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1 Introduction

In this report we will talk about generalized solutions to the Monge-Ampère Equation. We will
follow closely [1], trying to provide more detail in the proofs where it felt needed.

2 The Normal Mapping

In this Section we introduce the concept of normal mapping of a function and study some of his
properties. We will then use it in the next Section to introduce the notion of generalized solutions to
the Monge-Ampère equation.

Let Ω be an open subset of Rn and u : Ω → R. Given x0 ∈ Ω, a supporting hyperplane to the
function u at the point (x0, u(x0)) is an affine function l(x) = u(x0)+p · (x−x0) such that u(x) ≥ l(x)

for all x ∈ Ω or u(x) ≤ l(x) for all x ∈ Ω.

Definition 2.1. The normal mapping of u, or subdifferential of u, is the set-valued function ∂u :

Ω→ P(Rn) defined by

∂u(x0) = {p : u(x) ≥ u(x0) + p · (x− x0), for all x ∈ Ω}

Given E ⊆ Ω, we define ∂u(E) = ∪x∈E∂u(x).

Remark 2.2. In other words, ∂u(x0) is the set of supporting hyperplanes to u at the point (x0, u(x0)

from below.



Remark 2.3. Note that the set ∂u(x0) may be empty. Let S = {x ∈ Ω : ∂u(x) 6= ∅}. If u ∈ C1(Ω)

and x ∈ S, then ∂u(x) = Du(x) (we drop the brackets every time ∂u(x) consists of a single point),
where Du denotes the gradient of u at x. This means that when u is differentiable the normal mapping
is basically the gradient. Moreover, if u ∈ C2(Ω) and x ∈ S, then the Hessian of u is non-negative
definite, that is D2u(x) ≥ 0. This means that when u ∈ C2, S is the set where the graph of u is
convex. Indeed, for x ∈ S we have by Taylor’s Theorem that

u(x+ h) = u(x) +Du(x) · h+
1

2

〈
D2u(ξ)h, h

〉
where ξ lies on the segment between x and x+ h. From the definition of the normal mapping of u we
have also that

u(x+ h) ≥ u(x) +Du(x) · h

for all h sufficiently small. Hence
〈
D2u(ξ)h, h

〉
≥ 0 for all h sufficiently small and the claim follows.

Remark 2.4. Given x0 ∈ Ω, then ∂u(x0) is convex. However, if K ⊆ Ω is convex, then ∂u(K) is
not necessarily convex.

Example 2.5. Let’s compute the normal mapping of a function whose graph is a cone in Rn+1. For
that effect, let Ω = BR(x0) in Rn, h > 0 and u(x) = h |x−x0|

R . The graph of u, for x ∈ Ω, is a right
circular cone in Rn+1 with vertex at the point (x0, 0) and base on the hyperplane xn+1 = h. We will
show that

∂u(x) =

 h
R

x−x0

|x−x0| , for 0 < |x− x0| < R,

Bh/R(0), for x = x0.

Let x ∈ Ω. If 0 < |x − x0| < R, then the value of ∂u follows by computing the gradient of u at x.
Otherwise, take x = x0. By the definition of normal mapping, p ∈ ∂u(x0) if and only if

h

R
|x− x0| ≥ p · (x− x0)

for all x ∈ BR(x0). Clearly, if p = 0 then p ∈ ∂u(x0). If p 6= 0, taking x = x0 + R p
|p| in the above

inequality leads to |p| ≤ h
R . Using the Cauchy-Schwarz inequality, it is clear that |p| ≤ h

R implies that
p ∈ ∂u(x0). Hence ∂u(x0) = Bh/R(0).

Lemma 2.6. If Ω ⊆ Rn is open, u ∈ C(Ω) and K ⊆ Ω is compact, then ∂u(K) is compact.

Proof. We will prove that every sequence in ∂u(K) has a convergent subsequence whose limit lies in
∂u(K). Let {pk} ⊆ ∂u(K) be a sequence. The proof will go as follows: first we show that that the
sequence {pk} is bounded; then by the Bolzano-Weierstrass theorem it has a convergence subsequence
whose limit we prove to lie in ∂u(K).

Step 1 : The sequence {pk} is bounded.
By the definition of normal mapping, for each k there exists xk ∈ K such that pk ∈ ∂u(xk), i.e.,

u(x) ≥ u(xk) + pk · (x− xk)
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for all x ∈ Ω. Since K is compact, we may assume, by passing if necessary to a subsequence, that
xk → x0 for some x0 ∈ K. Also from the compactness of K, Kδ = {x : dist(x,K) ≤ δ} is compact
and contained in Ω for all δ sufficiently small, For all |w| = 1 and for all k we have that xk + δw ∈ Kδ

and

u(xk + δw) ≥ u(xk) + δpk · w.

If pk 6= 0, taking w = pk
|pk| in the above inequality leads to

u

(
xk + δ

pk
|pk|

)
≥ u(xk) + δ|pk|

and therefore

max
Kδ

u(x) ≥ min
K

u(x) + δ|pk|,

for all k. Since u ∈ C(Ω), u is bounded on any compact set contained in Ω and therefore the claim is
proved.

Step 2 : There exists a convergent subsequence {pkm} with limit p0 ∈ Rn.
This is a direct consequence of the Bolzano-Weierstrass since {pk} is bounded.
Step 3 : p0 ∈ ∂u(K).
We will prove that p0 ∈ ∂u(x0). Since pkm ∈ ∂u(xkm), we have that

u(x) ≥ u(xkm) + pkm · (x− xkm)

for all x ∈ Ω. Since u is continuous, by letting m→∞, we obtain

u(x) ≥ u(x0) + p0 · (x− x0)

for all x ∈ Ω and thus p0 ∈ ∂u(x0), completing the proof of the Lemma.

Lemma 2.7. If u is a convex function in Ω and K ⊆ Ω is compact, then u is uniformly Lipschitz in
K, i.e., there exists a constant C = C(u,K) such that |u(x)− u(y)| ≤ C|x− y| for all x, y ∈ K.

Proof. Since u is convex, u has a supporting hyperplane at any x ∈ Ω. Let C = sup {|p| : p ∈ ∂u(K)}.
By Lemma 2.6, C <∞. Let x ∈ K. Then

u(y) ≥ u(x) + p · (y − x)

for p ∈ ∂u(x) and for all y ∈ Ω. In particular, for y ∈ K, we have

u(y)− u(x) ≥ −|p||y − x|.

By reversing the roles of x and y we prove the Lemma.

Lemma 2.8. If Ω is open and u is Lipschitz continuous in Ω, then u is differentiable a.e. in Ω.

Proof. See [[2], p.81].
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Lemma 2.9. If u is convex or concave in Ω, then u is differentiable a.e. in Ω.

Proof. Follows immediately from the previous two Lemmas.

Definition 2.10. The Legendre transform of the function u : Ω → R is the function u∗ : Rn → R
defined by

u∗(p) = sup
x∈Ω
{x · p− u(x)} .

Remark 2.11. If Ω is bounded and u is bounded in Ω, then u∗ is finite. Also u∗ is convex in Rn.
Indeed, let p1, p2 ∈ Rn and 0 ≤ t ≤ 1. Then

u∗(tp1 + (1− t)p2) = sup
x∈Ω
{x · (tp1 + (1− t)p2)− u(x)}

= sup
x∈Ω
{t(x · p1 − u(x)) + (1− t)(x · p2 − u(x))}

≤ t sup
x∈Ω
{x · p1 − u(x)}+ (1− t) sup

x∈Ω
{x · p2 − u(x)}

= tu∗(p1) + (1− t)u∗(p2).

Remark 2.12. There is a close relation between the normal mapping of a function u and its Legendre
transform: p ∈ ∂u(x0) if and only if u∗(p) = p · x0 − u(x0).

Lemma 2.13. If Ω is open and u ∈ C(Ω), then the set of points in Rn that belong to the image by
the normal mapping of more than one point of Ω has Lebesgue measure zero. That is, the set

S = {p ∈ Rn : there is x1, x2 ∈ Ω with x1 6= x2 and p ∈ ∂u(x1) ∩ ∂u(x2)}

has measure zero. This also means that the set of supporting hyperplanes that touch the graph of u at
more than one point has measure zero.

