ELEMENTARY SPECTRAL THEORY OF SOME SCHRODINGER OPERATORS

ABSTRACT. We prove some elementary properties regarding Schrédinger operators of the form —A +
V. In particular we prove for a certain class of potentials V' that the spectrum of —A + V has only
eigenvalues below 0. We also prove a basic Lieb-Thirring inequality for large sums of eigenvalues
for Schrodinger operators and show that this inequality is dual to a type of Sobolev inequality for
fermionic particles.

1. SOLUTIONS OF THE SCHRODINGER EQUATION

The time independent Schrodinger equation (TISE) for a particle interacting with a potential V' (x)

in R™ is given by
—AY(x) + V(2)p(z) = Ey(x) (1)
where A is the (distributional) Laplacian. Here, V' : R® — R is some real valued measureable
function. v is a wave function and the physical interpretation is that |¢(z)|?dz is the probability

density associated with finding a particle at the point x. We therefore require the normalization
condition,

[¢ly =1, (2)

with |||, denoting the L” norm on R™ as usual. We are interested in the eigenfunctions and eigenvalues
for which (1) holds. Formally associated with the equation (1) and the operator —A+V is the quadratic
form given by

E(W) =Ty +Vy (3)

where
Ty = JRn |v¢(I)|2d$, Vy = JR" V(I)|1/)(l')|2d1‘ (4)

Physically, T is the kinetic energy of the particle, and V}, is the potential energy. One of our tasks

is to find a class of wave functions and assumptions on V' so that the above definitions make sense.

It is natural to assume that 1 has finite kinetic energy, i.e., that ¢ € HY(R"), where H'(R") is the

space of square integrable wave functions with square integrable weak first derivatives. We will later

see that in the case n = 3, a suitable assumption on the potential is that V e L3/2(R3) + L®(R3).
Supposing that the definition of £()) makes sense, we define the ground state energy

By =inf{£(): Y], = 1,9 € H'(R")}. (5)
We would also like to find assumptions under which Ey > —oco. Minimizers of £(¢), i.e. functions
1o so that E(1g) = Ep will turn out to be solutions to (1) with eigenvalue Fy. We will also define
and investigate higher eigenvalues and obtain a complete description of the part of the spectrum of
—A+V (under suitable assumptions on V') that lies below 0. Note that physically the negative part of
the spectrum corresponds to bound states. They are stationary with respect to the dynamics induced

by the semigroup t — e (=A+V),

However, this is unimportant for us and we will not mention this in
the remainder of the paper.

From now on we will consider the physical case n = 3. We comment that the situations for n > 3
are relatively similar to the situation described below, as the nature of the Sobolev inequalities in

dimensions n > 3 are similar. Similar statements for n = 1 and n = 2 can be made, and in general,
1
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less regularity can be assumed on the potentials. In n = 1, the potential can be any bounded Borel
measure.

Lemma 1. Let £(v)) be as in (3) and assume that the potential satisfies V(x) € L*?(R?) + L®(R?).
Then there exists a constant C so that Vi € H(R3),
1
£W) = 2Ty — C i, ©)

Proof. For ¢ € H'(R?) the Sobolev inequality

[ e = s, ([ era) (7

holds, with S3 = 3(27%)%/3/4. By assumption, we can write V(z) = w(z) + h(z) with w € L3?(R?)
and h € L®(R?). Define for A > 0,

w(zx), |w(x)] <A
o) = 2@ @) .
0, else.
By dominated convergence, lim—,o [w — w3/, = 0. Since V(z) = (w(z) —wa(2)) + (wir(z) + h(z)),
for any § > 0 we can write V(z) = vs(z) + v(z), where [vs];, <6 and v € L*(R3). Take § = S3/2.
Then,

Vol = [ s@liw@Pds + [ o@)lpsice)as

[vs ()| *de " (@) |°de 1/3+HUHOOH¢H§
(o) (],

1
ST+ ol 913 ©)

In the second line we have applied Holder’s inequality. In the last line we have applied the Sobolev
inequality (7) and our bound on the L%*?2 norm of vs. Note that the above argument also shows that
under the assumption that V(x) € L¥2(R?) + L®(R?), the function 1) — Vi, is well defined whenever
Y € H'(R?). Therefore,

IA

IA

1
EW) =Ty +Vy =Ty — |Vy| = 3Tw — [Vl 1913 - (10)

|

In particular, Lemma 1 implies that Fy > —oo. We will now turn to establishing the existence of a

minimizer 1. The main technical element is the following, in which we establish weak semicontinuity
of the potential.

