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Abstract

The Yamabe problem asks if any Riemannian metric g on a compact smooth man-

ifold M of dimension n ≥ 3 is conformal to a metric with constant scalar curvature.

The problem can be seen as that of generalizing the uniformization theorem to higher

dimensions, since in dimension 2 scalar and Gaussian curvature are, up to a factor of

2, equal.

1 Introduction

In 1960, Yamabe claimed to have found a solution to the problem that would later come
to bear his name. Eight years following, however, Neil Trudinger discovered a serious error
in Yamabe’s proof. Trudinger was able to salvage some of Yamabe’s work but only by
introducing further assumptions on the manifold M . In fact, Trudinger showed that there
is a positive constant α(M) such that the result is true when λ(M) < α(M) (λ(M) is the
Yamabe invariant, to be defined later). In particular, if λ(M) ≤ 0, the question is resolved.
In 1976, Aubin improved on Trudinger’s work by showing that α(M) = λ(Sn), where the
n-sphere is equipped with its standard metric. Moreover, Aubin showed that if M has
dimension n ≥ 6 and is not locally conformally flat, then λ(M) < λ(Sn). The remaining
cases proved to be more difficult and it was not until 1984 that they had been resolved
by Richard Schoen, thereby completing the solution to the Yamabe problem. In order to
gain an appreciation for these developments and the final solution, it is necessary to look at
Yamabe’s approach. First we reiterate the statement of the problem.

The Yamabe problem: Let (M, g) be a C∞ compact Riemannian manifold of dimension
n ≥ 3 and S its scalar curvature. Is there a metric g̃ conformal to g such that the scalar
curvature S̃ of this new metric is constant?

2 Yamabe’s approach

In this section we will detail Yamabe’s attack on the problem. As we will see, he reduced
the question of finding a conformal metric with constant scalar curvature to that of finding
a smooth non-negative solution to a certain differential equation, the Yamabe equation.
Because Krondrakov’s theorem does not apply directly to the situation presented by that
equation, Yamabe turned his attention to a family of approximating differential equations,
which turn out to be the Euler-Lagrange equations of certain functionals. He proves smooth
and non-negative solutions exist, and, claiming that these solutions are uniformly bounded
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and hence uniformly continuous, concludes that a solution Yamabe equation exists. An error
had slipped into his argument however; the uniform boundedness is not true in general, and
an explicit counter-example is found on the sphere.

2.1 The differential equation

Let M be a smooth, connected, and compact Riemannian manifold with metric g. We put
g̃ = e2fg with f ∈ C∞(M). In a local chart, let Γij and Γ̃ij denote the Christoffel symbols
of g and g̃ respectively (throughout this section, given a symbol associated with (M, g), the
same symbol with a tilde above denotes its counterpart in (M, g̃)). Let R and S denote the
Ricci and scalar curvatures of (M, g) respectively. Their difference is given by:

Γij − Γ̃ij = (gkl∂if + gki∂jf − gij∂kf) g
kl

The Ricci curvatures are then related in the following way:

R̃jk = Rjk − (n− 2)∇jkf + (n− 2)∇jf∇kf + (∇f − (n− 2)|∇f |2)gjk

from which we derive:

S̃ = e−2f (S + 2(n− 1)∇f − (n− 1)(n− 2)|∇f |2)

where ∆ is the Laplace-Beltrami operator. The above formula simplifies if we put e2f = ϕp−2

with p = 2n/(n− 2) and g̃ = ϕp−2g:

S̃ = ϕ1−p

(

4
n− 1

n− 2
∆ϕ+ Sϕ

)

(1)

We use the notation a = 4n−1
n−2 and � = a∆ + S. The above implies that g̃ = ϕp−2g has

constant scalar curvature iff it satisfies the Yamabe equation:

�ϕ = λϕp−1 (2)

This can be seen as a nonlinear eigenvalue problem. In fact, the equation �ϕ = λϕq depends
heavily on q. When q is close to 1, its behavior is quite similar to the that of the eigenvalue
problem for �. If q is very large however, linear theory is not useful. It turns out that the
exponent in the Yamabe equation is the critical value below which the equation is easy to
solve and above which it may be unsolvable. In fact Yamabe had studied the more general
equation

∆ϕ+ h(x)ϕ = λf(x)ϕN−1 (3)

where N = p, h, f ∈ C∞(M), and ϕ 6≡ 0 is a non-negative function in H1 (the first Sobolev
space). He wished to find λ ∈ R such that the above problem admits a solution. He
considered the functional

Iq(ϕ) =

[
ˆ

M

∇iϕ∇iϕ dV +

ˆ

M

h(x)ϕ2 dV

] [
ˆ

M

f(x)ϕq

]−2/q

(4)

2



where 2 < q ≤ N . The denominator is defined since H1 ⊆ LN ⊆ Lq (2.21). Yamabe next
shows the above functional with q = N has (3) for its Euler-Lagrange equation. Define

µq = inf{Iq(ϕ) : ϕ ∈ H1, ϕ ≥ 0, ϕ 6≡ 0}

As we will soon see, showing µN (as N = p, this is the case we are most interested in) is
attained directly is difficult since we cannot invoke Krondrakov’s theorem where we would
like. Thus Yamabe turned his attention to the approximate equations with q < N :

∆ϕ+ h(x)ϕ = λf(x)ϕq−1 (5)

Theorem (Yamabe): For 2 < q < N , there exists a C∞ strictly positive ϕq satisfying (5)
with λ = µq and Iq(ϕq) = µq.

