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1 Introduction

The purpose of this project is to investigate a proof of the uniformization theorem due to Rafe
Mazzeo and Michael Taylor, which consists basically in �nding a conformal metric of constant
curvature by solving the equation

K(x) = (K0(x)−∆u(x))e−2u(x), (x ∈M),

on a Riemann surface M .
Most of the paper is devoted to showing the existence of a Poincaré metric on some speci�c

Riemann surfaces. Our treatment follows closely that in [2]. After providing the reader with the
necessary mathematical background in �2, we construct complete metrics of constant negative
curvature on smoothly bounded Riemann surfaces in �3. In �4, the question of the existence of a
Poincaré metric on a general planar domain is studied. The results of �3 and �4 are then applied
in �5 to establish the uniformization theorem for noncompact surfaces. Finally, we discuss brie�y
the uniformization theorem for compact surfaces in �6.

A knowledge of elementary Riemannian geometry is assumed. However, the required notions
about Riemann surfaces are included below.

2 Preliminaries

Before starting the proof of the uniformization theorem, we must introduce some terminology
and facts about Riemann surfaces and di�erential geometry. Most of the elementary de�nitions
about Riemann surfaces introduced here can be found, for example, in [1]. For the remaining of
this section, M is a smooth, connected, oriented two-dimensional manifold.

De�nition 2.1. A complex chart on M is an ordered pair (U,ϕ), where U is an open subset
of M and ϕ : U → V is a homeomorphism from U onto an open subset V ⊂ C. Two complex
charts (U1, ϕ1) and (U2, ϕ2) are said to be compatible if the transiton map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2)

is a biholomorphism. A complex atlas onM is a collection of pairwise compatible complex charts
A = {(Uα, ϕα) : α ∈ I} such that M =

⋃
α∈I Uα. Moreover, we say that two complex atlases

A1 and A2 are equivalent if every chart of A1 is compatible with every chart of A2.
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It is easily seen that the notion of equivalent complex atlases is an equivalence relation.
Indeed, an atlas is trivially equivalent to itself. Moreover, since the inverse of a biholomorphic
map is by de�nition a biholomorphic map, if a complex atlas (U1, ϕ1) is compatible with (U2, ϕ2),
then (U2, ϕ2) is clearly compatible with (U1, ϕ1). Finally, if (U1, ϕ1) is compatible with (U2, ϕ2),
and (U2, ϕ2) is compatible with (U3, ϕ3), then ϕ3 ◦ϕ−1

1 = ϕ3 ◦ϕ−1
2 ◦ϕ2 ◦ϕ−1

1 is a biholomorphism
since it is the composition of two biholomorphic mappings.

De�nition 2.2. A complex structure on M is an equivalence class of equivalent complex atlases
on M .

If g is a Riemannian metric onM , then for any u ∈ C∞(M), e2ug is also a metric onM . Two
metrics g and h satisfying h = e2ug for some u ∈ C∞(M) are said to be conformally equivalent.
It is straightforward to verify that being conformally equivalent is an equivalence relation. The
corresponding equivalence class is called the conformal class of g. It is a well-known fact that to
any conformal class on M corresponds a unique complex structure on M , and reciprocally. In
other words, the concepts of complex structure and of conformal class on a surface are equivalent.
This fact motivates the following de�nition.

De�nition 2.3. A Riemann surface is a smooth, connected, oriented two-dimensional manifolds
endowed with a complex structure or with a conformal class.

These two equivalent de�nitions of a Riemann surfaces will be used interchangeably through-
out this note.

De�nition 2.4. Let M and N be two Riemann surfaces. A continuous map f : M → N is said
to be holomorphic if for every pair of complex charts (U1, ϕ1) onM and (U2, ϕ2) on N , satisfying
f(U1) ⊂ U2, the mapping ϕ2 ◦f ◦ϕ−1

1 is a holomorphism (in the usual sense of complex analysis).
Moreover, f is biholomorphic if it is a bijection and if f and f−1 are both holomorphic.

We can now state the main result of this paper.

Theorem 2.1 (Uniformization Theorem). There is a biholomorphism between any simply con-

nected Riemann surface and either C, the Riemann sphere Ĉ or the open unit disk D1.