Proof. We start by proving that we can assume that Ω is bounded u is bounded in Ω. We write
Ω = ∪∞k=1Ωk where the Ωk ⊆ Ωk+1 are open and the Ωk ⊆ Ω are compact. Let

Sm = {p ∈ Rn : there is x1, x2 ∈ Ω with x1 6= x2 and p ∈ ∂u|Ωm(x1) ∩ ∂u|Ωm(x2)}

where u|Ωm is the restriction of u to Ωm. Then S ⊆ ∪∞m=1Sm. Indeed let p ∈ S. Then there exists
x1, x2 ∈ Ω with x1 6= x2 and

u(z) ≥ u(xi) + p · (z − xi)

for all z ∈ Ω and i = 1, 2. Since the Ωk increase with k, x, y ∈ Ωm for some m and obviously the
previous inequalities hold for all z ∈ Ωm. Hence p ∈ Sm.

Since S ⊆ ∪∞m=1Sm it is enough to prove that each Sm has measure zero. Hence we can in fact
assume that Ω is bounded and u is bounded in Ω.

Let E = {p ∈ Rn : u∗ is not differentiable at p}, where u∗ is the Legendre transform of u. By
Remark 2.11 and Lemma 2.9 u∗ is finite and is differentiable a.e. and therefore E has Lebesgue
measure zero. Thus, proving that S ⊆ E completes the proof of the Lemma. Let p ∈ S. Then there
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exists x1, x2 ∈ Ω with x1 6= x2 and p ∈ ∂u(x1) ∩ ∂u(x2). Then by Remark 2.12, u∗(p) = p · xi − u(xi)

for i = 1, 2. We have from the definition of u∗ that

u∗(z) ≥ xi · z − u(xi)

for all z ∈ Ω and i = 1, 2, which we can rewrite as

u∗(z) ≥ u∗(p) + xi · (z − p)

for all z ∈ Ω and i = 1, 2. Hence if u∗ were differentiable at p we would have by Remark 2.11
Du∗(p) = xi for i = 1, 2, but since x1 6= x2, u∗ is not differentiable at p, i.e., p ∈ E.

Theorem 2.14. If Ω is open and u ∈ C(Ω), then the class

S = {E ⊆ Ω : ∂u(E) is Lebesgue measurable}

is a Borel σ-algebra. The set function Mu : S → R defined by

Mu(E) = |∂u(E)| (1)

is a measure, finite on compacts, that is called the Monge-Ampère measure associated with the function
u.

Proof. We need to show that S is closed under countable unions and complements. If {Ei}∞i=1 is
a sequence of subset of Ω then ∂u(∪∞i=1Ei) = ∪∞i=1∂u(Ei) and so if Ei ∈ S for i = 1, 2, · · · , then
∪∞i=1Ei ∈ S. By Lemma 2.6, the class S contains all compact subsets of Ω. Hence Ω ∈ S since we can
write Ω = ∪∞i=1Ki with Ki compact.

It remains to show, in order to prove that S is a σ-algebra, that if E ∈ S then Ω \E ∈ S. We first
note that for any set E ⊆ Ω

∂u(Ω \ E) = (∂u(Ω) \ ∂u(E)) ∪ (∂u(Ω \ E) ∩ ∂u(E)) .

Let E ∈ S. Clearly, ∂u(Ω) \ ∂u(E) is Lebesgue measurable. By Lemma 2.13, |∂u(Ω \E)∩ ∂u(E)| = 0

and so it is also Lebesgue measurable. Hence by the formula above ∂u(Ω\E) is Lebesgue measurable,
i.e., Ω \ E ∈ S.

We now show that Mu is a measure. Clearly Mu(∅) = 0 and so we only need to show that
Mu is σ-additive. Let {Ei}∞i=1 be a sequence of disjoint sets in S and set Hi = ∂u(Ei). Since
∂u(∪∞i=1Ei) = ∪∞i=1Hi we need to show that∣∣∣∣∣

∞⋃
i=1

Hi

∣∣∣∣∣ =

∞∑
i=1

|Hi|.

Let us write
∞⋃
i=1

Hi =

∞⋃
i=1

H̃i
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where H̃i = Hi \
(
∪i−1
j=1Hj

)
. Hence

{
H̃i

}∞
i=1

is a sequence of disjoint Lebesgue measurable sets and
therefore ∣∣∣∣∣

∞⋃
i=1

Hi

∣∣∣∣∣ =

∞∑
i=1

|H̃i|.

We have Ei ∩Ej = ∅ for i 6= j. Then by Lemma 2.13|Hi ∩Hj | = 0 for i 6= j and |Hi ∩
(
∪i−1
j=1Hj

)
| = 0.

Hence |Hi| = |H̃i| and thus proving that Mu is σ-additive.
We only have left to prove that Mu is finite on compacts but that is just a simple consequence of

Lemma 2.6.

Example 2.15. If u ∈ C2(Ω) is a convex function, then the Monge-Ampère measure Mu associated
with u satisfies

Mu(E) =

∫
E

detD2u(x)dx

for all Borel sets E ⊆ Ω. To prove this we need to use the following result, which we won’t prove.

Theorem 2.16. (Sard’s Theorem, see [4]) Let Ω ∈ Rn be an open set and g : Ω→ Rn a C1 function
in Ω. If S0 = {x ∈ Ω : det g′(x) = 0} then |g(S0)| = 0, where g′(x) =

(
∂gi(x)
∂xj

)n
i,j=1

.

We first notice that since u is convex and C2(Ω), then Du is one-to-one on the set

A =
{
x ∈ Ω : D2u(x) > 0

}
.

Indeed let x1, x2 ∈ A with Du(x1) = Du(x2). We will show that x1 = x2. By convexity

u(z) ≥ u(xi) +Du(xi) · (z − xi)

for all z ∈ Ω and i = 1, 2. Hence taking z = x2 for i = 1 and z = x1 for i = 2 we get that

u(x1)− u(x2) = Du(x1) · (x1 − x2) = Du(x2) · (x1 − x2)

By the Taylor’s formula we can write

u(x1) = u(x2) +Du(x2) · (x1 − x2) +

∫ 1

0

t
〈
D2u(x2 + t(x1 − x2))(x1 − x2), x1 − x2

〉
dt.

Therefore the integral is zero and the integrand must vanish for 0 ≤ t ≤ 1. Since x2 ∈ A it follows
that x2 + t(x1 − x2) ∈ A for t small. Therefore x1 = x2.

If u ∈ C2(Ω) then g = Du ∈ C1(Ω). Since u ∈ C2(Ω) and u is convex, ∂u(E) = Du(E) and so
Mu(E) = |Du(E)|. Also

Du(E) = Du(E ∩ S0) ∪Du(E \ S0).

Since E ⊆ Rm is a Borel set, E ∩ S0 and E \ S0 are also Borel sets. Hence, by the formula of change
of variables and Sard’s Theorem, we get

Mu(E) = Mu(E ∩ S0) +Mu(E \ S0) =

∫
E\S0

detD2u(x)dx =

∫
E

detD2u(x)dx.

Example 2.17. If u(x) is the cone of Example 2.5, then the Monge-Ampère measure associated with
u is Mu = |Bh/R|δx0 , where δx0 denotes the Dirac delta at x0.
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3 Generalized Solutions

In this Section we introduce the notion of generalized solutions, using the Monge-Ampère measure
defined in the previous Section, and study their stability .

Definition 3.1. Let µ be a Borel measure defined in Ω an open and convex subset of Rn. The convex
function u ∈ C(Ω) is a generalized solution, or Aleksandrov solution, to the Monge-Ampère equation

detD2u = µ (2)

if the Monge-Ampère measure Mu associated with u is defined by (1) equals µ.

Remark 3.2. Given f ∈ C(Ω) with f ≥ 0, we will also say that the convex function u ∈ C(Ω) is a
generalized solution to the Monge-Ampère equation

detD2u = f (3)

if Mu(E) =
∫
E
f(x)dx for all Borel subsets E of Ω.

The following Lemma addresses the stability of generalized solutions proving that this notion is
closed under uniform limits. In other words, if uj are generalized solutions to detD2u = µ in Ω and
uj → u uniformly on compact subsets of Ω, then u is also a generalized solution to detD2u = µ in Ω.