Proof: The proof is split into several parts.

a) For 2 < q ≤ N , µq is finite. Indeed

Iq(ϕ) ≥

[

inf
x∈M

(0, h(x))

] [

sup
x∈M

f(x)

]−2/q

||ϕ||22||ϕ||
−2
q

and

||ϕ||22||ϕ||
−2
q ≤ V 1−2/q ≤ sup(1, V 2/n)

with V =
´

M dV . On the other hand,

µq ≤ Iq(1) =

[
ˆ

M

h(x)dV

] [
ˆ

M

f(x)dV

]−2/q

b) Let {ϕi} be a minimizing sequence such that
´

M f(x)ϕq
i dV = 1:

ϕi ∈ H1, ϕi ≥ 0, lim
i→∞

Iq(ϕi) = µq

First we prove that the set of the ϕi is bounded in H1,

||ϕi||
2
H1

= ||∇ϕi||
2
2 + ||ϕi||

2
2 = Iq(ϕi)−

ˆ

M

h(x)ϕ2
i dV + ||ϕi||

2
2

Since we can suppose that Iq(ϕi) < µq + 1, then

||ϕi||
2
H1

≤ µq + 1 +

[

1 + sup
x∈M

|h(x)|

]

||ϕi||
2
2

and
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||ϕi||
2
2 ≤ [V ]1−2/q||ϕi||

2
q ≤ [V ]1−2/q

[

inf
x∈M

f(x)

]−2/q

c) If 2 < q < N , there exists a non-negative function ϕq ∈ H1 satisfying

Iq(ϕq) = µq

and

ˆ

M

f(x)ϕq
qdV = 1

Indeed for 2 < q < N the imbedding H1 ⊆ Lq is compact by Kondrakov’s theorem (A2) and
since the bounded closed sets in H1 are weakly compact (A7), there exists a subsequence of
{ϕi}, {ϕj}, and a function ϕq ∈ H1 such that

1. ϕj → ϕq in Lq.

2. ϕj → ϕq weakly in H1.

3. ϕj → ϕq a.e..

The last assertion is true by A8. The first assertion implies
ˆ

M

f(x)ϕq
qdV = 1

and the third implies ϕq ≥ 0. Finally the second implies

||ϕq||H1
≤ lim inf

i→∞
||ϕj ||H1

Hence
Iq(ϕq) ≤ lim

j→∞
Iq(ϕj) = µq

because ϕj → ϕq in L2 according to the first assertion above, since q ≥ 2. Therefore, by
definition of µq, Iq(ϕq) = µq.

d) ϕq satisfies (5) weakly in H1. We compute the Euler-Lagrange equation. Set ϕ = ϕq+νψ
with ψ ∈ H1 and ν ∈ R small. An asymptotic expansion gives:

Iq(ϕ) = Iq(ϕ)

[

1 + νq

ˆ

M

f(x)ϕq−1
q ψdV

]−2/q

+2ν

[
ˆ

M

∇iϕq∇iψdV +

ˆ

M

h(x)ϕqψdV

]

+O(ν)

thus ϕq satisfies for all ψ ∈ H1:
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ˆ

M

∇iϕq∇iψdV +

ˆ

M

h(x)ϕqψdV = µq

ˆ

M

f(x)ϕq−1
q ψdV

which is the weak form of (5) with λ = µq. To check that the preceding computation is
correct, we note that since D(M) is dense in H1 and ϕ 6≡ 0, then

inf
ϕ∈H1

Iq(ϕ) = inf
ϕ∈C∞

Iq(ϕ) = inf
ϕ∈C∞

Iq(|ϕ|) ≥ inf
ϕ∈H1,ϕ>0

Iq(ϕ) ≥ inf
ϕ∈H1

Iq(ϕ)

Iq(ϕ) = Iq(|ϕ|) when ϕ ∈ C∞ because the set of points P where ϕ(P ) = 0 and |∇ϕ(P )| 6= 0
is null.

e) ϕq ∈ C∞ for 2 ≤ q < N and the functions ϕq are uniformly bounded for 2 ≤ q ≤ q0 < N .
Let G(P,Q) be the Green’s function. ϕq satisfies the integral equation