Since it can be shown that the universal cover (or, more generally, any covering space) of a
Riemann surface is also a Riemann surface, an equivalent statement of Theroem 2.1 is that any
Riemann surface can be holomorphically covered by either C, Ĉ or D1.

In terms of conformal classes, the uniformization theorem can be stated as follows: Any
simply connected Riemann surface admits in its conformal class a unique complete metric with
constant curvature either −1, 0 or 1. To see how these two statements are related, suppose that
ϕ is a biholomorphic map between the simply connected Riemann surface M and either C, Ĉ
or D1. It is well-known that C admits a metric of constant curvature 0, Ĉ a metric of constant
curvature 1 and D1 a metric of constant curvatures −1. A constant curvature metric on M can
then be de�ned by pushing down this metric through the biholomorphic map ϕ. Conversely,
suppose that M is a simply connected Riemann surface that admits a metric g of constant
curvature. By a basic result in Riemannian geometry, we know that any simply connected n-th
dimensional manifold of constant curvature is isometric either to Rn, an n-th dimensional ball
or an n-th dimensional sphere, with �at, negative and positive curvature respectively. Since an
isometry preserves the angles, it is in particular conformal. Hence M is biholomorphic to either
C, Ĉ or D1.

We will take as a fact the following basic result from Riemannian geometry.
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Proposition 2.2. Let g0 be a Riemannian metric on M , and K0(x) be the corresponding Gauss

curvature. If g = e2ug0 for some u ∈ C∞(M), then

K = (K0 −∆u)e−2u. (2.1)

is the Gauss curvature of g.

In the following sections, we will mostly concentrate on the case of negative curvature. We will
refer to a complete metric of constant Gauss curvature −1 in the conformal class of a Riemann
surface M as a Poincaré metric on M . For example, the open unit disk D1 admits a Poincaré
metric de�ned componentwise by

4

(1− (x2
1 + x2

2))2
δjk,

where (x1, x2) ∈ D1 ⊂ R2 and δjk corresponds to a component of the euclidean metric on D1.
It is clear from (2.1) that a Poincaré metric can be obtained by solving the partial di�erential

equation

∆u− e2u = K0(x). (2.2)

and by showing that the corresponding metric e2ug0 is complete. This is the strategy we will
adopt here.

3 Bounded surfaces with smooth boundary

Let M be the interior of a compact, oriented, connected two-dimensional smooth manifold with
boundary M , endowed with a Riemannian metric g0. The aim of this section is to show the
existence of a Poincaré metric for M . This will be carried out in three steps. First, we obtain
the existence of a unique solution ua ∈ C∞(M) to (2.2) satisfying ua|∂M = a, where a is any
positive real number. In a second time, we consider the limit ua as a→∞. We will see that this
limit function is well-de�ned and is a solution to (2.2). Finally, the corresponding metric e2ug0

will be shown to be complete. The main result of this section is the following theorem.

Theorem 3.1. If M is as above, then M admits a Poincaré metric.

We start by studying the Dirichlet problem for the semilinear equation

∆u = f(x, u), (3.1)

u|∂M = g, (3.2)

under the hypothesis that

∂f

∂u
≥ 0, (3.3)

where g is a su�ciently smooth function on ∂M . Our approach to (3.1)-(3.2) follows closely that
in �1 of Chap. 14 in [3].

Since (2.2) can be written in the form ∆u = f(x, u), where f(x, u) = e2u + K0(x), and
∂f
∂u = 2e2u > 0, the existence of a unique C∞(M) solution to (3.1)-(3.3) would give us the
required function ua discussed above.
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De�ne

F (x, u) :=

∫ u

0
f(x, s)ds and I(u) :=

1

2
‖∇u‖2L2(M) +

∫
M
F (x, u(x))dV (x).

It is clear from (3.3) that F is convex in u. So, I is strictly convex. Set

V :=
{
u ∈ H1(M) : u = g on ∂M

}
.

