MATH 580 ASSIGNMENT 3

DUE THURSDAY OCTOBER 25

- 1. Derive fundamental solutions for the following operators.
 - a) Δ^m in \mathbb{R}^n , where *m* is a positive integer.
 - b) $-\Delta + c$ in \mathbb{R}^3 , where c > 0 is a real constant.
- 2. Let Ω be an open subset of \mathbb{R}^n . Show that if $u \in C^2(\Omega)$ is harmonic in Ω then

$$\int_{\partial B} \partial_{\nu} u = 0,$$

for any ball B whose closure is contained in Ω . Here $\partial_{\nu} u$ is the normal derivative of u. Conversely, prove that if $u \in C^1(\Omega)$ satisfies the above property for any ball B whose closure is contained in Ω , then u is harmonic in Ω .

- 3. Let u be an entire harmonic function in \mathbb{R}^n . Prove the followings.
 - (a) If $u \in L^p(\mathbb{R}^n)$ for some $1 \le p < \infty$ then $u \equiv 0$.
 - (b) If u satisfies $u(x) \ge -C(1+|x|)^m$ for some constants C and $m \in \mathbb{N}$, then u is a polynomial of degree less or equal to m.
 - (c) Any tangent hyperplane to the graph of u intersects the graph more than once.
- 4. We say $u \in C(\Omega)$ is subharmonic in Ω if for each $y \in \Omega$ there exists $r^* > 0$ such that

$$u(y) \le \frac{1}{|B_r|} \int_{B_r(y)} u, \qquad \forall r \in (0, r^*).$$

Prove the following statements.

- (a) A function $u \in C^2(\Omega)$ is subharmonic in Ω iff $\Delta u \ge 0$ in Ω .
- (b) If u is harmonic in Ω , then $|\nabla u|^2$ is subharmonic in Ω .
- (c) A function subharmonic in \mathbb{R}^2 and bounded from above must be constant. Is this statement true in \mathbb{R}^n for $n \geq 3$?
- 5. Let Ω be a domain, and let $\Sigma = \partial \Omega \cap B$ be a smooth and nonempty portion of the boundary, where B is an open ball. Let $u \in C^2(\Omega) \cap C^1(\Omega \cup \Sigma)$ satisfy $\Delta u = 0$ in Ω and $u = \partial_{\nu} u = 0$ on Σ . Show that u is identically zero in Ω .
- 6. Let u be a harmonic function, and define

$$q(r) = \int_{\partial B_r} u^2, \quad \text{for} \quad r > 0.$$

Prove that

- a) q is monotone and convex.
- b) q is log-convex, i.e., $\log q(r)$ is a convex function of $\log r$.

Date: Fall 2012.

DUE THURSDAY OCTOBER 25

- 7. Prove the Hopf lemma: Let $u \in C^2(B_r) \cap C(\overline{B}_r)$ be a function harmonic in B_r , which attains its maximum at $z \in \partial B_r$. Show that unless u is constant, there exists c > 0 such that $u(z) u(zt) \ge (1 t)c$ for all 0 < t < 1.
- 8. Consider the equation

$$(\Delta + \lambda)u = 0,$$

in a bounded domain $\Omega \subset \mathbb{R}^n$, where λ is a real parameter. We say that the maximum principle holds for the particular value λ if $(\Delta + \lambda)u = 0$ in Ω implies

$$u(x) \leq \sup_{\partial \Omega} u, \quad \text{for all} \quad x \in \Omega.$$

Try to identify the set of $\lambda \in \mathbb{R}$ for which the maximum principle holds by proving the maximum principle for some values of λ and exhibiting counterexamples for other values.

 $\mathbf{2}$