≥ m, so p is not bounded on A, leading to a contradiction. �
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Corollary 16. a) The sequence {ϕj} is Cauchy in D(Ω) iff {ϕj} ⊂ DK for some compact
K ⊂ Ω, and ‖ϕj − ϕk‖Cm → 0 as j, k →∞, for each m.

b) If ϕj → 0 in D(Ω) iff {ϕj} ⊂ DK for some compact K ⊂ Ω, and ‖ϕj‖Cm → 0 as j →∞,
for each m.

c) D(Ω) is sequentially complete.

Proof. a) If {ϕj} ⊂ DK is Cauchy in DK for some compact K ⊂ Ω, then it is Cauchy in D(Ω)
by continuity of the embedding DK ⊂ D(Ω). Now let {ϕj} ⊂ D(Ω) be Cauchy in D(Ω).
Since Cauchy sequences are bounded, by the preceding theorem we have {ϕj} ⊂ DK for some
compact K ⊂ Ω. But then {pm} ⊂P, which means that pm(ϕj − ϕk) → 0 as j, k →∞, for
each pm.

b) Left as an exercise.
c) Let {ϕj} ⊂ D(Ω) be Cauchy in D(Ω). Then by a) it is Cauchy in some DK . But DK

is Fréchet, so the limit exists in DK . This limit is valid also in D(Ω), since a convergent
sequence in DK is convergent in D(Ω). �

Theorem 17. Let (Y,Q) be a locally convex space, and let f : D(Ω) → Y be a linear map.
Then the followings are equivalent.

a) f is continuous.
b) ϕj → 0 in D(Ω) implies f(ϕj)→ 0 in Y .
c) For any compact K ⊂ Ω, f : DK → Y is continuous.

Proof. a) ⇒ b). The continuity of f means that for any q ∈ Q, there is p ∈P such that

q(f(ϕ)) ≤ p(ϕ), ϕ ∈ D(Ω). (39)

Since ϕj → 0 in D(Ω), we have p(ϕj) → 0, hence q(f(ϕj)) → 0. As q ∈ Q is arbitrary, we
conclude that f(ϕj)→ 0 in Y .

b) ⇒ c). Let K ⊂ Ω be compact. If b) holds then for any sequence ϕj → 0 in DK we have
f(ϕj) → 0 in Y . Then continuity of f : DK → Y follows from the general fact that for a
metric space X and a topological space Y , a map f : X → Y is continuous if whenever xj → x
in X we have f(xj) → f(x) in Y . To prove this fact, supposing that f is not continuous at
x ∈ X, we want to show that there is a sequence xn → x with f(xn) 6→ f(x). Let U ⊂ Y
be an open set such that f(x) ∈ U and that f−1(U) is not open. Hence f−1(U) does not
contain any metric ball Bε(x) = {z ∈ X : d(z, x) < ε} with ε > 0, where d is the metric of X.
This means that for any ε > 0, there is z ∈ Bε(x) with f(z) 6∈ U , i.e., there exists a sequence
xn → x with f(xn) 6∈ U for all n.

c) ⇒ a). We want to show that for any q ∈ Q, there is p ∈P such that (39) holds. Given
q, let us define the function

p(ϕ) = q(f(ϕ)), ϕ ∈ D(Ω). (40)

It is a seminorm on D(Ω), and moreover for each compact K ⊂ Ω, the restriction p|DK is
continuous since

q(f(ϕ)) ≤ Cpm(ϕ), ϕ ∈ DK , (41)

for some C and m possibly depending on K. Therefore p ∈P, which clearly implies (39). �

Example 18. The partial differentiation operator ∂j : D(Ω)→ D(Ω) is continuous, since for
any compact K ⊂ Ω and any m, we have

pm(∂jϕ) ≤ pm+1(ϕ), ϕ ∈ DK . (42)

Remark 19. D(Ω) is not metrizable. We illustrate this in the case Ω = R. Pick a function
ϕ ∈ D(R) with suppϕ = [−1, 1], and define the double-indexed sequence

ϕkm(x) =
1

m
ϕ
(x
k

)
, k,m = 1, 2, . . . . (43)
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It is clear that for each fixed k, the sequence ϕk,1, ϕk,2, . . . converges to 0 in D(R). Then
if D(R) was metrizable, say with metric d, we can extract a sequence m1,m2, . . ., such that
ϕk,mk → 0 in D(R). This can be done, for instance, by choosing mk sufficiently large so that

d(ϕk,mk , 0) < 1
k , for each k. But it is not possible for such a sequence to converge in D(R),

because the support of ϕk,mk is [−k, k], which eventually becomes larger than any compact
set in R.