If we are able to show that I has a unique minimum u on V , then for any v ∈ C∞0 (M) and any
s ∈ R, the function u+ sv ∈ V minimizes the functional I(u+ sv) when s = 0. It follows that

0 =
d

ds
I(u+ sv)|s=0

=
d

ds

∣∣∣∣∣
s=0

[
1

2

∫
M

(∇u(x) + s∇v(x))2dV (x) +

∫
M
F (x, u(x) + sv(x))dV (x)

]
=

[∫
M

(∇u(x) + s∇v(x))∇v(x)dV (x) +

∫
M
f(x, u(x) + sv(x))v(x)dV (x)

]
s=0

=

∫
M
∇u(x)∇v(x)dV (x) +

∫
M
f(x, u(x))v(x)dV (x)

= −
∫
M

(∆u(x))v(x)dV (x) +

∫
M
f(x, u(x))v(x)dV (x) (by Green formula),

for all v ∈ C∞0 (M). In other words, u is a weak solution of (3.1). So, in order to solve our
Dirichlet problem, it is su�cient to show the existence of this minimum u. Before proceeding
further, we make temporarily the following hypothesis on F :

There exists a constant K such that ∂uf(x, u) = 0 whenever |u| > K. (3.4)

A direct consequence of this additional restriction is that∣∣∣∣∂F∂u (x, u)

∣∣∣∣ ≤ L, ((x, u) ∈M × R),

for some constant L. It follows from this inequality that

|F (x, u)− F (x, v)| ≤ L|u− v|,

for u, v ∈ R. Hence, it is easy to see that I : V → R is Lipschitz continuous with respect to the
norm topology on V .

Moreover, I is bounded below. Indeed, since F (x, u) is convex in u, there exists positive
constants A and B such that

F (x, u) ≥ −A|u| −B.

So,

I(u) ≥ 1

2
‖∇u‖2L2 −A‖u‖L1 −BV (M). (3.5)
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From the Poincaré inequality, we have

‖∇u‖2L2 ≥ C‖u‖2L2 −D, (3.6)

for some positive constants C and D. Combining (3.5), (3.6) and the fact that V (M) < ∞, we
obtain the following inequality:

I(u) ≥ A′‖∇u‖2L2 +B′‖u‖2L2 − C ′‖u‖L2 −D′, (3.7)

for some nonnegative constants A′, B′, C ′ and D′. If we take ‖u‖H1 →∞ in (3.7), then it is clear
that I(u)→∞. Hence I is bounded from below on V .

Proposition 3.2. Suppose that f satis�es (3.3) and (3.4). Then I(u) has a unique minimum

on V .

Proof. Since I(u) is bounded on V , there exists α ∈ R such that α = infu∈V I(u). Moreover,
since I(u) → ∞ as ‖u‖H1 → ∞, we can take R large enough so that K := V ∩ BR(0) 6= ∅ and
so that the inequality I(u) ≥ α+ 1 holds whenever ‖u‖H1 ≥ R. De�ne

Kε := {u ∈ K : α ≤ I(u) ≤ α+ ε} ,

for ε > 0. We have that Kε is a closed, convex subset of K, which is itself a closed, convex,
bounded subset of H1(M). The sets Kε are then weakly closed in the weakly compact set K. It
follows that the intersection of any nesting sequence of Kε is nonempty. So, K0 :=

⋂
ε>0Kε 6= ∅.

In other words, there exists u ∈ K0 ⊂ V minimising I(v) on V . The uniqueness of u follows
directly from the strict convexity of I.

In the proof of the uniformization theorem, we will only require that u equal a constant on
∂M . Our function g is then constant, and in particular C∞(∂M).

Proposition 3.3. Let u ∈ V be a solution of (3.1)-(3.2) in which f satis�es (3.4). If g ∈
C∞(∂M) then u ∈ C∞(M).

Proof. The additional restriction on f implies that ∆u = f(x, u) ∈ H1(M). So, if g ∈ H3/2(∂M),
then u ∈ H2(M). The statement follows by applying this argument inductively.

Now, we would like relax the hypothesis (3.4). We need the two following propositions.

Proposition 3.4. Let u, v ∈ C2(M) ∩ C(M) be solutions of (3.1) that satisfy the Dirichlet

boundary conditions u = g and v = h on ∂M respectively. If we assume furthermore hypothesis

(3.3), then

sup
M

(u− v) ≤ max

{
sup
∂M

(g − h), 0

}
,

and

sup
M
|u− v| ≤ sup

∂M
|g − h|.
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Proof. De�ne w := u− v and O := {x ∈M : w(x) ≥ 0}. Since ∂uf ≥ 0, we have

λ(x) :=
f(x, u)− f(x, v)

u− v
≥ 0.