Lemma 2. Assume the potential V e L32(R3) + L®(R?). Additionally, assume that V vanishes at
infinity, that is, for any a > 0,

{z : [V(z)] > a}| < 0, (11)
where | - | denotes the Lebesque measure of a set. Then the function ¢ — Vy, is weakly (sequentially)

continuous on H'(R3). That is, if ; — v in H'(R3), then Vi, = Vip.

Proof. Let 1; — v in H*(R?). By the uniform boundedness principle and the fact that H*(R?) is a
Hilbert space the H'(R®) norms of the v, are uniformly bounded. For § > 0, define

Vé(x)_{wx), V(x) <6

12
0, else. (12)
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Note that lims_.o [V — Vs, = 0. Since,

Ve, = Vel = || V@) = V@it )P + jR3|v5<x>—v<x>||¢|2dx+ |, st 10, = 10 az

< Vs = V35 255 x sup [[v; g +J Vs (@)] |14 (2)* = |op(a)[*| Az, (13)
J
we have that
limsup [Vy, — V| < Cs + hmsupj |Vs ()] Hl/}] (:c)\z} dz, (14)
]—)

where Cs is a constant independent of j that goes to 0 as 6 — 0. Note we have used that [¢| . <
sup; [l ;1. We are therefore left with proving that for any 6 > 0, limsup,_, ., §gs [Va(2)||[0;(2)]* —
2 gy —
2)|?|dz = 0.
Let ¢ > 0, and define A, = {z : |V5] > ¢}. By our assumptions on V we have |A.| < . By
Theorem 8.6 of [LL], we have ¢; — 1 strongly in L"(A.), for 2 < r < 6 (this follows from the fact
that ¢; — ¢ in H'(R?) and A. is of finite measure). By the elementary inequality,

1312 = 12| = 3| = [1] < (1] + 1l < [y — ] x [las] + [, (15)

we have that [;|2 — |¢|? strongly in L™/?(A.). Let 1 < s < co be a number so that 1/s + 2/r = 1.
Since Vs € L®(R?), we have that V5 € L*(A.). It follows that,

f|v6<x>|}|wj< e |dx<f Vs (@) 15 () 2 — [46(2)]?] de
R3 Ac

] @@ - )P

€

2 2
< Vil [l = 1127, + 26 x sup 13 (16)
J

In the last line we have applied Holder’s inequality. Taking limsup on both sides and then ¢ — 0
yields the claim. O
We record here the following Corollary of the above proof, which will be useful later.

Corollary 1. Let U be a nonnegative potential satisfying the conditions of Lemma 2. Then, multipli-
cation by N'U(z) is a compact operator from H'(R?) to L*(R®). That is, if ; — v weakly in H*(R?),
then NUv; — U strongly in L*(R3).

Proof. Applying the Sobolev and Holder inequalities as before, we see that multiplication by v/U is

indeed a bounded operator from H'(R3) to L?(R3). To see that it is compact, we need to prove that
if 1p; — 1 weakly then

lim | U(z)[y;(x) - ¢(z)[Pdz = 0. (17)
J—P0 Jr3
However, this precisely the content of the proof of Lemma 2. g

We are now in position to prove the existence of a minimizer for £(¢)).