4. Basic operations on distributions

From now on the space D(Ω) is equipped with its inductive limit topology.

Definition 20. A distribution on Ω is a continuous linear functional on D(Ω). The space of
all distributions on Ω is denoted by D ′(Ω).

We denote the action u(ϕ) of u ∈ D ′(Ω) also by 〈u, ϕ〉. Theorem 17 tailored to distributions
is the following.

Lemma 21. A linear functional u : D(Ω)→ R is in D ′(Ω) iff any of the followings holds.

a) ϕj → 0 in D(Ω) implies u(ϕj)→ 0.
b) For any compact K ⊂ Ω, there exist m and C such that

|u(ϕ)| ≤ C‖ϕ‖Cm for ϕ ∈ DK . (44)

Definition 22. Let u ∈ D ′(Ω). If we have

|u(ϕ)| ≤ C‖ϕ‖Cm for ϕ ∈ DK , (45)

with the same m for all compact K ⊂ Ω, with C possibly depending on K, then u is said to
be a distribution of order ≤ m. The smallest such m is called the order of u.

Example 23. For u ∈ C(Ω), the functional Tu : ϕ 7→
∫
uϕ is a distribution of order 0 since

|Tu(ϕ)| ≤ vol(K)‖u‖C0(K)‖ϕ‖C0 , for ϕ ∈ DK . (46)

Similarly, δ is a distribution of order 0, and the derivative evaluation ϕ 7→ ϕ′(0) is a distribu-
tion of order 1.

Definition 24. The weak topology on D ′(Ω) is the one induced by the family of seminorms
P ′ = {pϕ : ϕ ∈ D(Ω)}, where pϕ(u) = |u(ϕ)|.

Thus uj → 0 in the weak topology of D ′(Ω) iff

〈uj , ϕ〉 → 0 for each ϕ ∈ D(Ω). (47)

We see that this is simply the pointwise convergence. The family P ′ is separating, since if
u ∈ D ′(Ω) is nonzero, there is ϕ ∈ D(Ω) such that u(ϕ) 6= 0. Hence the weak topology is
Hausdorff.

For u ∈ L1
loc(Ω), the functional Tu : ϕ 7→

∫
uϕ is a distribution of order 0 since

|Tu(ϕ)| ≤ ‖u‖L1(K)‖ϕ‖C0 . for ϕ ∈ DK , (48)

We have seen that the map u 7→ Tu : L1
loc(Ω)→ D ′(Ω) is an injection, so that L1

loc(Ω) can be
regarded as a subspace of D ′(Ω). Thus we will identify Tu with u. Then with the (Fréchet)
topology on L1

loc(Ω) defined by the seminorms {‖ ·‖L1(K) : K b Ω}, from the above inequality

we infer that uj → 0 in L1
loc(Ω) implies 〈uj , ϕ〉 → 0 for any fixed ϕ ∈ D(Ω). Hence the

embedding L1
loc(Ω) ⊂ D ′(Ω) is continuous. We can also infer the continuity of the embedding

C(Ω) ⊂ D ′(Ω) either directly or through the continuous embedding C(Ω) ⊂ L1
loc(Ω).
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Example 25. Consider uj(x) = sin(jx). Then uj → 0 in D ′(R), since∫
sin(jx)ϕ(x)dx→ 0 as j →∞, (49)

for any ϕ ∈ D(R), by the Riemann-Lebesgue lemma.