ϕq(P ) = V −1

ˆ

M

ϕq(Q)dV (Q) (6)

+

ˆ

M

G(P,Q)
[

µqf(Q)ϕq−1
q − h(Q)ϕq

]

dV (Q)

We know that ϕq ∈ Lr0 with r0 = N . Since by A6 part 3 there exists a constant B such
that |G(P,Q)| ≤ B[d(P,Q)]2−n, then according to Sobolev’s lemma A1 and its corollary,
ϕq ∈ Lr1 for 2 < q ≤ q0 with

1

r1
=
n− 2

n
+
q0 − 1

r + 0
− 1 =

q0 − 1

r0
−

2

n

and there exists a constant A1 such that ||ϕq ||r1 ≤ A1||ϕq||
q−1
r0 . By induction we see that

ϕq ∈ Lrk with
1

rk
=
q0 − 1

rk−1
−

2

n
=

(q0 − 1)k

r0
−

2

n

(q0 − 1)k − 1

q0 − 2

and there exists a constant Ak such that ||ϕq||rk ≤ Ak||ϕq||
(q−1)k

r0 . If for k large enough,
1/rk is negative, then ϕq ∈ L∞. Indeed suppose 1/rk−1 > 0 and 1/rk < 0. Then (q0 −
1)/rk−1 − 2/n < 0 and Holder’s inequality A4 applied to (6) yields ||ϕq||∞ ≤ C||ϕq||

q−1
rk−1

where C is a constant. There exists a k such that

1

rk
= (q0 − 1)k

[

1

r0
−

2

n(q0 − 2)

]

+
2

n(q0 − 2)
< 0

because n(q0 − 2) < 2r0 = 2N , since q0 < N = 2n
n−2 . Moreover, there exists a constant Ak

which does not depend on q ≤ q0 such that

||ϕq||∞ ≤ Ak||ϕq||
(q−1)k

N

But the set of the functions ϕq is bounded in H1 (same proof as in part b). Thus by the
Sobolev imbedding theorem A3, the functions ϕq are uniformly bounded. Since ϕq ∈ L∞,
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differentiating (6) yields ϕq ∈ C1. ϕq satisfies (5); thus ∆ϕq is in C1 and ϕq ∈ C2 according
to A5.

f) ϕq is strictly positive. This is true because

ˆ

M

f(x)ϕq
qdV = 1

Then A9 establishes this result since ϕq cannot be identically 0. Lastly ϕq ∈ C∞ by
induction according to A5. �

Remark: We cannot use the same method for the case q = N . This is because in c) we
cannot apply Krondrakov’s theorem and therefore only have

ˆ

M

f(x)ϕN
N ≤ 1

What’s more, the method in e) gives us nothing as q0 = N . In this case rk = r0 = N for all
k.

2.2 The Yamabe invariant

In view of the preceding theorem, to solve (2) Yamabe had considered the functional

Jq(ϕ) =

[

4
n− 1

n− 2

ˆ

M

∇iϕ∇iϕdV +

ˆ

M

Sϕ2dV

]

||ϕq||
−2 (7)

This is known as the Yamabe functional. which is the functional (4) corresponding to (5),
divided by a constant. Define λq(M) = inf Jq(ϕ) for all ϕ ≥ 0, ϕ 6≡ 0, belonging to H1.
Set λ(M) = λN (M) and J(ϕ) = JN (ϕ). In view of the following proposition, λ(M) is
appropriately called the Yamabe invariant. When M is understood, we will simply write λ
and λq.

Proposition: λ(M) is a conformal invariant.

Proof. Consider a change of conformal metric define by g̃ = ϕ
4

n−2 g. We have dV ′ = ϕNdV
and

J(ϕψ) =
4n−1
n−2

[´

M ϕ2∇iψ∇iψdV +
´

M ϕψ2∆ϕdV
]

+
´

M Sϕ2ψ2dV
[´

M ϕNψNdV
]2/N

using (1) gives J(ϕψ) = J̃(ψ) and consequently λ = λ̃. �

2.3 Trudinger’s work

From now on, we will assume without loss of generality that M has unit volume. Yamabe
had claimed that the functions ϕq corresponding to Jq are uniformly bounded and therefore
uniformly continuous, from which he showed a solution to (2) with the desired properties
exists by a limiting argument. However, he was in error. The fault was discovered by
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Trudinger in 1968. In the next section we will see a counter-example. The following theorem
is due to Trudinger:

Theorem (Trudinger): There exists α(M) > 0 such that if λ(M) < α(M), then there
exists a positive C∞ solution to (2) with S̃ = λ(M). Thus Yamabe’s problem is solved under
this assumption on (M, g).

