MATH 580 ASSIGNMENT 6

DUE WEDNESDAY DECEMBER 5

1. Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain, and let

$$Lu = -a_{ij}\partial_i\partial_j u + b_i\partial_i u + cu,$$

where a_{ij} satisfies the uniform ellipticity condition, and all coefficients are smooth in $\overline{\Omega}$.

• The Calderon-Zygmund estimate (or the elliptic estimate in L^p)

$$||u||_{W^{k+2,p}(\Omega)} \le C(||Lu||_{W^{k,p}(\Omega)} + ||u||_{L^{p}(\Omega)}),$$

holds for all $u \in C_c^{\infty}(\Omega)$, where the constant C depends only on Ω , $1 and <math>k \ge 0$.

• The Schauder estimate

$$||u||_{C^{k+2,\alpha}(\Omega)} \le C(||Lu||_{C^{k,\alpha}(\Omega)} + ||u||_{C^{0}(\Omega)}),$$

holds for all $u \in C_c^{\infty}(\Omega)$, where the constant C depends only on Ω , $k \ge 0$ and $0 < \alpha < 1$.

Assume that for any $f \in L^2(\Omega)$, there exists a unique solution $u \in H^1_0(\Omega)$ satisfying Lu = f. As we have seen in the previous assignment, this is in particular guaranteed if the coefficients b_i and c are so that L is strictly coercive in $H^1_0(\Omega)$. Moreover, we have the L^2 -regularity result saying that if $f \in H^k(\Omega)$ then $u \in H^{k+2}(\Omega)$.

- a) Using the elliptic L^p -estimate, prove the L^p -regularity result that if $f \in W^{k,p}(\Omega)$ then $u \in W^{k+2,p}(\Omega)$, where $1 and <math>k \ge 0$.
- b) Using the Schauder estimate, prove the Hölder regularity result that if $f \in C^{k,\alpha}(\Omega)$ then $u \in C^{k+2,\alpha}(\Omega)$, where $k \ge 0$ and $0 < \alpha < 1$.
- 2. Consider the Dirichlet problem for the *biharmonic equation*

$$\Delta^2 u = f, \qquad u|_{\partial\Omega} = \partial_{\nu} u|_{\partial\Omega} = 0.$$

- in a bounded smooth domain $\Omega \subset \mathbb{R}^n$, where $f \in L^2(\Omega)$.
- a) Define a natural concept of weak solutions in $H_0^2(\Omega)$, the latter space being the closure of $C_c^{\infty}(\Omega)$ in $H^2(\Omega)$. In particular, show that all classical solutions are weak solutions, and that sufficiently regular weak solutions are classical solutions.
- b) Show that there exists a unique weak solution $u \in H_0^2(\Omega)$.
- c) Prove that if $f \in H^k(\Omega)$ then $u \in H^{k+4}(\Omega)$.
- d) What would the natural boundary conditions be for the biharmonic equation?

Date: Fall 2012.

DUE WEDNESDAY DECEMBER 5

3. Let $V \hookrightarrow H$ be Hilbert spaces, where the embedding is compact and dense, and let $A: V \to V^*$ be a self-adjoint and coercive operator. We are interested in the *abstract Schrödinger equation*

$$u' = iAu,$$

to be solved for $u : \mathbb{R} \to H$, with the initial condition $u(0) = g \in \text{Dom}A$.

a) Show that

$$u(t) = e^{itA}g,$$

satisfies $u \in C^1(\mathbb{R}, H)$, and is a solution.

- b) Show that for any solution u, the energy $E(t) = ||u(t)||_{H}^{2}$ is preserved. In particular, the solution is unique.
- the solution is unique. c) Show that $e^{itA}e^{isA} = e^{i(t+s)A}$ for $s, t \in \mathbb{R}$ and $||e^{itA}v||_H = ||v||_H$ for $t \in \mathbb{R}$, i.e., the Schrödinger propagators e^{itA} form a one-parameter unitary group.
- d) Solve the initial value problem

$$u_t = iu_{xx}, \qquad u(x,0) = g(x),$$

on the interval $[0, \pi]$ with the homogeneous Dirichlet boundary conditions, where g is a smooth function satisfying $g(0) = g(\pi) = 0$.

- 4. Consider the Cauchy problem for the wave equation $\partial_t^2 u \Delta u = 0$ in \mathbb{R}^n . Suppose that $u : \mathbb{R}^n \times \mathbb{R}^1 \to \mathbb{R}$ is its solution, and that the initial data vanish outside $\Omega \subset \mathbb{R}^n$. Show that u(x,t) = 0 if $|t| < \inf_{y \in \Omega} |x y|$.
- 5. By way of examples, make a strong case against well-posedness of the Cauchy problem for the Laplace equation

$$\Delta u = 0 \quad \text{in } \{ x \in \mathbb{R}^n : x_n > 0 \}, \qquad u|_{x_n = 0} = g, \quad \partial_n u|_{x_n = 0} = f.$$