Now we want to extend some basic operations on functions to distributions. This is usually
achieved by means of a simple duality device that can be described as follows. Suppose that
T, T ′ : D(Ω)→ D(Ω) are continuous linear maps, satisfying∫

(Tψ)ϕ =

∫
ψ(T ′ϕ), ψ, ϕ ∈ D(Ω). (50)

Then we define T̃ : D ′(Ω)→ D ′(Ω), which is the intended extension of T , by

〈T̃ u, ϕ〉 = 〈u, T ′ϕ〉, u ∈ D ′(Ω), ϕ ∈ D(Ω). (51)

It is easily checked that T̃ u ∈ D ′(Ω), since by continuity of T ′, ϕj → 0 in D(Ω) implies

T ′ϕj → 0 in D(Ω), which then implies that 〈u, T ′ϕj〉 → 0. Moreover, T̃ : D ′(Ω) → D ′(Ω) is
continuous, because

pϕ(T̃ u) = |〈T̃ u, ϕ〉| = |〈u, T ′ϕ〉| = pψ(u), (52)

where ψ = T ′ϕ ∈ D(Ω). If u ∈ D(Ω), then

〈T̃ u, ϕ〉 = 〈u, T ′ϕ〉 =

∫
u(T ′ϕ) =

∫
(Tu)ϕ = 〈Tu, ϕ〉, (53)

hence T̃ is indeed an extension of T . In fact, T̃ is the unique continuous extension of T . To
see this, we will use the (nontrivial) fact that D(Ω) is sequentially dense in D ′(Ω), i.e., for
any u ∈ D ′(Ω), there exists a sequence {uj} ⊂ D(Ω) such that uj → u in D ′(Ω). Let T1 and
T2 be two continuous extensions of T . Then with u and {uj} as above, since T1uj = T2uj , we
have

T1u− T2u = T1(u− uj) + T2(uj − u), (54)

which implies for any ϕ ∈ D(Ω) that

|〈T1u− T2u, ϕ〉| ≤ pϕ(T1(u− uj)) + pϕ(T2(u− uj))
≤ C1pψ1(u− uj) + C2pψ2(u− uj),

(55)

with some ψ1, ψ2 ∈ D(Ω), and some constants C1, C2 > 0. Now sending j → ∞ we get
〈T1u− T2u, ϕ〉 = 0 for any ϕ ∈ D(Ω), hence T1u = T2u.

Let us consider now some applications of this device.

Differentiation: T = ∂j . As we have already discussed, the operator ∂j : D(Ω)→ D(Ω)
is continuous, and integration by parts gives∫

ϕ∂jψ = −
∫
ψ∂jϕ, ψ, ϕ ∈ D(Ω). (56)

Hence T ′ = −∂j , and the derivative of u ∈ D ′(Ω) is given by

〈∂ju, ϕ〉 = −〈u, ∂jϕ〉, ϕ ∈ D(Ω). (57)

For any multi-index α, this generalizes to

〈∂αu, ϕ〉 = (−1)|α|〈u, ∂αϕ〉, ϕ ∈ D(Ω). (58)

Multiplication by a smooth function: Tψ = aψ, where a ∈ C∞(Ω). One can easily
see that T ′ = T , so up to showing continuity of T on D(Ω), we infer

〈au, ϕ〉 = 〈u, aϕ〉, u ∈ D ′(Ω), ϕ ∈ D(Ω). (59)

The continuity of T : D(Ω)→ D(Ω) is left as an exercise.
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Translation: (Tψ)(x) = ψ(x + a), where a ∈ Rn. We take Ω = Rn. By change of
variables, we have∫

ψ(x+ a)ϕ(x)dx =

∫
ψ(x)ϕ(x− a)dx, ψ, ϕ ∈ D(Rn), (60)

so with (τaψ)(x) = ψ(x+ a), we infer

〈τau, ϕ〉 = 〈u, τ−aϕ〉, u ∈ D ′(Rn), ϕ ∈ D(Rn). (61)

The continuity of τa on test functions is left as an exercise.
Convolution with a test function: Tψ = a ∗ ψ, where a ∈ D(Rn). We have∫

(a ∗ ψ)ϕ =

∫ ∫
a(x− z)ψ(z)ϕ(x)dzdx

=

∫
ψ(ã ∗ ϕ), ψ, ϕ ∈ D(Rn),

(62)

where ã(x) = a(−x) denotes the reflection through the origin. Again leaving the
continuity question as an exercise, we get

〈a ∗ u, ϕ〉 = 〈u, ã ∗ ϕ〉, u ∈ D ′(Rn), ϕ ∈ D(Rn). (63)

Example 26. Let θ ∈ L1
loc(R) be the Heaviside step function, defined by θ(x) = 1 for x > 0

and θ(x) = 0 for x < 0. Then its distributional derivative is given by

〈θ′, ϕ〉 = −〈θ, ϕ′〉 = −
∫ ∞

0
ϕ′(x)dx = ϕ(0), (64)

for any ϕ ∈ D(R). Hence θ′ = δ.