We do not prove this result as it is subsumed by the work of Aubin, which we shall look
at next. We observe that if (M, g) has non-positive mean scalar curvature, then the above
implies (M, g) indeed admits a conformal metric with constant scalar curvature; indeed
one easily sees J(1) is, up to a positive constant, the mean scalar curvature and since
λ(M) ≤ J(1), the result immediately follows.

3 Results by Aubin

Aubin looked attentively at the Yamabe problem on the unit sphere. He had shown that

λ(Sn) = n(n− 1)ω
2/n
n where ω is the n-dimensional volume of Sn. Furthermore, he showed

that the constant in the sharp Sobolev inequality is obtained from λ(Sn). This allowed
him to show that for any manifold M , λ(M) ≤ λ(Sn). If the inequality is strict, then the
Yamabe problem is solved; thus α(M) above may be taken to be λ(Sn).

3.1 Yamabe’s problem on the sphere

Central to the treatment of Yamabe’s problem is a firm grasp of the case of the sphere Sn.
Here it is shown that the infimum for the functional (7) is attained by the standard metric
on Sn which we will denote throughout this section by ḡ. The proof is based on an argument
by Obata with simplifications by Penrose.

Theorem (Obata). If g is a metric on Sn that is conformal to the standard metric ḡ and
has constant scalar curvature, then up to a constant scale factor, g is obtained from ḡ by a
conformal diffeomorphism of the sphere.

Proof. We begin by showing g is Einstein (i.e. the Ricci tensor is proportional to g). From
here on, the metric equipped to Sn is g. We can write g = ϕ−2g where ϕ ∈ C∞(Sn) is
strictly positive. Making the substitution e2f = ϕ−2, we compute

Rjk = Rjk + ϕ−1

(

(n− 2)∇jkϕ− (n− 1)
∇iϕ∇

iϕ

ϕ
gjk −∆ϕgjk

)

in which the covariant derivatives and Laplacian are to be taken with respect to g, not with
respect to g. If Bjk = Rjk − (S/n)gjk represents the traceless Ricci tensor, then since g is
Einstein,

0 = Bjk = Bjk + (n− 2)ϕ−1(∇jkϕ+ (1/n)∆ϕgjk)

since the scalar curvature S is constant, the contracted Bianchi identity (B1) implies that
divergence Ri

m,io f the Ricci tensor vanishes identically, and thus so also does Bi
m,i. Because
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Bjk is traceless, integration by parts gives

ˆ

Sn

ϕ|B|2dVg =

ˆ

Sn

ϕBjkB
jkdVg

= −(n− 2)

ˆ

Sn

Bjk

(

ϕjk +
1

n
∆ϕgjk

)

dVg

= −(n− 2)

ˆ

Sn

BjkϕjkdVg

= (n− 2)

ˆ

Sn

Bjk
,k ϕjdVg = 0

Thus Bjk must be Einstein. Since g is conformal to the standard metric g on the sphere,
which is locally conformally flat, we have W = 0 as well as B = 0. This implies that g has
constant curvature, and so (Sn, g) is isometric to a standard sphere. The isometry is the
desired conformal diffeomorphism. �

Let P = (0, . . . , 1) be the north pole on Sn ⊆ R
n+1. Stereographic projection σ : Sn−{P} →

R
n is defined by σ(ζ1, . . . , ζn, ξ) = (x1, . . . , xn) for (ζ, ξ) ∈ Sn − {P} where

xj =
ζj

1− ξ

We can verify that σ is a conformal diffeomorphism. If ds2 is the Euclidean metric on R
n,

then under σ, g corresponds to

ρ ∗ g = 4(|x|2 + 1)−2ds2

where ρ denotes σ−1. This can be written as 4up−2
1 ds2 where

u1(x) = (|x|2 + 1)(2−n)/2

By means of stereographic projection, it is simple to write down conformal diffeomorphisms
of the sphere the group of such diffeomorphisms is generated by the rotations, together with
maps of the form σ−1τνσ and σ−1δασ where τν , δα : Rn → R

n are respectively translation
by ν ∈ R

n:

τν(x) = x− ν

and dilation by α > 0;

δα(x) = α−1x

The sphereical metric on R
n transforms under dilations to

δ∗αρ
∗g = 4up−2

α ds2

where uα(x) =
(

|x|2+α2

α

)(2−n)/2

.
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Theorem. There exists a positive C∞ function ψ on Sn satisfying J(ψ) = λ(Sn).