Therefore, w satis�es

∆w = λ(x)w ≥ 0, w|∂M = g − h,

and then the maximum principle applies on O. So, we have

sup
M

(u− v) ≤ max

{
sup
O
w, 0

}
= max

{
sup
∂O

(g − h), 0

}
≤ max

{
sup
∂M

(g − h), 0

}
,

which is the �rst statement. The second inequality is obtained by combining the �rst one with
the inequality obtained by applying the same argument to the function −w instead of w.

Proposition 3.5. Let ϕ(x) := f(x, 0) ∈ C∞(M). For g ∈ C∞(∂M), let Φ ∈ C∞(M) be the

solution to

∆Φ = ϕ on M, Φ = g on ∂M. (3.8)

If f satis�es (3.3) and u is a solution to (3.1)-(3.2), then

sup
M

u ≤ sup
M

Φ +

(
max

{
sup
M

(−Φ), 0

})
,

and

sup
M
|u| ≤ sup

M
2|Φ|.

Proof. By (3.3), we have

λ(x) :=
f(x, u)− f(x, 0)

u
≥ 0.

So,

∆(u− Φ) = λ(x)u ≥ 0

on O+ := {x ∈M : u(x) > 0}. By the maximum principle, we have

sup
O+

(u− Φ) = sup
∂O+

(u− Φ) ≤ max

{
sup
M

(−Φ), 0

}
. (3.9)

The �rst part of the statement follows. Similarly, we have

sup
O−

(Φ− u) = sup
∂O−

(Φ− u) ≤ max

{
sup
M

Φ, 0

}
. (3.10)

Combining (3.9) and (3.10), we obtain the second part of the statement.

We can now get rid completely of the temporary restriction (3.4).
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Theorem 3.6. Let f ∈ C∞(M × R) and satisfy (3.3). For any g ∈ C∞(∂M), there exists a

unique solution u ∈ C∞(M) to the Dirichlet problem (3.1)-(3.2).

Proof. For each j ∈ N, let fj(x, u) ∈ C∞(M ×R) satisfy (3.3)-(3.4), and be such that fj(x, u) =
f(x, u), for |u| ≤ j. By the discussion above, for each j, there is a solution uj of the equation

∆uj = fj(x, uj), uj |∂M = g.

Since fj(x, 0) = f(x, 0) = ϕ(x) for all j, Proposition 3.5 implies that

sup
M
|uj | ≤ sup

M
2|Φ|,

where Φ is a solution of (3.8). The existence of the solution u follows by taking j large enough.
Finally, the uniqueness of u is a direct consequence of the second inequality in Proposition
3.4.

Now, we start the construction of the Poincaré metric for M . For any a ∈ (0,∞), Theorem
3.6 gives the existence of a unique solution ua ∈ C∞(M) to (2.2) satisfying ua = a on ∂M . As
explained at the beginning of the section, we want to take a → ∞. We will need the following
monotonicity result for ua.

Lemma 3.7. Let ua, ub be as de�ned above. If a < b, then ua ≤ ub on M .

Proof. Deinfe w := ub − ua and

λab :=
e2ub − e2ua

ub − ua
=

1

ub − ua

∫ ub

ua

2e2σdσ > 0. (3.11)

We have

∆w = ∆ub −∆ua = e2ub − e2ua = λab(ub − ua) = λabw. (3.12)

Suppose that w attains its minimum at the point p ∈ M . If w(p) < 0, then (3.11) and (3.12)
together imply that ∆w(p) < 0, which contradicts the fact that p is a local minimum of w. Hence
w(p) ≥ 0 on M or w attains its minimum on the boundary. In both cases, we have w ≥ 0 on
M .

We will also make use of a bound for ua uniform in a.

Lemma 3.8. Let ua be de�ned as above. There exists a locally bounded function B : M → R
independant of a such that

e2ua(x) ≤ B(x), (x ∈M).

Proof. Let x ∈ M . Suppose �rst that M ⊂ R2. Set δ(x) := dist(x, ∂M) et let 0 < β < δ(x). It
is well known that the disk Dβ(x) can be endowed with the following Poincaré metric:

gjk =
4β2

(β2 − |y − x|2)2
δjk, (y ∈ Dβ(x)).
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With

w :=
1

2
log

(
4β2

(β2 − |y − x|2)2

)
, (3.13)

we have gjk = e2wδjk. Therefore, w is a solution of (2.2). Moreover, it is clear from (3.13) that
w(x)→∞ as x→ ∂Dβ(x). It follows from Lemma 3.7 (applied to disks of radius large enough
contained in Dβ(x)) that

ua ≤ w on Dβ(x).