Theorem 1. Let V(z) be a real valued function satisfying V € L3?(R?) + L®(R®). Assume further-
more that V' vanishes at infinity. Let E(¢) = Ty + Vi as before and assume that

Eo =inf {E(¢) : ¢ € H'(R?), |¢], = 1} < 0. (18)

Then there exists a 1o € H'(R3) satisfying |toll, = 1 and E(vpg) = Eo. Furthermore, v satisfies the
TISE,

—Ao(x) + V(x)ho(z) = Eoip (), (19)

in the sense of distributions.
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Proof. By Lemma 1, Ey > —c0. Let t; be a minimizing sequence of H'(R?) functions with [;], =1
so that £(1;) — Ep. By (6), the H*(R?) norms of the 1; are uniformly bounded, since the £(v;) are
a converging sequence of real numbers. Since H!(R?) is weakly compact, there exists a subsequence,
which we continue to denote by 1;, that converges weakly to some H L(R3) function 1. By the fact
that norms are weakly lower semicontinuous,

timint [ fus@)Pde > [ (o) (20)
J—0  JR3 R3
liminff Vi, () Pder > J Vo () 2d (21)
J—0  JR3 R3

By (20), |[¢0], < 1. By (21) and Lemma 2 the function ¢ — £(¢) is weakly lower semicontinuous,
ie.,

liminf £(¢;) > hm mf Ty, + hm 1nf Vg, = Ty + Vigy = E(%0). (22)

Jj—®©

Therefore, Ey > £(1)g). Since Ey < 0 by assumption, 1y cannot be the zero function, i.e., 1[4 > 0.
We have

0> By = E(sho) = € (vo/ [%oll2) [¥ol3 = Eo [4oll3, (23)

and so [[¢g], = 1. But since we already had that [+o[, < 1, we must have |49, = 1 and so

E(tho) =
We now prove that g satisfies (19). For functions H!(R?) functions ¢ and ¢ define

E(d,p) = J Vo(x) x)dx + V(x (z)dz. (24)
R3 R3
Obviously, £(¢, ) is well defined and £(z),v) = £(). Let ¢ > 0 and f € CP(R3) any infinitely

differentiable function of compact support. Let 1)°(z) = 9g(x) + ef(2). Define for £ small enough the
function,

EWF) _ E(bo) + (o, )+ E(f, %) + PE(S, 1)
(5,0%) ~ (o, %0) + (o, )+ e(fo o) + €2(F F)

where (-,-) is the inner product on L?(R?). Clearly R(¢) is differentiable at € = 0 and since vy is a

R(e) = (25)

minimizer, the derivative must be 0 there. We compute,

= SRE)| =&, ) + £ o) — EGo) [0, /) + (F, 4] (26)
e=0
Integrating by parts we have
(=Af+Vfiabo) + (Yo, —Af + V) = Eo [(f,%0) + (o, f)] - (27)
Because we take f to be purely imaginary or purely real, we see that the real and imaginary parts of
1o satisfy the TISE separately, and therefore all of vy satisfies the TISE. g

We have shown that minimizers of the functional £(¢) satisfy the TISE. The converse also holds:

Lemma 3. Let the potential V be as in Theorem 1, and let 1 € H'(R3) satisfy

—A(z) + V(x)p(z) = Ep(x) (28)
in the sense of distributions for E € R. Then,
E(W) = Byl (29)

In particular, if ¢ satisfies (28) with eigenvalue Ey, then 1 minimizes the functional E(P).
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Proof. Let ¢; be a sequence of CX(R?) functions converging to ¢ in H'(R?) norm. By the Sobolev
inequalities they also converge in L(R?) norm. For every j we have by taking the conjugate of (28),

- | p@as@aet | Vi@ @ =B | @@ (30)

Let us take j — o0 on both sides. Integrating by parts (which we may do because ) is an H! function)
we obtain

lim — | ¢(2)A¢;(x)dz = lim | Vi(z) - Vo,(z)dr = fw (V) (z)|?d. (31)

Jj—©0 R3 J—®© Jp3

The last equality follows from Cauchy-Schwarz. Also by Cauchy-Schwarz, lim (¢, ¢;) = (¢, ).
Let V(x) = w(x) + h(z), with w € L¥?(R?) and h € L*(R?). By Holder’s inequality,

< |wlgjz 1916 19 = @il + 12l 191 14 = @5l (32)

V@) - | V@l Pl

R3

Therefore,

Elyl; = lim B, ¢;) = lim - | $(@)A¢;(@)de + | V(@)h(@)s;(w)de = (). (33)

O
Remark. We did not require that V' vanishes at infinity.