Proof. For 2 ≤ q < p, let ϕq be the solution on Sn to the subcritical problem (5). Composing
with a rotation, we may assume that the supremum of ϕq is attained at the south pole for
q. If {ϕq} is uniformly bounded, then following the argument proposed by Yamabe we can
show that a subsequence converges to an extremal solution, so assume supϕq → ∞. Now
let κα = σ−1δασ : Sn → Sn be the conformal diffeomorphism induced by dilation on R

n as
described above. If we set gα = κ∗αg, we can write gα = tp−2

α g where the conformal factor
tα is the function

tα(ζ, ξ) =

(

(1 + ξ) + α2(1− ξ)

2α

)(2−n)/2

Observe that at the south pole tα = α(2−n)/2. For each q < p, let ψq = tακ
∗
αϕq, with α = αq

chosen so that ψq = 1 at the south pole. This implies that αq = (supϕq)
2/(n−2) → ∞ as

q → p and ψq ≤ α(n−2)/2tα on M . Let �α denote the conformally invariant Laplacian with
respect to the metric gα; by naturality of �, �α(κ

∗
αϕq) = κ∗α(�ϕq). Then by computation

we find

�ψq = �(tακ
∗
αϕq) = tp−1

α �α(κ
∗
αϕq) = λqt

p−1
α (κ∗αϕq)

q−1 (8)

= λqt
p−q
α ψq−1

q

where λq is defined as section 2.2. Observe that this transformation law also implies that

||ψq||2,1 ≤ C

ˆ

Sn

ψq�ψpdVg = C

ˆ

Sn

ϕq�ϕqdVg ≤ C′||ϕq||2,1

so {ψs} is bounded in L2
1(S

n) and hence also in Lp(Sn) by the Sobolev theorem. Let
ψ ∈ L2

1(S
n) denote the weak limit.

Now if P is the north pole, on any compact subset of Sn−{P} there exists a constant A such
that tα ≤ Aα(2−n)/2 and thus the RHS of (8) is bounded there by λ2A

p−1 independently of
q. This implies that on any such set the RHS is bounded in Lr for every r. One can argue
using local elliptic regularity that {ψq} is bounded in C2,α on compact sets disjoint from
P . Let K1 ⊆ K2 ⊆ · · · be a sequence of compact sets whose union is Sn − {P}. By the
Arzela-Ascoli theorem, we can choose a subsequence of {ψq} that converges in C2(K1) and
then a subsequence that converges in C2(K2), etc. Taking a diagonal subsequence, we see
that the limit function ψ is C2 on Sn − {P}.

Since λp → λ(Sn) and tp−q
α ≤ 1 away from P for q near p, we conclude that ψ satisfies

�ψ = fψp−1 on Sn − {P} for some C2 function f with 0 ≤ f ≤ λ(Sn). By the removable
singularities result (A...) the same equation must hold weakly on all of Sn. For each p,

||ψq||
p
p =

ˆ

Sn

tpα(κ
∗
αϕq)

pdVg

=

ˆ

Sn

(κ∗αϕs)
pκ∗αdVg = ||ϕq||

p
p ≥ Vol(Sn)1−p/q||ϕq ||

p
q

This implies that ||ψ||p ≥ 1 and therefore J(ψ) ≤ λ(Sn). But since λ(Sn) is by the definition
the infimum of J , we must have �ψ = λ(Sn)ψp−1 and J(ψ) = λ(Sn). It remains to show
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that ψ is positive and smooth. This can be accomplished by using the regularity theorem.
�

The two results above combine to give us:

Theorem. The Yamabe functional (7) on (Sn, ḡ) is minimized by constant multiples of
the standard metric and its images under conformal diffeomorphisms. These are the only
metrics conformal to the standard one on Sn that have constant scalar curvature.

Another result by Aubin gives us λ(Sn) = n(n− 1)ω
2/n
n , where ω

n
is the volume of Sn.

3.2 The sharp Sobolev inequality

Suppose 1
r = 1

q − k
n . Then Lq

k(R
n) is continuously embedded in Lr(Rn). In particular, for

q = 2, k = 1, r = p = 2n
n−2 , we have the following Sobolev inequality:

||ϕ||2p ≤ σn

ˆ

Rn

|∇ϕ|2dx, ϕ ∈ L2
1(R

n)

We call the smallest such constant σn the best n-dimensional Sobolev constant (on R
n). The

above results can be used to prove that in fact

σn = a/λ(Sn)

= 2(ωn)
−1/n[n(n− 2)]−1/2

(one uses stereographic projection to convert the Yamabe problem on the sphere to an
equivalent problem on R

n and uses the conformal invariance of J). Thus the sharp form of
the Sobolev inequality is

||ϕ||2p ≤
a

λ(Sn)

ˆ

Rn

|∇ϕ|2

and we can show that equality is attained only by constant multiples and translates of the
functions uα defined above. The following result will also be useful to us:

Theorem. Let M be a compact Riemannian manifold with metric g, p = 2n/(n− 2), and
let σn be the best Sobolev constant. Then for every ε > 0 there exists a constant Cε such
that for all ϕ ∈ C∞(M),

||ϕ||2p ≤ (1 + ε)σn

ˆ

M

|∇ϕ|2dVg + Cε

ˆ

M

ϕ2dVg

3.3 Aubin’s Theorems

We are in the position to prove:

Theorem (Aubin). If M is any compact Riemannian manifold of dimension n ≥ 3, then
λ(M) ≤ λ(Sn).