Lemma 3.3. Let uj ∈ C(Ω) be a convex functions such that uj → u uniformly on compact subsets of
Ω. Then

i) if K ⊆ Ω is compact then

lim sup
j→∞

∂uj(K) ⊆ ∂u(K)

and by Fatou’s Lemma

lim sup
j→∞

|∂uj(K)| ≤ |∂u(K)|

.

ii) if K is compact and U is open such that K ⊆ U ⊆ U ⊆ Ω then

∂u(K) ⊆ lim inf
j→∞

∂uj(K)

where the inequality holds for almost every point on the set on the left-hand side and by Fatou’s
Lemma

|∂u(K)| ≤ lim inf
j→∞

|∂uj(K)|.

iii) if uj are generalized solutions to detD2u = µ in Ω and uj → u uniformly on compact subsets of
Ω, then u is also a generalized solution to detD2u = µ in Ω.
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Proof.
i) Let K ⊆ Ω be a compact and p ∈ lim supj→∞ ∂uj(K). By definition of lim sup for each n there

exists jn and xjn ∈ K such that p ∈ ∂ujn(xjn). Passing to a subsequence xi of xjn if necessary, we
may assume that xi → x0 for some x0 ∈ K. Now, since p ∈ ∂u(xi) we have

ui(x) ≥ ui(xi) + p · (x− xi)

for all x ∈ Ω. Letting i→∞, by the uniform convergence of ui on compact subsets of Ω we obtain

u(x) ≥ u(xi) + p · (x− x0)

for all x ∈ Ω, i.e., p ∈ ∂u(x0).
ii) Let

S = {p ∈ Rn : p ∈ ∂u(x1) ∩ ∂u(x2) for some x1, x2 ∈ Ω with x1 6= x2}

By Lemma 2.13 we know that |S| = 0. We will prove that

∂u(K) \ S ⊆ lim inf
j→∞

∂uj(U)

Let p ∈ ∂u(K) \ S. Then there exists a unique x0 ∈ K such that p ∈ ∂u(x0) and p /∈ ∂u(x1) for
all x1 ∈ Ω with x1 6= x0. Let U be an open set satisfying the assumptions and x1 ∈ Ω with x1 6= x0.
Since p ∈ ∂u(x0), we have u(x1) ≥ u(x0) + p · (x1 − x0). Moreover, we can say that the inequality is
strict. Suppose u(x1) = u(x0) + p · (x1 − x0). Then using again the fact that p ∈ ∂u(x0), we have

u(x) ≥ u(x0) + p · (x− x0)

= u(x1)− p · (x1 − x0) + p · (x− x0)

≥ u(x1) + p · (x− x1)

for all x ∈ Ω and therefore p ∈ ∂u(x1) which is a contradiction with the choice of p.
Now, let l(x) = u(x0) + p · (x− x0) and set δ = min {u(x)− l(x) : x ∈ ∂U}. Since x0 /∈ ∂U , δ > 0

due to what we proved above. By the uniform convergence of uj on compact subsets of Ω, there is j0
such that |u(x)− uj(x)| < δ/2 for all x ∈ U and for all j ≥ j0. Let

δj = max
x∈U
{l(x)− uj(x) + δ/2} .

We have, for j ≥ j0, δj > 0 and uj(x) − l(x) > δ/2 for x ∈ ∂U due to the choice of j0. Hence if
xj ∈ U is point the point where the maximum is attained, xj /∈ ∂U .

We now prove that p ∈ ∂uj(xj) for all j ≥ j0 and therefore p ∈ lim infj→∞ ∂uj(U). Let j ≥ j0.
We have that

δj = l(xj)− uj(xj) + δ/2 = u(x0) + p · (xj − x0)− uj(xj) + δ/2

and therefore, by the definition of δj ,

u(xj) + p · (xj − x0)− uj(xj) + δ/2 ≥ u(x0) + p · (x− x0)− uj(x) + δ/2
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for all x ∈ U , which we can rewrite as

uj(x) ≥ uj(xj) + p · (x− xj)

for all x ∈ U . Since uj is convex in Ω and U is open the inequality above is true for all x ∈ Ω and
therefore p ∈ ∂uj(xj).

iii) It follows from i) and ii).

Lemma 3.4. If uk are convex functions in Ω such that uk → u uniformly on compact subsets of Ω

then the associated Monge-Ampère measures Muk tend to Mu weakly, that is∫
Ω

f(x)dMuk(x)→
∫

Ω

f(x)dMu(x)

for every f continuous with compact support in Ω.

Proof. It is a consequence of i) and ii) of the previous Lemma.

4 Viscosity Solutions

Definition 4.1. Let u ∈ C(Ω) be a convex function and f ∈ C(Ω) with f ≥ 0.

i) u is a viscosity subsolution of the equation detD2u = f if for all convex functions φ ∈ C2(Ω) if
x0 ∈ Ω is a local maximum point of u− φ then

detD2φ ≥ f(x0).

ii) u is a viscosity supersolution of the equation detD2u = f if for all convex functions φ ∈ C2(Ω)

if x0 ∈ Ω is a local minimum point of u− φ then

detD2φ ≤ f(x0).

We say that u is a viscosity solution of the equation detD2u = f if it is both a viscosity sub and
supersolution of detD2u = f .

One of our goals is to compare the notions of viscosity solutions and generalized solutions. In this
Section we will see if u is a generalized solution then u is a viscosity solution. The converse result will
be proved later.

Before we prove the result we make some remarks about the class of test functions used in the
definition of viscosity solutions.

Remark 4.2. If u ∈ C(Ω) is convex, φ ∈ C2(Ω) and u − φ has a local maximum at x0 ∈ Ω, then
D2φ(x0) ≥ 0. Indeed, since φ ∈ C2(Ω), we have

φ(x) = φ(x0) +Dφ(x0) · (x− x0) +
1

2

〈
D2φ(x− x0), x− x0

〉
+ o(|x− x0|2)
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Let N be a neighbourhood of x0 where x0 is a maximum point of u− φ. Then for x ∈ N ,

u(x) ≤ u(x0)− φ(x0) + φ(x)

= u(x0) +Dφ(x0) · (x− x0) +
1

2

〈
D2φ(x− x0), x− x0

〉
+ o(|x− x0|2)

Since u is convex, there exists p ∈ Rn such that

u(x) ≥ u(x0) + p · (x− x0)

for all x ∈ Ω. Hence we get

p · (x− x0) ≤ Dφ(x0) · (x− x0) +
1

2

〈
D2φ(x− x0), x− x0

〉
+ o(|x− x0|2)

for all x ∈ N . Now, fix ω ∈ ∂B1(0) Choose x ∈ N such that x− x0 = ρω for ρ > 0 sufficiently small.
Then the above inequality becomes

ρp · w ≤ ρDφ(x0)ω +
1

2
ρ2
〈
D2φ(x0)ω, ω

〉
+ o(ρ2).

Diving by ρ and letting ρ→ 0 leads to

(Dφ(x0)− p) · ω ≥ 0

Since ω was chosen arbitrarily in ∂B1(0) we conclude that p = Dφ(x0). Then we have

o(ρ2) +
1

2
ρ2
〈
D2φ(x0)ω, ω

〉
≥ 0

Dividing by ρ2 and letting ρ→ 0 shows that
〈
D2φ(x0)ω, ω

〉
≥ 0 and so we are done.

Lemma 4.3. We can restrict the class of test functions used in the definition of viscosity solutions
to the class of strictly convex quadratic polynomials.

Proof. We consider first the subsolution case. It is enough to prove that if detD2P (x0) ≥ f(x0) holds
for all strictly convex quadratic polynomials P and xo ∈ Ω local maximum of u−P implies that then
u is a viscosity subsolution of the equation detD2u = f in Ω. Let then φ ∈ C2(Ω) be convex such
that u − φ has a local maximum at x0 ∈ Ω. We want to show that detD2φ(x0) ≥ f(x0). Let P be
the quadratic polynomial given by

P (x) = φ(x0) +Dφ(x0) · (x− x0) +
1

2

〈
D2φ(x− x0), x− x0

〉
.

Then since φ ∈ C2(Ω), φ(x) = P (x) + o(|x− x0|2). Let ε > 0 and consider the quadratic polynomial
Pε(x) = P (x) + ε|x− x0|2. We have

D2Pε(x0) = D2P (x0) + 2εId

and so Pε is strictly convex. We have

φ(x)− Pε(x) = o(|x− x0|2)− ε|x− x0|2
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and therefore for x sufficiently close to x0, φ(x) − Pε(x) ≤ 0 = φ(x0) − Pε(x0) and so x0 is a local
maximum of φ− Pε. Then by assumption

detD2Pε(x) = det
(
D2φ(x0) + 2εId

)
≥ f(x0).

