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1 Introduction

Maximum principles have been some of the most useful properties used to solve
a wide range of problems in the study of partial differential equations over
the years. Starting from the basic fact from calculus that if a function f(x)
satisfies f ′′ > 0 on an interval [a, b], then it can only achieve its maximum on
the boundary of that interval. For partial differential equations, the same idea
allows to draw very useful conclusions from the properties of the solutions and
the domain of a given problem. We will look over some results such as the Hopf
Maximum Principle and its generalization, approximations and uniqueness of
solution for elliptic operators. We will then consider how maximum principles
are used in the study of parabolic operators, noting some of the similarities and
differences with the elliptic operators. Some of the results will be presented in
more detail, for others, only a sketch of the proof will be given.

2 Elliptic Operators

We begin by giving the definition of an second order differential elliptic operator.

L ≡
n∑

i,j=1

aij(x1, x2, ..., xn)
∂2

∂xi∂xj
+

n∑
i=1

bi
∂

∂xi

where for all points x of a domain D, there exists a positive quantity µ(x) such
that

n∑
i,j=1

aij(x)ζiζj ≥ µ(x)

n∑
i=1

ζ2
i , for all n-tuples(ζ1, ..., ζn)

In terms of matrices, this condition means that the symmetric matrix of coeffi-
cients A(x) is positive definite. The operator is called uniformly elliptic if the
same µ(x) holds for all points of the domain and there exists a constant µ0 such
that µ(x) ≥ µ0 for all x in D.
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2.1 Maximum Principle

The first and most basic case one can consider in the study of elliptic operators
is the Laplace operator ∆:

∆ ≡ ∂2

∂x2
1

+
∂2

∂x2
2

+ ...+
∂2

∂x2
n

If a function u has a local maximum on an interior point of a domain D, then
at that point, it must hold that

∂u

∂x1
= 0,

∂u

∂x2
= 0, ...,

∂u

∂xn
= 0

and
∂2u

∂x2
1

≤ 0,
∂2u

∂x2
2

≤ 0, ...,
∂2u

∂x2
n

≤ 0

Then looking at the simple equation ∆u > 0 on a given domain D, we can
conclude right away that u cannot attain a maximum in the interior of D unless
it is constant. The same result holds if u satisfies

∆(u) + b1
∂u

∂x1
+ b2

∂u

∂x2
+ ...+ bn

∂u

∂xn
> 0

where b1, ...bn are any bounded functions in D. This result can be extended for
inequalities which are not strict using the Mean Value Theorem. The proof of
this is left to the reader or can be found in one of many books on this topic
(namely [Protter and Weinberger]).

We now turn our attention to more general uniformly elliptic operators where
the coefficients aij and bi are uniformly bounded. It is easy to show that one
can perform a change of coordinates by multiplying the matrix of coefficients
by an orthogonal basis and that the operator remains elliptic and the quantity
µ(x) is preserved. Moreover, for a given point in the domain, there exists a basis
which transforms the operator into a Laplacian at that point. This will lead us
to Hopf’s Maximum principle. We know that if u has a relative maximum at a
point p in the interior of D, then, at that point

∂u

∂zk
= 0 and

∂2u

∂z2
k

≤ 0, k = 1, 2, ..., n

for any coordinate system z1, ..., zn. We can now see that for L as above, there
is a transformation changing into a Laplacian at p. So if u satisfies L[u] > 0
in D, we get a contradiction. A function satisfying L[u] > 0 cannot attain a
maximum on the interior of the domain unless it is constant. The maximum
principle also holds if the inequality is not strict and if a component h(x) is
added so long as h(x) ≤ 0 and it is bounded.

(L+ h)[u] = L[u] + h(x)u ≥ 0
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The proof by contradiction relies on constructing an auxiliary function w =
u+ εz where z is defined on a ball contained in D such that the maximum of u
is attained on the boundary of that ball. This auxiliary function is constructed
in such a way that

L[w] = L[u] + εL[z] > 0

which gives a contradiction to the statement above.

2.2 Uniqueness for Boundary Value Problems

On a different note, we now look at the use of maximum principles for boundary
value problems. For the simple case of the Poisson equation in two dimensions,
we have

∆v ≡ f(x, y) in D

with a boundary condition
v = g(s) on∂D

where v(x, y) is twice differentiable in D and continuous on D∪∂D. If a solution
exists, then it must be unique. Otherwise, suppose there is v1, v2 that satisfy
the initial equation and agree on the boundary, we will look at u = v1 − v2. It
must be that

∆u = 0 in D u = 0 on ∂D

By the maximum principle established earlier, u cannot achieve a maximum
inside D. Deduce that the maximum is on the boundary where u = 0 so u < 0
in D or must be constant. Now since the same is true for −u, it must be that
u ≡ 0 on the entire domain and the desired result is obtained.