Proof. The functions uα satisfy a||∇uα||
2
2 = λ(Sn)||uα||

2 on R
n. For any fixed ε > 0, let

Bε denote the ball of radius ε in R
n and choose a smooth radial cutoff function 0 ≤ η ≤ 1
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supported in B2ε with η ≡ 1 on Bε. Consider the smooth, compactly supported function
ϕ = ηuα. Since ϕ is a function of r = |x| alone,

ˆ

Rn

a|∇ϕ|2dx =

ˆ

B2ε

(aη2|∇uα|
2 + 2aηuα 〈∇η,∇uα〉+ au2α|∇η|

2)dx (9)

≤

ˆ

Rn

a|∂ruα|
2dx+ C

ˆ

Aε

(uα|∂ruα|+ u2α)dx

where Aεdenotes the annulus B2ε −Bε. To estimate these terms we observe that

∂ruα = (2− n)rα−1

(

r2 + α2

α

)−n/2

and so uα ≤ α(n−2)/2r2−n and |∂ruα| ≤ (n− 2)α(n−2)/2r1−n. Thus for fixed ε, the second
term in (9) is O(αn−2) as α → 0. For the first term,

ˆ

Rn

a|∂ruα|
2dx = λ(Sn)

(
ˆ

Bε

upαdx+

ˆ

Rn−Bε

upαdx

)2/p

≤ λ(Sn)

(
ˆ

B2ε

ϕp +

ˆ

Rn−Bε

αnr−2n

)2/p

= λ(Sn)

(
ˆ

B2ε

ϕp

)2/p

+O(αn)

Therefore the Sobolev quotient of ϕ on R
n is less than λ(Sn) + Cαn−2. On a compact

manifold M , let ϕ = ηuα in normal coordinates {xi} in a neighborhood of P ∈M extended
by zero to a smooth function on M . Since ϕ is a radial function and grr ≡ 1 in normal
coordinates, we have |∇ϕ|2 = |∂rϕ|

2 as before. The only corrections to the above estimate
are introduced by the scalar curvature term and the difference between dVg and dx. Since
dVg = (1 +O(r))dx in normal coordinates, the previous calculation gives

E(ϕ) =

ˆ

B2ε

(a|∇ϕ|2 + Sϕ2)dVg

≤ (1 + Cε)

(

λ(Sn)||ϕ||2p + Cαn−2 + C

ˆ 2ε

0

ˆ

Sr

u2αr
n−1dωdr

)

One can then argue that the last term is bounded by a constant multiple of α. Thus choosing
ε and then α small, we can arrange that

J(ϕ) ≤ (1 + Cε)(λ(Sn) + Cα)

which proves λ(M) ≤ λ(Sn). �

Theorem (Trudinger, Aubin). Suppose λ(M) < λ(Sn), and let ϕq be the collection of
functions defined before. There are constants q0 < p, r > p and C > 0 such that ||ϕq||r ≤ C
for all q ≥ q0.

11



Proof. Let δ > 0. Multiplying (5) by ϕ1+2δ
q and integrating, we obtain

ˆ

M

(a
〈

dϕq, (1 + 2δ)ϕ2δ
q dϕq

〉

+ Sϕ2+2δ
q )dVg = λq

ˆ

M

ϕq+2δ
q dVg

if we set w = ϕ1+δ
q this can be written as

1 + 2δ

(1 + δ)2

ˆ

M

a|dw|2dVg =

ˆ

M

(λqw
2ϕq−2

q − Sw2)dVg

Now applying the sharp Sobolev inequality for any ε > 0,

||w||2p ≤ (1 + ε)
a

λ(Sn)

ˆ

M

|dw|2dVg + Cε

ˆ

M

w2dVg

≤ (1 + ε)
(1 + δ)2

(1 + 2δ)

ˆ

M

λq
λ(Sn)

w2ϕq−2
q dVg + C

′

ε||w||
2
2

≤ 1 + ε)
(1 + δ)2

(1 + 2δ)

λq
λ(Sn)

||w||2p||ϕq||
q−2
(q−2)n/2 + C

′

ε||w||
2
2

by Holder’s inequality. Since q < p, (q − 2)n/2 < q and thus by Holder’s inequality again
||ϕq||(q−2)n/2 ≤ ||ϕq ||q = 1. Now if 0 ≤ λ(M) < λ(Sn), then for some q0 < p, λq/λ(S

n) ≤
λq0 < 1 for q ≥ q0. Thus we can choose ε and δ small enough so that the coefficient of the
first term above is less than 1, and so can be absorbed in the LHS. Thus

||w||2p ≤ C||w||22

The same result obviously holds if λ(M) and hence λq is less than 0. But applying Holder’s
inequality once more we see that

||w||2 = ||ϕq||
1+δ
2(1+δ) ≤ ||ϕq||

1+δ
q = 1

Therefore ||w||p = ||ϕq||
1+δ
p(1+δ) is bounded independently of q. �

We can now prove the Yamabe problem has a solution if λ(M) < λ(Sn). We first state a
regularity theorem without giving proof (see theorem A9).