By letting ε→ 0, we obtain the desired inequality.
As for the supersolution case, let φ ∈ C2(Ω) be convex such that u − φ has a local minimum at

x0. If D2φ(x0) has some zero eigenvalue, then detD2φ(x0) = 0 ≤ f(x0) since f ≥ 0 in Ω. If all
eigenvalues are positive, consider P (x) as in the subsolution case. Then Pε(x) = P (x)− ε|x− x0|2 is
strictly convex for all ε > 0 sufficiently small. Hence, proceeding as in the case of subsolutions, we
can show that u − Pε has a local minimum at x0 and consequently detD2φ(x0) ≤ f(x0) by letting
ε→ 0 as before

Proposition 4.4. Let f ∈ C(Ω) with f ≥ 0 in Ω. If u is a generalized solution to detD2u = f , then
u is a viscosity solution detD2u = f .

Proof. Let φ ∈ C2(Ω) be a strictly convex function such that u − φ has a local maximum at x0. By
the previous Lemma, to show that u is a viscosity subsolution we need to prove that detD2φ(x0) ≥
f(x0). Without loss of generality we can assume that u(x0) = φ(x0) and that u(x) < φ(x) for all
0 < |x − x0| ≤ δ for δ > 0 sufficiently small. The first assumption can be made by considering if
necessary φ̃(x) = φ(x) + u(x0) − φ(x0) and observing that φ̃ is still a C2(Ω) convex function such
that u− φ̃ has a local maximum at x0 and detD2φ̃ = detD2φ. As for the second assumption, we can
consider instead φr(x) = φ(x) + r|x− x0|2, prove that detD2φr ≥ f and then let r → 0.

Assume then that x0 is a strict local maximum with u(x0) = φ(x0). Then there is δ > 0 such that
u(x) < φ(x) for all 0 < |x− x0| ≤ δ. Let

m = min
δ
2≤|x−x0|≤δ

φ(x)− u(x)

We have m > 0. Let 0 < ε < m and Sε = {x ∈ Bδ(x0) : u(x) + ε > φ(x)}. If δ2 ≤ |x − x0| ≤ δ, then
φ(x) − u(x) ≥ m by definition of m and so x /∈ Sε. Hence Sε ⊆ B δ

2
(x0). Now, let z ∈ ∂Sε. Then

there exists sequences {xn} ⊆ Sε and {xn} ⊆ Bδ(x0) \ Sε such that xn → z and xn → z. We then
have u(xn) + ε > φ(xn) and u(xn) + ε ≤ φ(xn) and therefore taking the limit as n → +∞, leads to
u(z)+ε ≥ φ(z) and u(z)+ε ≤ φ(z). Hence u+ε = φ on ∂Sε. Since u+ε and φ are convex, by Lemma
5.1 (which will be proved and presented in the next Section), we have that ∂(u + ε)(Sε) ⊆ ∂φ(Sε).
Note that ∂(u+ ε)(Sε) = ∂u(Sε). Hence, since u is a generalized solution, we have∫

Sε

f(x)dx = Mu(Sε) = |∂u(Sε)| = |∂(u+ ε)(Sε) ≤ |∂φ(Sε)| =
∫
Sε

detD2φ(x)dx

Then by continuity of f , we obtain that D2φ(x0) ≥ f(x0).
A similar argument shows u is a viscosity supersolution.
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5 Maximum Principles

Lemma 5.1. Let Ω ⊆ R be a bounded open set and u, v ∈ C(Ω). If u = v on ∂Ω and v ≥ u in Ω,
then

∂v(Ω) ⊆ ∂u(Ω)

Proof. Let p ∈ ∂v(Ω). Then there exists x0 ∈ Ω such that

v(x) ≥ v(x0) + p · (x− xx0)

for all x ∈ Ω. Let
a = sup

x∈Ω
{v(x0) + p · (x− x0)− u(x)} .

Since Ω is bounded and u and v are continuous in C(Ω), a is well-defined and there is x1 ∈ Ω such
that

a = v(x0) + p · (x1 − x0)− u(x1).

Also, since v(x0) ≥ u(x0), we have a ≥ 0 and by definition of a

u(x) ≥ v(x0) + p · (x− x0)− a

for all x ∈ Ω. We now consider two cases: a = 0 and a > 0. If a = 0 then the above inequality
becomes

u(x) ≥ v(x0) + p · (x− x0)

for all x ∈ Ω and so p ∈ ∂u(x0) ⊆ ∂u(Ω). If a > 0, then we can rewrite the above inequality as

u(x) ≥ u(x1) + p · (x− x1)

for all x ∈ Ω. Thus proving that x1 ∈ Ω ends the proof since in that case p ∈ ∂u(x1) ⊆ ν(Ω). Indeed,
since p ∈ ∂v(x0) and v ∈ C(Ω), we have

v(x1) ≥ v(x0) + p · (x1 − x0)

which due to the choice of x1 we can rewrite as v(x1) ≥ u(x1) + a. Since u = v on ∂Ω, we have in
fact x1 ∈ Ω.

Theorem 5.2 (Aleksandrov’s maximum principle). If Ω ⊆ Rn is a bounded open and convex set with
diameter ∆, and u ∈ C(Ω) is convex with u = 0 on ∂Ω, then

|u(x0)|n ≤ Cn∆n−1 dist(x0, ∂Ω)|∂u(Ω)|

for all x0 ∈ Ω, where Cn is a constant depending only on the dimension n.

Proof. Fix x0 ∈ Ω and let v be the convex function whose graph is the upside-down cone with vertex
(x0, u(x0)) and base Ω, with v = 0 on ∂Ω. Since u is convex, v ≥ u in Ω. Then by Lemma 5.1

∂v(Ω) ⊆ ∂u(Ω).
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The idea is then to estimate the measure of ∂v(Ω) from below. We first notice that ∂v(Ω) = ∂v(x0)

and therefore ∂v(Ω) is convex by Remark 2.4. Indeed, let p ∈ ∂v(Ω). Then there exists x1 ∈ Ω such
that

v(x) ≥ v(x1) + p · (x− x1), ∀x ∈ Ω.

If x1 = x0 we are done. Otherwise since the graph of v is a cone with vertex (x0, u(x0)) we have
v(x0) + p · (x1 − x0) = v(x1) and then we can write the above inequality as

v(x) ≥ v(x0) + p · (x− x0), ∀x ∈ Ω.

Thus p ∈ ∂v(x0). Geometrically we proved that any supporting hyperplane of v at (x1, v(x1)) is also
a supporting hyperplane of v at (x0, v(x0)).

We now notice that there exists p0 ∈ ∂v(Ω) such that |p0| = −u(x0)
dist(x0,∂Ω) . This follows because Ω is

convex. Indeed, we take x1 ∈ ∂Ω such that |x1 − x0| = dist(x0, ∂Ω) and H is supporting hyperplane
to the set Ω at x1. The hyperplane in Rn+1 generated by H and the point (x0, u(x0)) is a supporting
hyperplane to v that has the desired slope.

Now notice that the ball B with center at the origin and radius −u(x0)
∆ is contained in ∂v(Ω), and

|p0| ≥ −u(x0)
∆ . Hence the convex hull of B and p0 is contained in ∂v(Ω) and it has measure

Cn

(
−u(x0)

∆

)n−1

|p0|,

which proves the Theorem.

6 Aleksandrov-Bakelman-Pucci’s maximum principle

Consider u ∈ C(Ω) with Ω convex and the class of functions

F(u) = {v : v ≤ u in Ω and v convex in Ω}

G(u) = {w : w ≥ u in Ω and w concave in Ω} .

Definition 6.1. Let
u∗(x) = supv∈F(u)v(x), u∗(x) = infw∈G(w)w(x)

We call these functions the convex and concave envelopes of u in Ω, respectively.

It is easy to see that u∗ and u∗ are, respectively, convex and concave in Ω (using a similar reasoning
to what we did in Remark 2.11 and that the inequalities

u∗(x) ≤ u(x) ≤ u∗(x)

hold for any x ∈ Ω. Also F(−u) = −G(u) and therefore

−(u∗)(x) = (−u)∗(x)

for all x ∈ Ω.
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Definition 6.2. We call the sets

C∗(u) = {x ∈ Ω : u∗(x) = u(x)} , C∗(u) = {x ∈ Ω : u∗(x) = u(x)} .

the sets of contact points.