So,

e2ua(x) ≤ e2w(x) =
4

β2
.

By taking β → δ(x) in the last equation, we get

e2ua(x) ≤ 4

δ2(x)
=: B(x),

which gives us the required locally bounded function.
Now, we consider the general case. Using isothermal coordinates, we can �nd a neighbourhood

Ox ⊂ M of x conformal to the unit disk D1 through some conformal map ψx. Moreover, Ox
can be chosen so that ∂Ox is smooth and ψx can be extended to a di�eomorphism on Ox. Let
e2wxg0 be the Poincaré metric on Ox obtained by pulling back the Poincaré metric on D1. It is
clear that wx(y) → ∞ as y → ∂Ox. So, we can apply Lemma 3.7 in the same way as above to
obtain the locally bounded function B.

We can now consider the limit as a → ∞ of ua. By Lemma 3.8, ua(x) → u(x) and e2u(x) ≤
B(x) for any x ∈ M . It follows from elliptic regularity that the derivatives of ua are locally
uniformly bounded. Therefore, ua → u in C∞loc(M), from which we conclude that u solves (2.2).

In order for e2ug0 to be a Poincaré metric, it must be geodesically complete. So, our last step
towards the proof of Theorem 3.1 is the following result.

Lemma 3.9. If u is de�ned as above, then g = e2ug0 is complete on M .

Proof. We proceed by contradiction. Suppose that g is not complete on M . Then, there exists
a unit-speed geodesic γ : [0, L)→ M with respect to g (where L <∞), for which γ(t) does not
converge in M . Moreover, since γ([0, L)) has also �nite length with repect to g0, γ(t) converges
to a point p ∈ ∂M as t→ L.

As in the proof of Lemma 3.8, we treat �rst the case where M ⊂ R2. We consider R2 as a
subset of the Riemann sphere Ĉ. Let Dp be a disk in R2\M tangent to ∂M at p. In the Riemann

sphere, the complement of Dp, i.e. D
c
p = Ĉ\Dp, admits a Poincaré metric h = e2wg0 for some

w ∈ C∞(Dc
p). Since M ⊂ Dc

p and u(x) → ∞ as x → y ∈ ∂M , we can apply Lemma 3.7 as in
the proof of Lemma 3.8 to get

u ≥ w on M, (3.14)

from which it follows that g ≥ h. However, since h is a Poincaré metric, it is in particular
complete. This implies that the length of γ with respect to h is in�nite. This together with
(3.14) contradicts the fact that γ has �nite length with respect to g.
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We consider now the general case. We assume without loss of generality that M is contained
inside a larger open Riemann Surface to which we extend smoothly the metric g0. Let D be a
small holomorphic disk containing p such that D ∩ ∂M cuts D into two connected components.
Let ω : (0, T )→ D\M be a smooth curve such that ω(t)→ p transversally as t→ T . From the
image of this curve, take a sequence of points (pj)

∞
j=1 converging to p. De�ne Dj := D\ {pj}. It

is elementary to get a conformal mapping between Dj and D
∗, that is, the punctured unit disk

missing the origin. It is easily veri�ed that a Poincaré metric on D∗ exists and is given by

gjk =

(
r log

1

r

)−2

δjk. (3.15)

So, we can obtain a Poincaré metric e2vjg0 on Dj by pulling back (3.15). Moreover, we let e2vg0

denote the Poincaré metric obtained by pulling back (3.15) to D\ {p}.
Let O be a disk properly contained in D such that pj ∈ O for all j. Our goal is to show that

u ≥ v −B on O ∩M, (3.16)

for some constant B. Indeed, if (3.15) holds, then we can use the completeness of v to derive a
contradiction following the same reasonning as for the case whereM was a planar domain. Since
vj is bounded in O, for any j, there exists Nj such that

a ≥ Nj =⇒ ua ≥ uj on ∂M ∩O. (3.17)