We have shown that under suitable assumptions on V' that the ground state energy Ej is attained
if it is negative. We would now like to turn to the definition of higher eigenvalues. Before, doing so we
should make a comment on our choice of terminology. In the remainder of the paper, we will use the
term orthogonal to refer to two functions that are orthogonal in L?(R3), even though the Hilbert
space we are considering is H!(R?). We will also use orthonormal to denote a set of functions which
are pairwise orthogonal in L?(R3) and have L?(R3) norms equal to 1.

Let us now proceed with our discussion of higher eigenvalues. We define the first higher eigenvalue
as

By =inf {E®) 1 e H'(R®), |¢], = 1, (o,¥) = 0} . (34)

Again, (-,-) is the inner product on L?(R3). We are minimizing the functional £(1)) over the part of
L?(R?) that is orthogonal to the minimizer 1o. This leads us to a natural inductive definition. If the
eigenvalue F; is attained by some function 1 (that is normalized to have L% norm 1 and is orthogonal
to 1), then we can define the second higher eigenvalue E5 by the same formula as in (34) but also
require that the functions are orthogonal to ;. If this eigenvalue is attained, then we can define Ej3,
and so on and so forth.

To make this precise, suppose that the first k eigenvalues have been defined and are attained. What
we mean is that for each 0 < j < k there is an H*(R?) function ¢; with [t;], = 1 so that (¢;,;) =0
for any 0 < < j, and £(¢;) = E; where

Ej = inf {5(1/’) : ¢ € Hl(Rg)v HwH2 =1, (wlvw) = 070 <l< j} . (35)
Then we define the (k 4+ 1)th eigenvalue Ej,1 by
By = inf {E() - v € HI(R), [, = 1, (v1,4) = 0,0 < I <k + 1} (36)

We continue to define eigenvalues until one is not attained. If an eigenvalue E} is not attained by
some wave function 1 with the required orthogonality properties, then we stop this definition.

Obviously we have Ey < F1 < ..... The following theorem says this process does not stop until we
hit £, = 0.
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Theorem 2. Let V be as in Theorem 1 and assume that the (k + 1)th eigenvalue is negative. This
includes the assumption that the first k eigenfunctions exist and attain the first k eigenvalues. Then
the (k + 1)th eigenfunction also exists and satisfies

in the sense of distributions (note that the (k + 1)th eigenvalue is Ey, since the first eigenvalue is Ey).

Proof. The proof is nearly identical to that of Theorem 1. We take a minimizing sequence of nor-
malized H' functions ¢; so that £(¢;) — Ex. By Lemma 1 the H' norms of the ¢;’s are bounded
and so we extract a subsequence (which we continue to denote by ¢;) converging weakly to some 1)y.
The same argument of Theorem 1 shows us that Ej, = £(ty) and |[¢x]l, = 1 if we can show that
is orthogonal to each v;, 0 < i < k. But ¢ — (¢;,9) defines a linear functional on H'(R?) and so
0 = limj o0 (s, 05) = (Vi i)

Let us now prove that (37) holds. Let f € C%(R?) be a function so that (f, ;) = 0, for 0 <i < k. As
in the proof of Theorem 1, define for & small enough the function ¢ — R(e) = E(¢r +¢f)/ |n + £f3.
Arguing as in Theorem 1 by evaluating the derivative of R(e) at e = 0, we see that the distribution
D := (—=A +V — E)ty, satisfies D(f) = 0 for every C*(R3) that is orthogonal to every ;, for i < k.
It follows from Theorem 6.14 in [LL] that

k—1
=0

where co,...,c;—1 are constants. We would like to show that every constant ¢; is 0. Let ¢; be a
sequence of C°(R?) functions converging to ; in H' norm, for some I < k. Taking the conjugate of
D, we have