The more general boundary value problem for an n-dimensional domain is
defined in a slightly more complicated way. We will consider the equation

(L+ h)[v] = f inD

with boundary conditions{
∂v
∂ν + α(x) v = g1 on Γ1

v = g2 on Γ2

where ∂/∂ν is the derivative with respect to an outward pointing vector at each
point of Γ1. Γ1 and Γ2 constitute the boundary of the domain D and α ≥ 0

Using the same approach as before to show uniqueness, we apply the max-
imum principle to u = v1 − v2. If this function is positive anywhere, it must
have a positive maximum which has to be attained on the boundary and more
specifically on Γ1. A result not mentioned previously states that at the point of
the boundary where the maximum is achieved, the outward pointing derivative
must be positive unless the function is constant. This would contradict the
condition that

∂u

∂ν
+ α(x)v = 0 on Γ1
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So either u ≤ 0 or it is constant. Since the same holds for −u, it must be equal
to 0 unless Γ2 is empty and h ≡ α ≡ 0 in which case any constant will satisfy
the conditions.

2.3 Generalizations

Those various results rely on the condition that h(x) ≤ 0 and is bounded. There
are simple examples that illustrate that this condition cannot be removed. But
it can be loosened and compensated in different ways. Given a uniformly elliptic
operator L and a function u that satisfies

(L+ h)[u] ≥ 0 in D

we assume that it is possible to define

v(x) =
u(x)

w(x)

where w(x) is a positive function on D ∪ ∂D. Then if (L + h)[w] ≤ 0, we
can apply the maximum principle to the function v(x). From this, we deduce
that the uniqueness (and other) results will hold when the condition on h(x)
is removed so long as a function w(x) with the properties stated above exists.
Although it may be hard to find, Protter and Weinberger give an explicit formula
in the case when “the domain D is contained in a sufficiently narrow slab”
a < x1 < b and h(x) is bounded.In that case, w(x) = 1 − βeα(x1−a) For those
who don’t like the notion of ’narrow enough’, other results exist. In fact, rather
than putting somewhat ambiguous restrictions on the domain, it is possible to
restrict the operator. In his paper on maximum principles, Danet considers the
one-dimensional operator L[u] ≡ u′′ + h(x)u ≥ 0 in a bounded domain. Then if

sup
Ω
h(x) <

π2

(diamΩ)2

the same conclusion holds for the function v = u/wε where wε is defined to be

wε(x) = cos(
π(2x− diamΩ)

2(diamΩ + ε)
)cosh(εx), for ε > 0 small

This result has an equivalent formulation in higher dimensions but was presented
here mostly to show that there are different ways of restricting the differential
inequality in order to get maximum principles for the functions that satisfy it.

2.4 Approximation of Solutions

We are now in good shape to get back to the boundary value problem and look
at how the maximum principles can help find bounds on a solution which might
be complicated to find explicitly. Let u be a solution of

(L+ h)[u] = f in D
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with boundary conditions{
∂u
∂ν + α(x) u = g1 on Γ1

u = g2 on Γ2

We assume L is uniformly elliptic in D, Γ1 ∪ Γ2 form the boundary ∂D and
∂u/∂ν is an outward pointing derivative. Moreover, we suppose that L, h and
D are such that there exists a positive function w(x) with properties:

(L+ h)[w] ≤ 0 in D and
∂w

∂ν
+ α(x)w ≥ 0 on Γ1

If we can find a function z1 which satisfies

(L+ h)[z1] ≤ f in D{
∂z1
∂ν + α(x) z1 = g1 on Γ1

z1 = g2 on Γ2

then we can apply the maximum principle to the function v = (u − z1)/w to
conclude that z1 is an upper bound for u in the domain unless Γ2 = ∅ and
the two conditions on w(x) are identically 0. With the same argument but the
opposite inequalities and v = (z2 − u)/w, it is possible to obtain a lower bound
for the solution.

There are more interesting results and applications of various forms of max-
imum principles for elliptic operators but the time is getting late and I have
another final in the morning.