Moreover, it is easy to see that the vj 's are uniformly bounded in O. Therefore, there exists
B > 0 such that for all j,

u1 ≥ vj −B on ∂O ∩M

It follows from Lemma 3.7 that for all j, and for all a ≥ 1,

ua ≥ vj −B on ∂O ∩M. (3.18)

We can combine (3.17) and (3.18) to obtain

ua ≥ vj −B on ∂ (O ∩M) ,

for a ≥ max {1, Nj} and for all j. By Proposition 3.4, it follows that

ua ≥ vj −B on O ∩M,

for a ≥ max {1, Nj} and for all j. Lemma 3.7 gives u ≥ vj − B on O ∩M , for all j. Inequality
(3.16) is then obtained by taking the limit j →∞.

Theorem 3.1 now follows by endowing M with the Poincaré metric u constructed above.

4 Planar domains

For the the whole section, we suppose that M ⊂ R2 is a domain such that its complement,
R2\M , contains at least two points. Moreover, we considerM as a smooth Riemannian manifold
endowed with the Euclidean metric δjk. We want to prove the following.
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Theorem 4.1. If M is a planar domain such that its complement in R2 contains at least two

points, then M admits a Poincaré metric.

In order to establish this theorem, we consider an increasing sequence of smoothly bounded
subsets Ων of M converging to M . More precisely, Ωk ⊂⊂ Ωk+1 and Ωk →M as k →∞, in the
sense that for any compact set K ⊂ M , there exists k such that K ⊂ Ωk. By the results from
�3, for any k, Ωk admits a conformal Poincaré metric e2ukδij , with uk|∂Ωk

= ∞. Our strategy
will be to study the limit of uk as k →∞. We start with the following lemma.

Lemma 4.2. The planar domain M = C\ {0, 1} has a Poincaré metric.

Proof. We will �rst construct a metric of negative curvature K ≤ −1 for M . We are looking for
a metric of the form e2wδij , where

ew = A
(1 + |z|a)b

|z|c
(1 + |z − 1|a)b

|z − 1|c
,

with positive parameters A, a, b, c, which will be �xed later. By (2.1) with K0 ≡ 0, we �nd that
the Gauss curvatures for this metric is

K = −a
2b

A2

[
|z|a−2+2c|z − 1|2c

(1 + |z|a)2+2b(1 + |z − 1|a)2b
+

|z|2c|z − 1|a−2+2c

(1 + |z|a)2b(1 + |z − 1|a)2+2b

]
.

This Gauss curvature is negative. Moreover, if we set a = 1/3, b = 1/2 and c = 5/6, it is
straightforward to check that K is bounded away from zero. So, we can take A > 0 small enough
so that the curvature satis�es the additional requirement that K ≤ −1.

Let Ωk and uk be as above. By applying arguments similar to the ones used in the proof of
Lemma 3.7, one can see that uk+1 ≤ uk and uk ≥ w on Ωk for all k. Therefore, uk converges
to some solution u ∈ C∞ to (2.2), with u ≥ w on M . The same argument by contradiction as
the one used in Lemma 3.9 shows us that it is enough to prove that the metric induced by w
constructed above is complete. However, it is not. So, we will proceed di�erently.

Let e2vδij be the Poincaré metric on the punctured unit disk D∗ (See (3.15) in the proof of
Lemma 3.9). It is clear that v is bounded on ∂D 1

2
= {z ∈ C : |z| = 1/2}. So, since uk → u,

there exists a nonnegative constant B such that

uk ≥ v −B on ∂D 1
2
, (4.1)

for all k. With the help of (2.1), one can check that the metric e2(v−B)δij has Gauss curvature
less than or equal to one. We can then apply the argument of Lemma 3.7 in conjunction with
(4.1) to obtain

u ≥ v −B on

{
z ∈ C : 0 ≤ |z| ≤ 1

2

}
. (4.2)

To show the completeness of e2uδij in a neighbourhood of 0, we can then proceed by contradiction,
exactly as in the proof of Lemma 3.9, with (4.2) playing the same role as (3.16).

As for completeness near 1, we can apply the same argument, this time with a punctured
unit disk centered around the point z = 1. It remains to consider completeness near ∞. It can
be shown that formula (3.15), de�ning a Poincaré metric for D∗, de�nes also a Poincaré metric
on {z : |z| > 1}. An analog argument to the one used above to prove completeness around 0 or
1 will then show completeness near ∞.
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We can now prove the main result of this section.