Theorem (Regularity). Suppose ϕ ∈ L2
1(M) is a non-negative weak solution of (5) with

2 ≤ q ≤ p and |λq| ≤ K for some constant K. If ϕ ∈ Lr(M) for some r > (q − 2)n/2 (in
particular if r = s < p or if s = p < r) then ϕ is either identically 0 or strictly positive and
C∞ and ||ϕ||C2,α ≤ C where C depends only on M , g, K and ||ϕ||r.

Theorem. Let {ϕq} be as before and assume λ(M) < λ(Sn). As q → p, a subsequence
converges uniformly to a positive function ϕ ∈ C∞(M) which satisfies J(ϕ) = λ(M) and
equation (2).

Proof. Since the functions {ϕq} are uniformly bounded in Lr(M), the above regularity result
shows that they are uniformly bounded in C2,α(M) as well. The Arzela-Ascoli theorem then

12



implies that a subsequence converges in the C2 norm to a function ϕ ∈ C2(M). The limit
function ϕ therefore satisfies

�ϕ = λϕp−1, J(ϕ) = λ

where λ = limq→p λq . If λ(M) ≥ 0, then one can show that λ = λ(M). On the other
hand, if λ(M) < 0, the fact that λpis increasing implies that λ ≤ λ(M) but since λ(M)
is the infimum of J , we must have λ = λ(M) in this case as well. Another application of
the regularity result in elliptic theory shows that ϕ is C∞ and is strictly positive because
||ϕ||p ≥ lims→p ||ϕq||q = 1. �

The above shows that Yamabe’s problem is resolved in the affirmative provided λ(M) <
λ(Sn). It is normal to ask then if this is true for all manifolds M ; the Yamabe problem
would then be completely resolved. In the case n ≥ 6 and M is not locally conformally flat,
this turns out to be true.

Definition: A Riemannian manifold M is said to be locally conformally flat if each point
has a neighborhood where there exists a conformal metric whose curvature vanishes.

Theorem (Aubin). If M has dimension n and n ≥ 6 is a compact nonlocally conformally
flat Riemannian manifold, then λ(M) < λ(Sn). Hence the minimum λ(M) is attained and
equation (1) has a strictly positive solution with S̃ = λ(M), so Yamabe’s problem is solved
in this case.

Proof. When n ≥ 4, a necessary and sufficient condition for a manifold to be locally
conformally flat is that the Weyl tensor vanishes identically. By definition the Weyl tensor
is

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

+
S

(n− 1)(n− 2)
(gjlgik − gjkgil)

and W j
ikl is a conformal invariant. If M is not locally conformally flat there exists a point

P where the Weyl tensor is not zero. After a change of conformal metric, the calculation of
an asymptotic expansion yields a second term whose sign is −WikjlW

ijkl when n ≥ 6, thus
showing λ(M) < λ(Sn). �

4 Further results by Schoen

Richard Schoen proved the following theorem:

Theorem (Schoen): If M has dimension 3, 4 or 5, or if M is locally conformally flat, then
λ(M) < λ(Sn) unless M is conformal to the standard sphere.

Schoen made heavy use of the Green function for the operator �. He also serendipitously
found the positive mass theorem of general relativity, which had recently been proved in
dimension 3 and 4 by Schoen and Yau. The proof of the above theorem requires an n-
dimensional version of the positive mass theorem. The 5-dimensional case is a generalizing
of the proof of the 4-dimensional case. The n-dimensional case, n ≥ 6, is more difficult.
However, by Aubin’s results only conformally flat manifolds need be considered.
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5 Appendix: Preliminary Results

We collect here a number of results useful to us. The proofs can be found in [Aub].

5.1 Analytic results

Theorem A1. (Sobolev’s lemma). Let p′ > 1 and q′ > 1 be real numbers. Define λ by
1/p′ +1/q′ +λ/n = 2. If λ satisfies 0 < λ < n, there exists a constant K(p′, q′, n) such that
for all f ∈ Lq′(Rn) and g ∈ Lp′

(Rn) :

ˆ

Rn

ˆ

Rn

f(x)g(y)

||x− y||λ
dxdy ≤ K(p′, q′, n)||f ||q′ ||g||p′

||x|| being the Euclidean norm.