k-1

> i) = [

=1 R

Vi) Voy)de + [ V@i@eds - Blhug). (9)
R

Above, we have integrated by parts which is justifed because v, € H'(R?). Let us take j — o0 on

both sides. The same arguments that appear in Lemma 3 show that we can pass the limit inside the

integral on both sides of the above equality. We obtain

o= Vi) Viz)de + J V() Br () () d (40)
R3 R3

by the orthogonality of v;’s. Let now ¢; be a sequence of C°(R3) functions converging to 1 in
H! norm. Since v satisfies the Schrédinger equation (37) with the eigenvalue Ej, we have, after an
integration by parts,

[, vei@ v+ | Verg@eis = Bl (a1)

Again, we may take the limit j — oo on both sides and pass the limit inside the integral. We obtain,
|, Vo) Vintoyte + || V@@l = B -0, (42)

Comparing with (40) we see that each ¢; = 0. The claim follows. O

Let us now prove some elementary properties of the eigenfunctions:

Lemma 4. Consider our sequence of eigenvalues Ey < Fj... and our sequence of orthonormal eigen-
functions ¥g,1.... Then each eigenvalue has finite multiplicity. That is any number Ei < 0 occurs
only finitely many times in our list of eigenvalues. Furthermore, let v be any H' function satisfying
(87) with eigenvalue Ey. Then v is a linear combination of the eigenfunctions that have an eigenvalue
equal to EY.
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Proof. Assume that there is some Fj, that occurs in our list of eigenvalues infinitely many times with
E; <0 (ie., Ex = Ex11 = ...). By the theorem just proved, there are then infinitely many orthonormal
eigenfunctions v, j > k, each with eigenvalue F; = E}. Since any sequence of orthonormal functions
converges weakly to 0 in L?, we have that ; — 0 in L2

By Lemma 1 the H! norms of the ;s are uniformly bounded, and so we may pass to a subsequence
converging weakly in H'. But this subsequence must have the same weak limit in L? as the entire
sequence does, so this subsequence, which we continue denote by ;, must converge to 0 weakly in
H'. By Lemma 2 we must have that lim; ., Vi, = 0. But,

0> FE, = jll»Holo E(y;) = jlinolo (ij + ij) = 0. (43)

we therefore have a contradiction and the first claim is proven.

Let now ¢ be an H!(R3) function satisfying the TISE with eigenvalue Ej < 0. Say that Ej has
multiplicty [, so that g, ..., ¥r1;—1 are the [ orthonormal eigenfunctions with eigenvalue E;. WLOG,
assume that Ex_; < Ej. Let ¢; be a sequence of C*(R?) functions converging to ¢; in H' norm,
with i < k. Since 9 satisfies the TISE with eigenvalue Fj we have that

Ei(¢,4;) = lim Ei(¢, ¢;) = lim Vi(z) - Vo,(x) dz +J V(z)y(x)p;(x)de
Jﬁw J"w ]R3 ]R3

JRS Vi (x) - Vipi(x) do + J V(z)y ()i (x)d. (44)

R3

The integration by parts and passing the limits through the integrals is justifed by the same argument
appearing in Lemma 3. However, since 1); satisfies the TISE with eigenvalue F;, the same argument
shows that

Bi) = | Vi) Vista) do+ | Vi)ila)i(o)da, (45)
R3 R3
Since E; # Fy, (¢,4;) = 0. Therefore ¢ is orthogonal to each t;, with ¢ < k. Assume that

P(zx) — Zfi,i_l(i/)i, P)1i(z) is not the 0 function (if it is, then we are done - note that this the sum is
just the projection of ¢ onto the eigenspace of E}). Let now,

) = @) = BT e v)i@)
o) - S5 e 0]

Then QZ is a normalized wave function that is orthogonal to each ;, for i < k + 1 — 1. Therefore,
E() = Exy1 > Er. However, ¢ clearly satisfies the TISE with eigenvalue Ej and so by Lemma 3,

~

E(y) = Ej. This is a contradiction, and so

(46)

k+l-1
W)= Y] (Wi i) (47)
i=k

|
With a bit more work regarding defining the operator —A + V as an unbounded operator on L?,
what we have proven can be turned into a statement about its spectrum. What we have shown is
that the spectrum of —A + V that lies below 0 consists purely of eigenvalues. The general picture is

that above 0 one expects continuous spectrum which is related to scattering.