Since −(u∗)(x) = (−u)∗(x) we have that

C∗(u) = C∗(−u).

Since u∗ is convex,u∗ has a supporting hyperplane at x0 ∈ C∗(u). Additionally, u∗(x0) = u(x0) and,
by the definition of the convex envelope, u∗(x) ≤ u(x) for all x ∈ Ω and so this hyperplane is also a
supporting hyperplane to u at the same point. We have then just proved that

∂(u∗)(x0) ⊆ ∂u(x0)

for all x0 ∈ C∗(u) and so
∂(u∗)(C∗(u)) ⊆ ∂u(C∗(u)).

If x0 /∈ C∗(u), then ∂u(x0) = ∅. We argue by contradiction. Suppose there exists p ∈ ∂u(x0) such
that

u(x) ≥ l(x)

for all x ∈ Ω where l(x) = u(x0) + p · (x− x0). Then l ∈ F(u) and therefore u∗(x0) ≤ l(x0) = u(x0).
But since x0 ∈ C∗(u) and u∗ ≤ u in Ω we have u∗(x0) < u(x0) and so we get a contradiction. Hence
∂u(Ω \ C∗(u)) = ∅ and therefore

∂u(Ω) = ∂u(C∗(u) ∪ (Ω \ C∗(u)))

= ∂u(C∗(u)) ∪ ∂u(Ω \ C∗(u))

= ∂u(C∗(u))

since given any sets A,B, we always have ∂u(A ∪B) = ∂u(A) ∪ ∂u(B).
From the definition of u∗ and C∗(u) it is easy see that

∂u(C∗(u) ⊆ ∂(u∗)(C∗(u)).

Thus
∂u(Ω) = ∂u(C∗(u)) = ∂(u∗)(C∗(u)).

Now let
Φu(x0) = {p : u(x) ≤ u(x0) + p · (x− x0), ∀x ∈ Ω} .

Notice that Φ−u(x0) = −∂u(x0).

Lemma 6.3. Let u ∈ C(Ω) such that u(x) ≤ 0 on ∂Ω, and x0 ∈ Ω with u(x0) > 0. Then

Ω(x, u(x0)) ⊆ Φu∗(C∗(u)),

where Ω(x, t) =
{
y : y · (ξ − x) + t > 0,∀ξΩ

}
and

ωnu(x0)n

(diam(Ω))n
≤ |∂((−u)∗)(C∗(−u))|.
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Proof. Let y ∈ Ω(x0, u(x0)). Then

y · (ξ − x0) + u(x0) > 0 (4)

for all ξ ∈ Ω. Let
λ0 = inf

{
λ : λ+ y · (ξ − x0) ≥ u(ξ), ∀ξ ∈ Ω

}
.

Clearly λ0 is finite and by continuity we have

λ0 + y · (ξ − x0) ≥ u(ξ) (5)

for all ξ ∈ Ω. Consider now the minimum

min
ξ∈Ω
{λ0 + y · (ξ − x0)− u(ξ)} .

Since Ω is compact and u ∈ C(Ω), this minimum is attained at some point ξ ∈ Ω. We claim that

λ0 + y · (ξ − x0)− u(ξ) = 0. (6)

We argue by contradiction: if there existed ε > 0 such that

λ0 + y · (ξ − x0)− u(ξ) ≥ ε

for all ξ ∈ Ω, then λ0 would not be the infimum.
We want to show now that y ∈ Φu∗(ξ) with ξ ∈ C∗(u) and if so we proved the first part of the

Lemma. We first prove that ξ ∈ Ω. Since u ≤ 0 on ∂Ω it is enough to show that u(ξ) > 0. Taking
ξ = x0 in (5) we get λ0 ≥ u(x0) and consequently from (4) we get

y · (ξ − x0) + λ0 > 0

for all ξ ∈ Ω. In particular for ξ = ξ we get u(ξ) = y · (ξ − x0) + λ0 > 0.
So far we have proved that if y ∈ Ω(x0, u(x0)) then there exists ξ ∈ Ω such that

u(ξ) = y · (ξ − x0) + λ0

and
u(ξ) ≤ y · (ξ − x0)− λ0

for all ξ ∈ Ω. By the definition of u∗, we have

u(ξ) ≤ u∗(ξ) ≤ y · (ξ − x0) + λ0

for all ξ ∈ Ω. From (6), we can rewrite the inequality above as

u(ξ) ≤ u∗(ξ) ≤ u(ξ) + y · (ξ − ξ)

for all ξ ∈ Ω. In particular for ξ = ξ we get u(ξ) = u∗(ξ) and therefore y ∈ Φu∗(ξ) and ξ ∈ C∗(u).
As for the second part we first observe that

Φu∗(C∗(u)) = −∂(−(u∗))(C∗(u)) = −∂((−u)∗)(C∗(−u))
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and so we just have to prove that
|Ω(x0, t)| ≥

ωnt
n

(diam(Ω))n
.

Since
y · (ξ − x0) + t = t

(y
t
· (ξ − x0) + 1

)
we have

Ω(x0, t) = tΩ(x0, 1).

Thus if we prove that
B1/ diam(Ω)(0) ⊆ Ω(x0, 1)

we are done. Let ξ ∈ Ω and y ∈ B1/ diam(Ω)(0). Then

y · (ξ − x0) + 1 = |y||ξ − x0| cos(φ) + 1

= |y|diam(Ω)
|ξ − x0|
diam(Ω)

cos(φ) + 1

≥ −|y|diam(Ω)
|ξ − x0|
diam(Ω)

+ 1

> 0

and therefore y ∈ Ω(x0, 1).

We can prove the following maximum principle:

Theorem 6.4 (Aleksandrov-Bakelman-Pucci’s maximum principle). If u ∈ C(Ω) and u ≤ 0 on ∂Ω,
then

max
Ω

u(x) ≤ ω−1/n
n diam(Ω)|∂((−u)∗)(C∗(−u))|1/n.

If in addition u ∈ C2(Ω) (without any assumptions on the sign of u on ∂Ω), then

max
Ω

u(x) ≤ max
∂Ω

u(x) + ω−1/n
n diam(Ω)

(∫
C∗(−u)

|detD2u(x)|dx

)1/n

.

Proof. Using Lemma 6.3, we only have to prove that the second inequality. Let u ∈ C2(Ω). Sub-
tracting from u the maximum on the boundary, we may assume that u ≤ 0 on ∂Ω. We now notice
that

∂((−u)∗)(C∗(−u)) = ∂(−u)(C∗(−u))

and, since u ∈ C2(Ω), D2(−u)(z) ≥ 0 if z ∈ C∗(−u). Thus by the formula for change of variables we
obtain

|∂(−u)(C∗(−u))| ≤
∫
C∗(−u)

|detD2u(x)|dx

and so we are done.
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7 Comparison Principle

In this Section we discuss a comparison principle for generalized solutions, from which we can
deduce their uniqueness.

Theorem 7.1. Let u, v ∈ C(Ω) be a convex functions such that

|∂u(E)| ≤ |∂v(E)|, for every Borel set E ⊆ Ω.

Then
min
x∈Ω
{u(x)− v(x)} = min

x∈∂Ω
{u(x)− v(x)} .

Proof. We argue by contradiction. Let

a = min
x∈Ω

u(x)− v(x)

and
b = min

x∈∂Ω
u(x)− v(x).

Suppose a < b. Since u, v ∈ C(Ω), there exists x0 ∈ Ω such that

a = u(x0)− v(x0).

Pick δ > 0 sufficiently small such that

δ(diam(Ω)2 <
b− a

2

and let
w(x) = v(x) + δ|x− x0|2 +

b+ a

2
.

Consider the set G =
{
x ∈ Ω : u(x) < w(x)

}
. We have

u(x0) = v(x0) + a

< v(x0) +
a+ b

2

= u(x0)

since a < b and so x0 ∈ G. Also G ∩ ∂Ω = ∅. In fact if x ∈ G ∩ ∂Ω, then u(x)− v(x) ≥ b and so

w(x) ≤ u(x) + δ|x− x0|2 −
b− a

2

≤ u(x) + δ(diam(Ω))2 − b− a
2

< u(x).