5. Local structure of distributions

Definition 27. Let u ∈ D ′(Ω) and let ω ⊂ Ω be open. The restriction u|ω ∈ D ′(ω) of u to ω
is defined by

〈u|ω, ϕ〉 = 〈u, ϕ〉, ϕ ∈ D(ω). (65)

We say that u = 0 on ω if u|ω = 0.

This gives us a possibility to talk about distributions locally, meaning that we can focus
on small open sets, one at a time. In order for this to be meaningful, we expect some
natural properties to be satisfied by the restriction process. First, let us check if the above
definition indeed makes sense, i.e., if u|ω ∈ D ′(ω). So let ϕj → 0 in D(ω). Then ϕj → 0
in D(Ω), because there is a compact K ⊂ ω such that ϕj → 0 in DK . Since u ∈ D ′(Ω),
we have 〈u|ω, ϕj〉 = 〈u, ϕj〉 → 0, showing that u|ω ∈ D ′(ω). Note that the same argument
also demonstrates that the embedding D(ω) ⊂ D(Ω) is continuous. However, unless ω = Ω,
the topology of D(ω) is strictly finer than that induced by the embedding D(ω) ⊂ D(Ω),
i.e., there are more open sets in D(ω) than those inherited from D(Ω). The reason is that
for instance, the seminorm p(ϕ) = sup j|ϕ(xj)| with {xj} having no accumulation points in
ω, is compatible with the topology of D(ω), while it is in general not with the topology of
D(Ω). This results in the fact that not every distribution in D ′(ω) is the restriction of some
distribution in D ′(Ω).

The following theorem shows that as far as restrictions are concerned, we can work with
distributions as if they were functions. The properties a)-d) in the theorem are called the
sheaf properties.

Theorem 28. Let u ∈ D ′(Ω).

a) u|Ω = u.
b) (u|ω)|σ = u|σ for open sets σ ⊂ ω ⊂ Ω.



12 TSOGTGEREL GANTUMUR

c) If {ωα} is an open cover of Ω, then

∀α, u|ωα = 0 ⇒ u = 0. (66)

d) With {ωα} as in c), let uα ∈ D ′(ωα) is given for each α, satisfying

uα|ωα∩ωβ = uβ|ωα∩ωβ ∀α, β. (67)

Then there exists a unique u ∈ D ′(Ω) such that u|α = uα for each α.

Proof. a) and b) are trivial.
For c), let ϕ ∈ D(Ω), and let K = suppϕ. Let {χα} be a D(Ω)-partition of unity over K

subordinate to {ωα}. This means that

• χα ∈ D(Ω) is nonnegative for each α,
• χα is nonzero for only finitely many α,
• there is an open set V ⊃ K such that

∑
α χα = 1 on V , and

• suppχα ⊂ ωα for each α.

Note that we use the same index set for {χα} as that of {ωα} at the expense of keeping some
unnecessary zero functions in {χα}. We employ the existence of such a partition of unity
without proof. We compute

〈u, ϕ〉 = 〈u,
∑
α

χαϕ〉 =
∑
α

〈u, χαϕ〉 =
∑
α

〈u|ωα , χαϕ〉 = 0, (68)

showing that u = 0, since ϕ ∈ D(Ω) was arbitrary.
The uniqueness part of d) follows immediately from c). For existence, let ϕ ∈ D(Ω), and

keep the setting of the previous paragraph. We define

u(ϕ) :=
∑
α

〈uα, χαϕ〉. (69)

Before anything, we need to show that this definition does not depend on the partition of
unity {χα}. Let {ξα} be another such partition of unity. Then we have∑