2. LIEB-THIRRING INEQUALITIES

We turn now to a slightly different, however related, topic regarding the operator —A + V', specif-
ically that of bounds on large sums of its negative eigenvalues. We begin with a heuristic discussion
which will hopefully motivate the topic. The semiclassical approach to quantum mechanics goes back
to some of the earliest days of its development. The main idea was to literally quantize the classical
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phase space (i.e. the 2d-dimensional space consisting of pairs (p, x), with p the momentum of a particle
in n dimensions and x its position) by saying that every allowed unit of (27)™ of phase space volume
can support a single quantum state.

This prescription allows one to ’calculate’ the number of negative eigenvalues by integration as
follows:

NIEL~ @07 [ 6 - Via)dnda. (48)

Here, O(t) is the step function which is 0 for ¢ < 0 and 1 otherwise. The heuristic justification of
(48) is as follows. The RHS is the volume of phase space where the classical energy of the particle,
p? + V(x), is negative. Dividing this volume by the normalization (27)™ we obtain the number of
quantum states that this part of phase space can support. This is equal to the LHS, the number of
nonpositive eigenvalues (here 0° = 1).

It is easy to do the p integral first; for every fixed z, the p integration just gives the volume of
the d dimensional ball of radius 4/V_(z), where V_(z) = max{0,—V(z)} is the negative part of the
potential. Hence,

1 n/2
2LIEl = (4m)"20(n/2 + 1) JRn V-(a)"*dz. (49)

J

Above, T'(t) is the gamma function. One can go further and compute moments of the negative
eigenvalues, »;|E;|” for v > 0. Now every volume (2m)" of phase space where p? + V(x) <0
contributes |p? + V(x)|7 to this sum. By this reasoning,

SIEM~ [ V@) dpde, (50)
j p2+V(xz)<0

Again, one can do the p integration first and arrive at

MBI ~ L, f V_(z)"da, (51)
J R
where L?yl’n is the ’classical’ constant
R e oX
R7:|p|<1
I'(y+1)

T @) T (v + 14 n2) (52)

The interesting fact is that under suitable assumptions on V, the formula (51) is actually asymptoti-
cally correct in the semiclassical limit, where we scale V'— AV and send A — o (see Theorem 12.12
in [LL] for the case v = 1). In physics, this corresponds to taking the value of Planck’s constant
h— 0.

We will not be interested in this semiclassical limit, but we will be interested in whether or not
the equality in (51) can be turned into an inequality for the sums of moments of negative eigenvalues
which holds for any potential V. Our next theorem says that this can, in fact, be achieved. We record
here suitable assumptions on the potential V(x), which generalize the assumptions we made in the
case n = 3. ”Suitable assumptions” on V : R™ — R will from now on mean:

L"2(R™) + L®(R"), n >3,
Ve L1*E(R?) + L®(R?), n=2
LYRY) + L*®(RY), n=1

(53)

)
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Theorem 3. Fiz v > 0. Assume that the potential V. = V, — V_ satisfies (53) and that V_ €
L7+d/2(]R"), Let Ey < E1 < Es... be the negative eigenvalues, if there are any. Then, for suitable n,
there is a constant L, so that

SIS Lo | V() (54)

§=0

By suitable n, we mean that the inequality holds for the following pairs of v and n:

1
725 formn =1,
v>0 forn=2,
v=0 forn=3. (55)

For any other pair, there is a choice of potential V_ that violates (54). We can take the constants to
be

n+T(Y/2)* T(y+1+n/2), ifn>1,v>0
L'Yv" = (47[-)7”/2277 x orn = 177 = ]-7 (56)

V(v = 1/4), ifn=1~y>1/2

Note that our assumptions on the potential here are weaker than the assumptions of Theorem 2,
and so we are not guaranteed discrete spectra below 0. However, our definition of the eigenvalues is
still valid: we define inductively each higher eigenvalue only if the previous eigenvalues are achieved
by requiring that the functions we are minimizing over are orthogonal to the previous eigenfunctions.
Note, however, that through an application of the min-max principle (i.e., Theorem 12.1 in [LL]), it
is easy to see that the operator A + V' can only have eigenvalues below 0, by the assumptions on V_.