Hence x /∈ G and therefore we have a contradiction. We then have that ∂G = {x ∈ Ω : u(x) = w(x)}.
By Lemma 5.1 we obtain ∂w(G) ⊆ ∂u(G). If A and B are symmetric and non-negative definite
matrices, then det(A+B) ≥ det(A) + det(B). So since ∂w = ∂(v + δ|x− x0|2), if v ∈ C2(Ω) we have
the inequality

∂(v + δ|x− x0|2)(G)| ≥ |∂v(G)|+ |∂(δ|x− x0|2)(G)|.
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If v is not smooth, we can approximate v be a sequence vk ∈ C2(Ω) of convex functions converging
uniformly on compact subsets of Ω. This can be achieved by taking a smooth function φ ≥ 0 with
support in B1(0) and

∫
φ = 1 and then letting vε = v∗φε, where φε(x) = φ(x/ε). Hence the inequality

above now follows from Lemma 3.3. Therefore

∂u(G)| ≥ |∂v(G)|+ |∂(δ|x− x0|2)(G)| = |∂v(G)|+ (2δ)n|G|,

which contradicts the assumption of the theorem.

Corollary 7.2. If u, v ∈ C(Ω) are convex functions such that |∂u(E)| = ∂v(E) for every Borel set
E ⊆ Ω and u = v on ∂Ω, then u = v in Ω.

8 The Dirichlet problem

In this Section we will prove the existence of a solution to the (homogeneous) Dirichlet problem
of the Monge-Ampère equation.

Definition 8.1. The open set Ω ⊆ Rn is strictly convex if for all x, y ∈ Ω the open segment joining
x and y lies in Ω.

Theorem 8.2. Let Ω ⊆ Rn be bounded and strictly convex, and g ∈ C(∂Ω). Then there exists a
unique convex function u ∈ C(Ω) generalized solution of the problemdetD2u = 0 in Ω

u = g on ∂Ω
(7)

Proof. Let F = {a(x) : a is an affine function and a ≤ g on ∂Ω}. Since g is continuous, F 6= ∅. Define

u(x) = sup {a(x) : a ∈ F} .

We will prove that u is a solution to (7) and then that is in fact the unique solution.
Step 1 : u is convex and u = g on ∂Ω.
Since u is the supremum of convex functions ≤ g on ∂Ω, u is convex and u ≤ g on ∂Ω. Now

let ξ ∈ ∂Ω. We only need to prove that u(ξ) ≥ g(ξ). Let ε > 0. Since g ∈ C(∂Ω), there exists
δ > 0 such that |g(x) − g(ξ)| < ε for x ∈ ∂Ω ∩ Bδ(ξ). Let P (x) = 0 be the equation of the
supporting hyperplane to Ω at the point ξ. Such P exists since Ω is convex and without loss of
generality we assume that Ω ⊆ {x : P (x) ≥ 0}. Since Ω is strictly convex, there exists η > 0 such that
S =

{
x ∈ Ω : P (x) ≤ η

}
⊆ Bδ(ξ). Let

M = min {g(x) : x ∈ ∂Ω, P (x) ≥ η}

and consider
a(x) = g(ξ)− ε−AP (x),

where A is a constant satisfying

A ≥ max

{
g(ξ)− ε−M

η
, 0

}
.
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a is an affine function and so if a ≤ g on ∂Ω we have a ∈ F . Let x ∈ ∂Ω ∩ S. Then

g(ξ)− ε ≤ g(x) ≤ g(ξ) + ε

by the choice of δ and since S ⊆ Bδ(ξ). Hence

g(x) ≥ g(ξ)− ε−AP (x) +AP (x)

≥ g(ξ)− ε−AP (x)

= a(x)

since Ω ⊆ {x : P (x) ≥ 0} and A ≥ 0. If x ∈ ∂Ω ∩ Sc then P (x) > η and by definition of M and the
choice of A we have

g(x) ≥M

= a(x) +M − g(ξ)− ε+AP (x)

≥ a(x) +M − g(ξ) + ε+Aη

≥ a(x).

Therefore a ∈ F , and in particular u(ξ) ≥ a(ξ) = g(ξ) − ε for every ε > 0 and therefore u(ξ) ≥ g(ξ)

as desired.
Step 2 : u ∈ C(Ω).
Since u is convex in Ω, u is continuous in Ω. To prove the continuity on ∂Ω, let ξ ∈ ∂Ω, {xn} ⊆ Ω

with xn → ξ. We will show that u(xn) → g(ξ). Let a be the affine function constructed in Step 1.
Then u ≥ a in Ω and in particular u(xn) ≥ a(xn). Hence

lim inf u(xn) ≥ lim inf a(xn)

= lim inf(g(ξ)− ε−AP (xn)

= g(ξ)− ε

for all ε > 0. Hence lim inf u(xn) ≥ g(ξ). We now prove that lim supu(xn) ≤ g(ξ). Since Ω is convex,
there exists h harmonic in Ω such that h ∈ C(Ω) and h = g on ∂Ω. If a ∈ F , then a is harmonic and
by the maximum principle a ≤ h in Ω. Taking the supremum over a we obtain u(x) ≤ h(x) for x ∈ Ω.
In particular, u(xn) ≤ h(xn) and therefore lim supu(xn) ≤ lim suph(xn) = g(ξ) and we are done.

Step 3 : ∂u(Ω) ⊆ {p ∈ Rn : there is x, y ∈ Ω with x 6= y and p ∈ ∂u(x) ∩ ∂u(y)}
If p ∈ ∂u(Ω), then there exists x0 ∈ Ω such that

u(x) ≥ u(x0) + p · (x− x0) = a(x)

for all x ∈ Ω. Since u = g on ∂Ω, we have g(x) ≥ a(x) for all x ∈ ∂Ω. There exists ξ∂Ω such that
g(ξ) = a(ξ). Otherwise, there exists some ε > 0 such that g(x) ≥ a(x) + ε for all x ∈ ∂Ω and then
u(x) ≥ a(x)+ε for all x ∈ Ω and in particular u(x0) ≥ a(x0)+ε = u(x0)+ε, a contradiction. Since Ω is
convex, the open segment I joining x0 and ξ is contained in Ω. Now u(x0) = a(x0) and u(ξ) = a(ξ). If
z ∈ I, then z = tx0 +(1−t)ξ and by convexity u(z) ≤ tu(x0)+(1−t)u(ξ) = ta(x0)+(1−t)a(ξ) = a(z).
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But u(x) ≥ a(x) for all x ∈ Ω and so a is a supporting hyperplane to u at any point on the segment
I, therefore p ∈ ∂u(z) for all z ∈ I and (1.5.2) is then proved.

Step 4 : u is a solution of (7).
From Step 3, |∂u(Ω)| = 0 by Lemma 2.13.
Step 4 : the solution of (7) is unique.
It follows from Corollary 7.2.

9 The non-homogeneous Dirichlet problem

In this Section we solve the non-homogeneous Dirichlet problem for the Monge-Ampère operator
using the Perron method and Theorem 1.5.2. Let Ω be an open bounded convex set, µ a Borel measure
in Ω, and g ∈ C(∂Ω). Set

F(µ, g) =
{
v ∈ C(Ω) : v convex ,Mv ≥ µ in Ω, v = g on ∂Ω

}
.

Suppose that F(µ, g) 6= ∅ and let v ∈ F(µ, g). Assume that Ω is strictly convex. By Theorem
8.2, let W ∈ C(Ω) be the unique convex solution to MV = 0 in Ω and W = g on ∂Ω. We have
0 = MW ≤ µ ≤Mv in Ω and therefore we have that v ≤W in Ω by Theorem 7.1. Hence all functions
in F(µ, g) are uniformly bounded above and we can define

U(x) = sup {v(x) : v ∈ F(µ, g)} . (8)

The idea to solve the non-homogeneous Dirichlet problem is firs to construct U when the measure is a
combination of delta masses and then to approximate a general measure µ by a sequence of measures
of this form, and in this way construct the desired solution. With this in mind we start begin with
two Lemmas.

Lemma 9.1. Let Ω ⊆ Rn be a bounded convex open set and u a convex function in Ω such that u ≤ 0

in ∂Ω. If x0 ∈ Ω and p ∈ ∂u(x0) then

|p| ≤ −u(x0)

dist(x0,Ω)
.

Proof. Let p ∈ ∂u(x) and assume that p 6= 0. We have

u(x) ≥ u(x0) + p · (x− x0)

for all x ∈ Ω. Let r > 0 be such that r < dist(x0, ∂Ω). Then x = x0 + r p
|p| ∈ Ω and therefore

0 ≥ u(x) ≥ u(x) + r|p|

from where the Lemma follows.