α

〈uα, χαϕ〉 =
∑
α,β

〈uα, ξβχαϕ〉 =
∑
α,β

〈uβ, ξβχαϕ〉 =
∑
β

〈uβ, ξβϕ〉, (70)

where in the second step we used the property (67). Linearity can be verified for ϕ1, ϕ2 ∈ D(Ω)
by taking a partition of unity on suppϕ1 ∪ suppϕ2. For continuity, let K ⊂ Ω be a compact
set, and let ϕ ∈ DK . Then by using the fact that uα ∈ D ′(ωα) and χαϕ ∈ D(ωα), we have

|u(ϕ)| ≤
∑
α

|〈uα, χαϕ〉| ≤
∑
α

Cα‖χαϕ‖Cmα ≤ C‖ϕ‖Cm , (71)

showing that u ∈ D ′(Ω). �

Definition 29. The support of u ∈ D ′(Ω) is given by

suppu = Ω \
⋃
{ω ⊂ Ω open : u|ω = 0}. (72)

Lemma 30. It is easy to check that the following properties hold.

i) suppu is relatively closed in Ω.
ii) x ∈ suppu iff x ∈ Ω and x does not have any open neighbourhood on which u vanishes.
iii) suppu agrees with the usual notion when u is a continuous function.
iv) u|Ω\suppu = 0.
v) suppu = ∅ implies u = 0.
vi) supp(u+ v) ⊂ suppu+ supp v.

vii) supp ∂αu ⊂ suppu.
viii) supp(au) ⊂ supp a ∩ suppu.
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Example 31. supp δ = {0}.

We end these notes by proving a theorem that says that locally every distribution is a
(possibly high order) derivative of a function. This means that distributions are not much
more than derivatives of functions.

Theorem 32. Let u ∈ D ′(Ω) and let ω be a bounded open set with ω ⊂ Ω. Then there exist
a function f ∈ L∞(ω) and a multi-index α such that u = ∂αf on ω.

Proof. Since ω is compact, there exist m and C such that

|u(ϕ)| ≤ C‖ϕ‖Cm = C max
|α|≤m

‖∂αϕ‖C0 , ϕ ∈ D(ω). (73)

For any ψ ∈ D(ω), we have
‖ψ‖C0 ≤ C‖∂jψ‖C0 , (74)

with some constant C > 0, because ω is bounded. So we can replace the derivatives in
the right hand side of (73) by higher order derivatives so as to have only one term in the
maximum. This term would of course be the norm of ∂βϕ with β = (m,m, . . . ,m), i.e.,

|u(ϕ)| ≤ C‖∂βϕ‖C0 , ϕ ∈ D(ω). (75)

We want to replace the uniform norm in the right hand side by the L1-norm of a derivative
of ϕ. For any ψ ∈ D(ω) and for x ∈ Rn, we have

ψ(x) =

∫
y<x

∂1 . . . ∂nψ(y) dy, (76)

where y < x should be read componentwise. Using this, we finally get

|u(ϕ)| ≤ C
∫
|∂βϕ|, ϕ ∈ D(ω), (77)

now with β = (m + 1,m + 1, . . . ,m + 1). This inequality in particular implies that the
distribution u cannot distinguish two functions ϕ,ψ ∈ D(ω) if they satisfy ∂βϕ = ∂βψ.
Therefore the map

T (∂βϕ) := u(ϕ), (78)

as a linear functional on the space X = {∂βψ : ψ ∈ D(ω)}, is well-defined. Then the estimate
(77) simply says that

|T (ξ)| ≤ C‖ξ‖L1(ω), ξ ∈ X, (79)

and so we can employ the Hahn-Banach theorem to extend T as a bounded linear functional
on all of L1(ω). Then by the duality between L1 and L∞, there is g ∈ L∞(ω) such that

T (ξ) =

∫
gξ, ξ ∈ L1(ω). (80)

Finally, putting ξ = ∂βϕ with ϕ ∈ D(ω) and unraveling the definitions, we get

u(ϕ) = T (∂βϕ) =

∫
g∂βϕ = (−1)|β|〈∂βg, ϕ〉, (81)

which means that u = (−1)|β|∂βg on ω. �
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