3 Parabolic Operators

Once more, we begin by giving a formal definition of a formal operator: the
operator

L ≡
n∑

i,j=1

aij(x1, x2, ..., xn, t)
∂2

∂xi∂xj
+

n∑
i=1

bi
∂

∂xi
− ∂

∂t

is said to be parabolic if for fixed t, the operator consistent of the first sum
is an elliptic operator. It is said to be uniformly parabolic if the definition of
ellipticity holds uniformly for all points(x, t) of a region ET . We will now briefly
discuss some results analogous to those of the previous section noting the key
similarities and differences.

3.1 One-Dimensional Parabolic Operator

We will consider the one-dimensional case which already provides enough infor-
mation to extract important similarities and differences with the case of elliptic
operators. Suppose u(x, t) satisfies

L[u] ≡ ∂u

∂x2
− ∂u

∂t
> 0 in D
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If u were to achieve a local maximum at any point in D, we know that at that
point, it must be that

∂u

∂x2
≤ 0, and

∂u

∂t
= 0

which contradicts the assumption. So far, the result is the same as before, if the
strict inequality is respected, then u must have a maximum on the boundary
of the domain or be constant everywhere. The conclusion differs however if
the inequality is not strict. In the case L[u] ≥ 0 we get a stronger result for
parabolic operators than we had for elliptic ones. In fact, simply by looking at
a rectangular domain E = {0 < x < l, 0 < t < T} together with its boundary,
it’s possible to show the maximum of u must be achieved on the boundary but
not at the final time t = T . The proof goes by contradiction with the use of a
familiar auxiliary function w(x) > 0: if M is the maximum of u on ∂E\{t = T}
and M1 > M is the maximum on E ∪ ∂E at the point (x0, t0)then

w(x) =
M1 −M

2l2
(x− x0)2

and we can apply the maximum principle to v = u(x, t) + w(x, t) to see that
(x0, t0) cannot be on th interior of the domain. If that point is at t = T however,
then a contradiction arise from the fact that ∂v/∂t must be strictly negative
implying the value of v must have been greater at a previous time! We skip over
a few intermediate results to get to the theorem which explicitly formulates the
consequence of this additional condition. Let E be a domain and the inequality

L[u] ≡ a∂
2u

∂x2
+ b

∂u

∂x
− ∂u

∂t
≥ 0

holds with a and b bounded, L uniformly parabolic. If u achieves its maximum
value m at an interior point (x1, t1) then it must be that u(x, t) = M for
every point which can be connected to (x1, t1) by vertical and/or horizontal line
segments contained in the domain. In other words, given an interior point at
which the function is maximal, it is possible to identify a region on which it
must be constant.

3.2 Uniqueness for Boundary Value Problems

For an n-dimensional parabolic operator, we pose the boundary value problem
in a similar way to what was seen previously: let v be a solution to

L ≡
n∑

i,j=1

aij(x1, x2, ..., xn, t)
∂2v

∂xi∂xj
+

n∑
i=1

bi
∂v

∂xi
+ h(x, t)v − ∂v

∂t
= f(x, t)

in a domain E = D × [0, T ] with the coefficients of L bounded. The boundary
conditions

v(x, 0) = g1(x) in D and α(x, t)v(x, t) + β(x, t)
∂v

∂ν
= g2(x, t) on Γ
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where α ≥ 0, β ≥ 0 on Γ and they are not both 0 at the same time, ∂v/∂ν is
an outward and upward pointing derivative and h(x, t) is bounded above. Then
the solution can be shown to be unique by assuming the existence of distinct
solutions and applying the maximum principle to w = v1−v2. As for the elliptic
operators, the doing so for both w and −w yields uniqueness of the solution in
the domain if it exists at all.

Although there is a lot more to say, we shall proceed to the closing statement.

4 Conclusion

Overall, it is important to understand the power of the various forms of the
maximum principles in the study of PDEs. Using relatively simple and only
few technical tools, one can achieve a wide variety of results concerning the
behaviour of solutions or properties of different differential operators be they
elliptic, parabolic or even hyperbolic. Many of the proofs use similar approaches
and the results obtained extend well to more general cases for the most part.
Once acquainted with the ’tricks’, so many different things become easy to prove:
be it results concerning boundary problems, eigenvalues, growth in unbounded
domains, etc. Only the limited amount of time forces me to stop here and
not elaborate on more applications of maximum principles related to Harnack’s
inequalities, non-linear operators or other cool problems.

For further reading, consult ’Maximum Principles in Differential Equations’
by Murray Protter and Hans Weinberger or ’The Maximum Principle’ by Pa-
trizia Pucci and James Serrin as well as the paper by Cristian-Paul Danet en-
titled ’The Classical Maximum Principle. Some of its Extensions and Applica-
tions’.
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