Lemma 9.2. Let Ω ⊂ Rn be a bounded open strictly convex domain, µj, µ be Borel measures in Ω,
uj ∈ C(Ω), and g ∈ C(∂Ω) such that

1. uj = g on ∂Ω,

21



2. Muj = µj in Ω,

3. µj → µ weakly in Ω, and

4. µj(Ω) ≤ A for all j.

Then {uj} contains a subsequence, also denoted by uj, and there exists u ∈ C(Ω) convex in Ω such
that uj converges to u uniformly on compact subsets of Ω, and Mu = µ, u = g in ∂Ω.

Proof. We have uj ∈ F(µj , g) and therefore uj are uniformly bounded above as we have seen above. We
now prove that uj also uniformly bounded below in Ω. Let ξ ∈ ∂Ω, ε > 0 and a(x) = g(ξ)−ε−AP (x)

be the affine function constructed in the proof of Theorem 8.2. Recall that a(x) ≤ g(x) for x ∈ ∂Ω,
P (ξ) = 0, P (x) ≥ 0 for x ∈ Ω, and A ≥ 0. Set vj(x) = uj(x) − a(x). If x ∈ ∂Ω, then vj(x) =

g(x)− a(x) ≥ 0, and the vj are convex in Ω. If vj(x) ≥ 0 for all x ∈ Ω, then uj is bounded below in
Ω. If at some point vj(x) < 0, then by the Aleksandrov maximum principle, Theorem 1.4.2, applied
to vj on the set G = {x ∈ Ω : vj(x) ≤ 0}, we obtain

(−vj(x))n ≤ Cn dist(x, ∂G)∆n−1Mvj(G)

≤ Cn dist(x, ∂Ω)∆n−1Mvj(Ω)

≤ Cn dist(x, ∂Ω)∆n−1A,

with ∆ = diam(Ω), and consequently vj(x) ≥ −(Cn dist(x, ∂Ω)∆n−1A)1/n, that is

uj(x) ≥ g(ξ)− ε−AP (x)− C dist(x, ∂Ω)1/n, (9)

which proves that uj are uniformly bounded below in Ω. On the other hand, uj(x) ≤ w(x) with
∆w = 0 in Ω and w = g on ∂Ω by the maximum principle since uj is weakly subharmonic from being
convex. Now dist(x, ∂Ω) ≤ |x− ξ| and from 9 we obtain

w(x) ≥ uj(x) ≥ g(ξ)− ε−AP (x)− C|x− ξ|1/n, (10)

and therefore uj(x)→ g(ξ) as x→ ξ.
Therefore by Lemma 2.7 and Lemma 9, we get that uj are locally uniformly Lipschitz in Ω and

by Arzèla-Ascoli there exists a subsequence, denoted also uj , and a convex function in Ω such that
uj → u uniformly on compact subsets of Ω. We also have from 10 that u ∈ C(Ω). The Lemma then
follows from Lemma 3.4.

We now state and prove the main result in this Section

Theorem 9.3. If Ω ⊆ Rn is open bounded and strictly convex, µ is a Borel measure in Ω with
µ(Ω) < +∞, and g ∈ C(∂Ω), then there exists a unique convex function u ∈ C(Ω) generalized
solution of the problem detD2u = µ in Ω

u = g on ∂Ω
(11)
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Proof. We start by observing that the uniqueness follows by the comparison principle, Theorem 7.1.
There exists a sequence of measure µj converging weakly to µ such that each uj is a finite com-

bination of delta masses with positive coefficients and µj(Ω) ≤ A for all j. If we solve the Dirichlet
problem for each µj with data g, then the Theorem follows from Lemma 9.2. Therefore we assume
from now on that

µ =

N∑
i=1

aiδxi xi ∈ Ω, ai > 0.

We claim that

(a) F(µ, g) 6= ∅

(b) If u, v ∈ F(µ, g) then u ∨ v := max {u, v} ∈ F(µ, g)

(c) U ∈ F(µ, g), with defined by 8

Step 1 : proof of (a).
By Example 2.17, M(|x− xi|) = ωnδxi , with ωn the volume of the unit ball in Rn. Let

f(x) =
1

ω
1/n
n

N∑
i=1

a
1/n
i |x− xi|

and u be a solution to the Dirichlet problemdetD2u = 0 in Ω

u = g − f on ∂Ω

We claim that v = u + f ∈ F(µ, g). Indeed, it is clear that v ∈ C(Ω), v is convex and v = g on ∂Ω.
Let us calculate Mv. We have

Mv = M(u+ f) ≥Mu+Mf ≥ 1

ωn

N∑
i=1

M
(
a

1/n
i |x− xi|

)
=

N∑
i=1

aiδxi = µ.

Therefore F(µ, g) 6= ∅, and consequently U given by (1.6.1) is well defined.
Step 2 : proof of (b).
Let φ = u ∨ v and

Ω0 = {x ∈ Ω : u(x) = v(x)}

Ω1 = {x ∈ Ω : u(x) > v(x)}

Ω2 = {x ∈ Ω : u(x) < v(x)} .

If E ⊆ Ω1 then Mφ(E) ≥ Mu(E), and if E ⊆ Ω2, then Mφ(E) ≥ Mv(E). Also if E ⊆ Ω0 then
∂u(E) ⊆ ∂φ(E) and ∂v(E) ⊆ ∂φ(E). Given E ⊆ Ω a Borel set, write E = E0∪E1∪E2 with Ei ⊆ Ωi.
We have

Mφ(E) = Mφ(E0) +Mφ(E1) +Mφ(E2)

≥Mu(E0) +Mu(E1) +Mv(E2)

≥ µ(E0) + µ(E1) + µ(E2)

= µ(E).
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Step 3 : For each y ∈ Ω there exists a uniformly bounded sequence vm ∈ F(µ, g) converging
uniformly on compact subsets of Ω to a function w ∈ F(µ, g) such that w(y) = U(y), where U is given
by 8.

By Step 1, let v0 ∈ F(µ, g), then v ≤W with W defined at the begging of this Section. Fix y ∈ Ω,
then by definition of U there exists a sequence vm ∈ F(µ, g) such that vm(y)→ U(y) as m→∞. Let
vm = v0 ∨ vm. By Step 2, vm ∈ F(µ, g) and therefore vm(y) ≤ vm(y) ≤ U(y) and so vm → U(y).
Notice that |vm(x)| ≤ C1 for all x ∈ Ω. Therefore we may assume that the original sequence vm is
bounded above and below in Ω. Since vm is convex in Ω, it follows from Lemma 1.1.6 that given
K ⊆ Ω compact, vm is Lipschitz in K with constant

C(K,m) = sup {|p| : p ∈ ∂vm(K)} .

We claim that C(K,m) is bounded uniformly in m. Let p ∈ ∂vm(x0) with x0 ∈ K. Be Lemma 3.2.1,
we get that |p| ≤ C1

dist(K,Ω) and the claim follows. Therefore vm are equicontinuous on K and bounded
in Ω. By Arzèla-Ascoli there exists a subsequence vmj converging uniformly on compact subsets of Ω

to a function w, and so w(y) = U(y). By Lemma 3.3 we have that w ∈ F(µ, g) and therefore w ≤ U

in Ω.
Step 4 : MU ≥ µ in Ω.
It is enough to prove that MU({xi}) ≥ ai for i = 1, . . . , N . We may assume i = 1. By Step 3,

there exists a sequence vm ∈ F(µ, g), uniformly bounded, such that vm → w ∈ F(µ, g) uniformly on
compact of Ω as m→∞ with w(x1) = U(x1). We have Mw({x1}) ≥ a1. If p ∈ ∂w(x1), then

w(x) ≥ w(x1) + p · (x− x1)

for all x ∈ Ω and hence, from the definition of U ,

U(x) ≥ U(x1) + p · (x− x1)

for all x ∈ Ω, i.e., p ∈ ∂u(x1). So MU({x1}) ≥ |∂U({x1})| ≥ |∂w({x1})| ≥ a1.
Step 5 : MU ≤ µ in Ω.
We first prove that the measure MU is concentrated on the set {x1, . . . , xN}. Let x0 ∈ Ω with

x0 6= xi, i = 1, . . . , N , and choose r > 0 so that |xi − x0| > r for i = 1, . . . , N and Br(x0) ⊆ Ω. Solve
Mv = 0 in Br(x0) with v = U on ∂Br(x0), and define the "lifting of U"

w(x) =

U(x) x ∈ Ω, |x− x0| ≥ r,

v(x) |x− x0| ≤ r.