The proof of (54) in all cases except n > 3,7 = 0 and n = 1,7 = 1/2 is due to E.H. Lieb and
W. Thirring [LT]. The inequalities in the case of v = 0,n > 3 were proven independently in [C], [L]
and [R], each by completely different methods and are known as the CLR bounds (for an amusing
anecdote of B. Simon regarding the three almost simultaneuous proofs see [Si]. For a correction to
this anecdote see [SRY]). The proof in the case v = 1/2,n = 1 came much later in [1]. It is also one
of the few cases where the sharp constant is currently known [HLT].

It is an open (if not as active as it once was) area of research to compute the sharp constants in
(54). It is known in some cases that L. , = L,yln, while in other cases that L. , > Lfylyn. Unfortunately
the sharp constant is not known in the physically most interesting case, v = 1,n = 3. It is conjectured
that L1 3 = L1 3 [LT]. It is also known that for v <1, L, , > Lffl’n

2.1. The Birman-Schwinger Principle. Birman [B] and Schwinger [Sch] independently discovered
that the problem of computing the number of eigenvalues of —A + V' that lie below some number can
be recast as a problem of computing the number of eigenvalues of an integral kernal operator. For U >
0,U e L”Jr”/2 (R™) Consider the eigenvalue equation (—A —U)y = —FEvy with ¢ € HI(R”) and E > 0
Define ¢(z) = /U 1/} . Our eigenvalue equation then says that (—A + E)y = /U(z)p(x

or equlvalently, 1/) —-A —l— E)~'\/U(z)¢(z). Therefore if ¢(x) is an eigenvalue of —A+ E, then ¢)
satisfies

¢=Kg¢ (57)
where K (called the Birman-Schwinger kernal) is the integral kernal operator given by
1

Kg(z,y) =/U(x) Ul(y) (58)

“AvEY
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where (—A+E)~!(z,y) is the usual Green’s function for —A+F (i.e., the Yukawa potential). Explicity,

ﬂ(m,y) =Gp(z —vy),

* —n/2 _|'T|2

Gp(x)=| (4rt) exXp | —p— = Et| dt. (59)
0

Elementary properties of the Yukawa potential are proven in Theorem 6.23 of [LL]. We record here a

few facts that we will use in our study of the Birman-Schwinger kernel.

Proposition 1. The Yukawa potential Gg(x) is in LY(R™) if 1l < ¢g< w0 ifn=1,1<gq < o, if
n=2 orl<qg<n/(n=2)ifn>3.

If f € LP(R™) for some 1 < p < 0, then u(z) = Gg = f(z) € L*(R™) where, p < s < w ifn =1
;p<s<oowhenp>1landn=2;1<s<owwhenp=1andn=2;p<s<np/(n—2p) when
l<p<n/2andn>3;p<s< o whenp>n/2andn >3;1<s<n/(n—2) whenp =1 and
n > 3.

Lastly, the Fourier transform of Gg is given by
1

) = e B

(60)

We collect some elementary properties of the Birman Schwinger operator. Because we will not
provide proofs of the n = 1,7 = 1/2 and n > 3, = 0 cases of the LT inequalities (54), we will always
assume that v > 0 and if n = 1 that v > 1/2.

Lemma 5. The Birman-Schwinger operator is a bounded operator from Lo to Lo. It is positive; that
is, it satisfies (f,Kgf) = 0 for every f € L% It is compact; that is, if f; — f weakly in L*(R"),
then Kgf; — Kgf strongly in L*>(R™). It is monotonically decreasing in E; that is, if E < E', then
(f,Kpf)= (f,Kg ) for every f.