Proof of Theorem 4.1. From the proof of Lemma 4.2, it is clear that 0 and 1 can be replaced by
any points p1 and p2 in the statement. So, let p1, p2 ∈ R2\M , and let e2wδij be the Poincaré
metric on R2\ {p1, p2} obtained by Lemma 4.2. Applying Lemma 3.7 to the functions uk and
uk+1 inside of the domain Ωk, we can conclude that uk+1 ≤ uk for all k. Moreover, the argument
of Lemma 3.7 applied to uk and w gives

uk ≥ w, (4.3)

for all k. We can then consider the limit u of uk as k → ∞. As in �2, we deduce from elliptic
regularity that u ∈ C∞ and that u solves (2.2).

It remains to show that the metric g corresponding to u is complete. As in the proof of Lemma
3.9, we suppose that it is not, and that there exists then a unit-speed geodesic γ : [0, L) → M
with respec to g such that γ(t) → p as t → L, where either p ∈ ∂M or p = ∞. If p 6= ∞,
then let w be such that e2wδij is the Poincaré metric on R2\ {p, p2}, where p2 is any other point
not in M . By (4.3) we have that u ≥ w. As argued before, the completeness of e2wδij leads
to a contradiction. On the other hand, if p = ∞, then γ has necessarily in�nite length with
respect to e2wδij (for any choice of p1, p2 /∈ M), which leads to the same contradiction. Thus g
is complete.

5 Noncompact surfaces

In this section, we establish the uniformization theorem in the noncompact case. In addition
to the results proved in the two preceeding sections, we make use of two classical theorems
from complex analysis, namely the Schwarz Lemma and a theorem about normal families due to
Koebe. For the sake of completeness, the statements of those results are included below.

Lemma 5.1 (Schwarz lemma). Let f be a holomorphic map from the complex open unit disk to

itself such that f(0) = 0. Then

|f(z)| ≤ |z| for all z, and |f ′(0)| ≤ 1. (5.1)

Moreover, we have strict inequalities in (5.1) unless f(z) = eiγz, γ ∈ R.

This result is elementary and a proof of it can be found in almost any introductory complex
analysis book.

Until the end, S will denote the familly of one-to-one holomorphic maps f : D1 → C satisfying
f(0) = 0 and f ′(0) = 1.

Theorem 5.2 (Koebe). The set S is compact in the space of holomorphic functions f : D1 → C.

For a curvature proof of this theorem, the reader can consult �5 of [2]. We now have all the
ingredients required to prove the main result of this paper.

Theorem 5.3. If M is a noncompact, simply connected Riemann surface, then M is biholomor-

phically equivalent to either D1 or C.
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Proof. As in the previous section, we consider a sequence of relatively compact sets increasing
to M . More precisely, let {Ωk} be a sequence of subsets of M such that Ωk ⊂⊂ Ωk+1, Ωk is
compact with smooth boundary, and Ωk → M (in the same sense as in �4). Let p ∈ Ω0. By
Theorem 3.1, there exists a biholomorphism

ψk : Ωk → D1,

for each k. Moreover, since for any point x ∈ D1, there exists a biholomorphism fx : D1 → D1

sending any point x to 0, we may assume without loss of generality that ψk(p) = 0. Since Dψk(p)
is a linear map from TpM ' C to C, there exists a unique 0 6= ak ∈ C such that

Dψk(p) = akDψ0(p).

By Schwarz lemma, we have

|ak| > |ak+1|, for all k. (5.2)

Indeed, if we set f := ψk+1 ◦ ψ−1
k , then f is a well-de�ned mapping from D1 to itself such that

f(0) = 0. Therefore, Lemma 5.1 applies and gives

|ak+1|
|ak|

= |Dψk+1(p)| 1

|Dψk(p)|
= |Dψk+1(p)|

∣∣D (ψ−1
k (0)

)∣∣ = |f ′(0)| ≤ 1. (5.3)

Moreover, since f is not bijective (due to the fact that Ωk is properly contained in Ωk+1), the
second part of Lemma 5.1 implies that the inequality in (5.3) is strict.