We claim that w ∈ F(µ, g). In fact, w is convex, because by Step 4, MU ≥ µ ≥ 0 = Mv in Br(x0),
and then by the comparison principle Theorem 7.1, v ≥ U in Br(x0). It is clear that w ∈ C(Ω). We
verify that Mw ≥ µ in Ω. Let E ⊆ Ω be a Borel set. We write

E = (E ∩Br(x0)) ∪ (E ∩Br(x0)c))

and so
Mw(E) = Mw(E ∩Br(x0)) +Mw(E ∩Br(x0)c)).
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Now notice that if F ⊆ Br(x0), then ∂w(F ) = ∂v(F ), and if F ⊆ Br(x0)c, then ∂w(F ) = ∂U(F ).
Therefore

Mw(E) = Mv(E ∩Br(x0)) +MU(E ∩Br(x0)c))

= 0 +MU(E ∩Br(x0)c))

≥ µ(E ∩Br(x0)c))

≥ µ(E ∩ {x1, . . . , xN})

= µ(E),

by (c) and the definition of µ. Hence we have w ∈ F(µ, g) and by the definition of U w ≤ U , and since
w = v ≥ U in Br(x0), we get v = U in Br(x0), and so MU = Mv = 0 in Br(x0), where Br(x0) ⊆ Ω

is any ball with Br(x0)∩ {x1, . . . , xN} = ∅. Hence if E ⊆ Ω is a Borel set with E ∩ {x1, . . . , xN} = ∅,
then MU(E) = 0 by regularity of MU . Therefore MU is concentrated on the set {x1, . . . , xN}, that
is

MU =

N∑
i=1

λiaiδxi ,

with λi ≥ 1, i = 1, . . . , N since by Step 4 MU ≥ µ. We claim that λi = 1 for all i = 1, . . . , N .
Suppose by contradiction that λi > 1 for some i. Without loss of generality, we may assume that
MU = λaδ0 with λ > 1 and in the ball Br(0). We have |∂U({0})| = λa > 0. Since ∂U({0}) is convex,
there exists a ball Bε(p0) ⊆ ∂U({0}). Then U(x) ≥ U(0) + p · x for all p ∈ Bε(p0) and x ∈ Ω. Let
V (x) = U(x) − p0 · x. Then V (x) ≥ V (0) + (p − p0) · x for all x ∈ Ω and p ∈ Bε(p0). Given x ∈ Ω

take p− p0 = εx/|x| and so
V (x) ≥ V (0) + ε|x|

for all x ∈ Ω. Let α be a constant such that V (0) − α is negative and close to zero, and define
V (x) = V (x) − α. We have V (0) is negative and small, and V (x) ≥ V (0) + ε|x| for all x ∈ Ω. If
r = −V (0)

ε , the V (x) ≥ V (0) + ε|x| ≥ 0 for all |x| ≥ r. Let

w(x) =

V (x) if V (x) ≥ 0

λ−1/nV (x) if V (x) < 0.

Notice that since λ > 1, we have λ−1/nV (x) > V (x) on the set
{
x : V (x) < 0

}
. Consequently the

function w is convex in Ω. Also, on the set
{
x : V (x) < 0

}
, we have Mw = M(λ−1/nV ) = 1

λMV =
1
λMU = aδ0. On the other hand w = V on the set

{
x : V (x) ≥ 0

}
, so Mw = MV = MU ≥ µ on

the same set. Consequently Mw ≥ µ in Ω. This means that w ∈ F(µ, g), where g are the boundary
values of V (x) = U(x)− p0 · x− α. By the definition of U ,

V (x) = U(x)− p0 · x− α = sup {v(x)− p0 · x− α : v ∈ F(µ, g)} .

It is clear that v′(x) = v(x)− p0 · x− α ∈ F(µ, g) if and only if v(x) ∈ F(µ, g). Therefore,

V (x) = sup {v′ : v′ ∈ F(µ, g)} ,

and since w ∈ F(µ, g), we get that w(x) ≤ V (x) for all x ∈ Ω. In particular w(0) ≤ V (0) and so
λ−1/nV (0) ≤ V (0), and since V (0) < 0 we obtain λ−1/n ≥ 1, a contradiction since λ > 1. This
completes the proof of Step 5 and the Theorem.
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10 Return to viscosity solutions

In this Section we prove that viscosity solutions are generalized solutions.
We start with a comparison principle.

Lemma 10.1. Suppose f ∈ C(Ω), f ≥ 0, and u ∈ C(Ω) is a viscosity supersolution (resp. subsolution)
to detD2u = f in Ω. Suppose v ∈ C2(Ω) ∩ C(Ω) is a classical convex solution to detD2v ≥ g (resp.
≤ g) in Ω with g ∈ C(Ω). If f < g (resp. > g) in Ω, then

min
Ω

(u− v) = min
∂Ω

(u− v) (resp. max
Ω

(u− v) = max
∂Ω

(u− v)).

Proof. It follows directly from the definition of viscosity solutions. We consider only the case where
u is a supersolution. Suppose by contradiction that minΩ(u − v) < min∂Ω(u − v). Then there exists
x0 ∈ Ω such that (u − v)(x0) = minΩ(u − v), and so u − v has a local minimum at x0. Since u
is a viscosity supersolution to detD2u = f in Ω we get detD2v(x0) ≤ f(x0). But by assumption
g(x0) ≤ detD2v(x0) and so we have a contradiction.

Proposition 10.2. Let f ∈ C(Ω) with f > 0 in Ω. If u is a viscosity solution to detD2u = f in Ω,
then u is a generalized solution to detD2u = f in Ω.

Proof. We have 0 < λ ≤ f(x) ≤ Λ in Ω. Given x0 ∈ Ω and 0 < η < λ/2, there exists ε > 0 such that

f(x0)− η < f(x) < f(x0) + η

for all x ∈ Bε(x0). Let uk ∈ C∞(∂Bε(x0)) be a sequence such that

max
∂Bε(x0)

|u(x)− uk(x)| ≤ 1

k
,

and v+
k and v−k the convex solutions to

detD2v±k = f(x0)± η in Bε(x0)

v±k = uk on ∂Bε(x0).

We have that v±k ∈ C2(Bε(x0)) ∩ C(Bε(x0)) (see [3], Section 17.7) and

detD2v−k < f(x) < detD2v+
k in Bε(x0)

v±k = uk on ∂Bε(x0).

By Lemma 10.1 we get

v+
k (x)− 1

k
≤ u(x) ≤ v−k (x) +

1

k
(12)

for x ∈ Bε(x0). By Theorem 9.3, let v± be the generalized solutions to

detD2v± = f(x0)± η in Bε(x0)

v± = u on ∂Bε(x0).
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Applying Theorem 7.1 we get that |v±(x) − v±k (x)| ≤ 1/k and consequently letting k → ∞ in (12)
yields

v+(x) ≤ u(x) ≤ v−(x)

for x ∈ Bε(x0). From Lemma 5.1, we obtain

∂v−(Bε(x0)) ⊆ ∂u(Bε(x0)) ⊆ ∂v+(Bε(x0)),

and consequently

|Bε(x0)|(f(x0)− η) ≤ |∂u(Bε(x0))| = Mu(Bε(x0)) ≤ |Bε(x0)|(f(x0) + η). (13)

Therefore if Q is a cube with diameter diam(Q) < ε, then

C1|Q| ≤Mu(Q) ≤ C2|Q| (14)

for some positive constant C1, C2. If F ⊆ Ω is a set of measure zero, then given δ > 0 there
exists a sequence of non overlapping cubes Qj ⊆ Ω with diam(Qj) < ε, F ⊆ ∪Qj and

∑
|Qj | < δ.

Then applying 14 we obtain Mu(F ) < C2δ. That is Mu is absolutely continuous with respect to the
Lebesgue measure and therefore there exists h ∈ L1

loc(Ω) such that Mu(E) =
∫
E
h(x)dx. Dividing 13

by |Bε(x0)| and letting ε → 0 we get that f(x0) − η ≤ h(x0) ≤ f(x0) + η for almost all x0 ∈ Ω and
for all η sufficiently small. Hence Mu has density f and we are done.
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