Corollary. Let λbe a real number 0 < λ < n and q′ > 1. If r defined by 1/r = λ/n+1/q′−1
satisfies r > 1 then

h(y) =

ˆ

Rn

f(x)

||x− y||λ
dx

belongs to Lr when f ∈ Lq′(Rn). Moreover there exists a constant C(λ, q′, n( such that for
all f ∈ Lq′(R

n)

||h||r ≤ C(λ, q′, n)||f ||q′

Theorem A2. (Kondrakov): Let k ≥ 0 be an integer and p, q ∈ R satisfying 1 ≥ 1/p >
1/q − k/n > 0. The Kondrakov theorem asserts that, if Ω ⊆ R

n is a bounded domain with
smooth boundary then

1. The imbedding W k,q(Ω) ⊆ Lp(Ω) is compact.

2. The imbedding W k,q(Ω) ⊆ Cα(Ω) is compact, if k − α > n/q with 0 ≤ α < 1.

3. The following embeddings W k,q
0 ⊆ Lp(Ω) and W k,q

0 (Ω) ⊆ Cα(Ω) are compact.

The Kondrakov theorem also holds for compact Riemannian manifold.

Definition: The injectivity radius at a point P of a Riemannian manifold is the largest
radius for which the exponential map at P is a diffeomorphism. The injectivity radius of a
Riemannian manifold is the infimum of the injectivity radii at all points.

Theorem A3. The Sobolev imbedding theorem holds for M a complete manifold with
bounded curvature and injectivity radius δ > 0. Moreover for any ε > 0, there exists a
constant Aq(ε) such that every ϕ ∈ Hq

1 (M) satisfies

||ϕ||p ≤ [K(n, q) + ε]||∇ϕ||q +Aq(ε)||ϕ||q
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with 1/p = 1/q − 1/n > 0 (see section 3.2).

Proposition A4 (Holder’s inequality). Let M be a Riemannian manifold. If f ∈
Lr(M) ∩ Lq(M), 1 ≤ r < q ≤ ∞, then f ∈ Lp for p ∈ [r, q] and

||f ||p ≤ ||f ||ar ||f ||
1−α
q

with a = 1/p−1/q
1/r−1/q .

Theorem A5. Let Ω be an open set of Rn and A = aℓ∇
ℓ a linear elliptic operator of order

2m with C∞ coefficients (aℓ ∈ C∞(Ω) for 0 ≤ ℓ ≤ 2m). Suppose u is a distribution solution
of the equation A(u) = f and f ∈ Ck,α(Ω) (resp. C∞(Ω)). Then u ∈ Ck+2m,α(Ω) (resp.
C∞(Ω)) with 0 < α < 1. If f belongs to W k,p(Ω), 1 < p < ∞ then u belongs locally to
W k+2m,p.

Theorem A6. Let M be a compact C∞ Riemannian manifold. There exists G(P,Q) a
Green’s function of the Laplacian which has the following properties:

1. For all functions ϕ ∈ C2:

ϕ(P ) = V −1

ˆ

M

ϕ(Q)dV (Q) +

ˆ

M

G(P,Q)∆ϕ(Q)dV (Q)

2. G(P,Q) is C∞ on M ×M minus the diagonal (for P 6= Q).

3. There exists a constant k such that:

|G(P,Q)| < k(1 + | log r|) for n = 2 and

|G(P,Q)| < kr2−n for n > 2, |∇QG(P,Q)| < kr1−n

|∇2
QG(P,Q)| < kr−n with r = d(P,Q)

4. There exists a constant A such that G(P,Q) ≥ A. Because the Green function is
defined up to a constant, we can thus choose the Green’s function everywhere positive.

5.
´

G(P,Q)dV (P ) is constant. We can choose the Green’s function so that its integral
is equal to 0.

6. G(P,Q) = G(Q,P ).

Theorem A7. A Banach space is reflexive iff the closed unit ball is weakly sequentially
compact.

Proposition A8. Let {fk} be a sequence in Lp (or in L∞) which converges in Lp to f ∈ Lp

. Then there exists a subsequence converging pointwise to f a.e.

Theorem A9. Let M be a compact Riemannian manifold. If a function ψ ≥ 0 belonging
to C2(M) satisfies an inequality of the type ∆ψ ≥ ψf(P, ψ), where f(P, t) is a continuous
numerical function on M × R, then either ψ is strictly positive or ψ is identically 0.
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5.2 Geometric results

Theorem B1. (Bianchi identities): Let R be the curvature tensor of a Riemannian
manifold M . It satisfies the Bianchi identities: Rijkl+Riklj +Riljk = 0, Rijkl,m+Rijlm,k+
Rijmk,l = 0.

Theorem B2. Let (M, g) be a Riemannian metric and g̃ = e2fg a conformal metric. Then
we have the following transformation law for the Ricci curvature:

R̃jk = Rjk − (n− 2)∇jkf + (n− 2)∇jf∇kf + (∇f − (n− 2)|∇f |2)gjk

where R and R̃ are the Ricci curvatures of g and g̃ respectively.
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