Let Rk = |ak|−1 and de�ne ϕk : Ωk → DRk
by ϕk(x) := a−1

k ψk(x). By (5.2), we have
R0 < R1 < · · ·. Our next goal is to �nd a subsequence of {ϕk} that converges to a one-to-one
map M → C. In order to �nd such a subsequence, we will use a diagonalization argument in
combination with the theorem due to Koebe stated above. First, we de�ne Φkl := ϕk ◦ ψ−1

l :
D1 → DRk

. It is clear that Φkl is one-to-one and satis�es Φkl(0) = 0. Moreover, we have

Φ′kl(0) = a−1
k Dψk(p)(Dψ0(p))−1 = a−1

k (akDψ0(p))(Dψ0(p))−1 = 1.

Then for any �xed l, the sequence (Φkl)
∞
k=0 is in S, and Theroem 5.2 applies. So, for l = 0, there

exists a subsequence (Φki0)∞i=0 converging to a one-to-one holomorphic function Φ0 : D1 → C.
It follows that the subsequence (ϕki)

∞
i=1 converges to the one-to-one holomorphic map ϕ(0) :=

Φ0 ◦ ψ0 : Ω0 → C. Applying Theroem 5.2 again, this time to the sequence (Φk1i1)∞i=0, we get,
by the same reasoning as above, a subsequence (ϕk2i)

∞
i=1 of (ϕk1i)

∞
i=1 converging to a one-to-one

holomorphic map ϕ(1) : Ω1 → C. Repeating this process again, we �nd subsequences

(ϕk0i)
∞
i=1 ⊃ (ϕk1i)

∞
i=1 ⊃ (ϕk2i)

∞
i=1 ⊃ (ϕk3i)

∞
i=1 ⊃ · · · ,

such that for any m, ϕkmi
converges to a one-to-one holomorphic map ϕ(m) : Ωm → C as i→∞.

Therefore, the subsequence (ϕkii)
∞
i=1 converges to a one-to-one holomorphic map ϕ : M → C.

If ϕ(M) = C, then ϕ is the required biholomorphism between M and C. Else, since M is
simply connected, ϕ(M) 6= C is also simply connected, which implies that C\ϕ(M) contains at
least two points. Theorem 4.1 then applies to yield a biholomorphic map between ϕ(M) and
D1. Composing this mapping with ϕ, we obtain the required biholomorphism between M and
D1.

12



6 Compact surfaces

In this �nal section, we state the uniformization theorem in the case where M is a compact
Riemann surface. Since a complete proof of this result would require considerable further analysis,
which do not fall within the scope of this paper, we only give a sketch of the proof.

Theorem 6.1. Let M be a compact Riemann surface, with Euler characteristic χ(M).

1) If χ(M) = 2, then there is a biholomorphism between M and Ĉ.

2) If χ(M) = 0, then there is a biholomorphism between M and a �at torus.

3) If χ(M) < 0, then M is holomorphically covered by D1.

Sketch of proof. Cases 2 and 3 can be established by solving (2.1). In Case 2, the curvature
equations reads

∆u = K0(x). (6.1)

As a consequence of the Green's formula, a necessary condition for (6.1) to hold is that∫
M
K0(x)dV (x) = 0. (6.2)

Moreover, this condition can be shown to be su�cient for the existence of a solution to (6.1). By
the Gauss-Bonnet formula, (6.2) is satis�ed if and only if χ(M) = 0. Therefore, the metric onM
is conformally equivalent to a �at metric. It follows that the universal cover of M is isometric to
C. Hence M is biholomorphically equivalent to C/Λ, where Λ is a discrete group of holomorphic
automorphisms acting on C without �xed points. Such automorphisms can only be translations.
Thus C/Λ is a torus.

In Case 3, the idea is to look for a function u that minimizes the functional

F (u) =

∫
M

(
1

2
|∇u|2 +K0(x)u

)
dV (x)

over the set

S =

{
u ∈ H1(M) :

∫
M
K(x)e2udV (x) = 2πχ(M)

}
.

This minimum solves (2.1), and the metric on M is then conformal to a metric of negative
curvature K. For a complete proof, the reader is referred to �2 of Chap. 14 in [3].

A proof of Case 1 requires tools that were not discussed in this note. For a complete treatment
of this case, which makes use of the Riemann-Roch theorem, the reader can consult �9 of Chap.
10 in [3].
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