Remark. That Kg is compact actually follows from the fact that it is Schatten class; that is, for m
large enough, tr(Kg)™ < . The fact that this implies that Kg is compact requires quite a bit of
functional analysis machinery, and we will therefore look for a different proof of the compactness of
Kg.
Proof. Let us first prove boundedness. For any L?(R™) function f a straightforward calculation using
Holder’s inequality shows that /U f is in L"(R") with
2(y +n/2

- M (61)

1+~v+n/2

Furthermore, the L” norm of v/Uf is bounded by a constant times the L? norm of f. Note that
1 <r < 2. For L?(R") functions f and g,

(rg.0) = |

R™ xR™

F@)VU(2)Gp(z — y)g(y) VU (y)dady, (62)

if the functions on the RHS are integrable. However, Young’s inequality (Theorem 4.2 in [LL]) states

that,
f]Rn xRn

where 2/r+1/q = 2 and C a constant. It is straightforward but tedious to check that with r as in (61)
and ¢ as in Proposition 1 that this equality for 7 and ¢ can be satisfied. Since the L" norm of VU f is
bounded by a constant times the L? norm of f, we have f — (Kgg, f) is a bounded linear functional
on L? with norm less than a constant times the L? norm of g, and so the mapping ¢ — Kgg e L? is
bounded.

(F@VU@)(Gplx = y) (9u)VU(y)| dady < C[VTf

VUg| IGsl,  (63)

s
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Let us now prove positivity. First consider f € C®(R™). Then, by our assumptions on U, /U f €
L?*(R™), and by Proposition 1, Gg * (VUf) € L*(R"), and # denotes convolution as usual. By
Plancherel’s theorem,

(f.K5f) = (WUF,Cp s VUF) = (NUf, G =T ), (64)

with A denoting the Fourier transform of h. Because v/U f € L?(R") and because of the regularity on
G stated in Proposition 1 (i.e., which L? spaces G is in), we may apply Theorem 5.8 of [LL] to
turn the Fourier transform of a convolution into the product of the Fourier transforms:

Gp s VUf = GuvUF. (65)

Here, it is crucial which LP spaces our functions are in. Since the Fourier transform of Gg is positive
by Proposition 1, we have immediately by (64) and (65) that (f, Kgf) > 0 for f € CX(R™). By
density of C*(R") in L?(R"), positivity of Kg for general f € L?(R") follows immediately.

Additionally, monotonicity also follows immediately from the Fourier characterization of Gg. For if
E < E', then é;(k) > @(k) By our above argument, (f, Kgf) > (f, Kg/ f) for every f € C*(R™)
and by density this extends to all of L?(R"™).

Lastly, we prove compactness. We first comment that Corollary 1 holds for our U(x) because of
our (stronger) assumption that U € L™?*7(R"), even if n # 3 (Corollary 1 is stated only in the case
n = 3). The proof in the case n # 3 is identical and is the content of Theorem 11.4 in [LL]. We take
the result without proof.

Our claim will therefore follow if we can prove that f — Gg % v/Uf is a bounded mapping from
L?(R") to H'(R™). We already have argued that f — /Uf is a bounded mapping of L?(R") to
L™ (R™) with r as in (61). We therefore need only show that ¢ — G * g is a bounded mapping of
L"(R") into H'(R™). However, that Gg = g is in L?(R™) follows from Proposition 1 (again, this is
straightforward but tedious to check). By the Fourier characterization of H'(R") (see, e.g., Theorem
7.9 of [LL]) we need only prove that k‘@_*\g(k) e L*(R") (i.e., that its first derivative is square
integrable).

Again, the constant r and the regularity of Gg given in Proposition 1 are such that we may apply
Theorem 5.8 of [LL] to write

Gp *g(k) = Gu(k)g(k). (66)

Here, §(k) € L™ (R™), with ' the dual index to r (here, we are applying the L Fourier transform
which exists because r < 2). We have then that

HkG’E? gHz < (21)? fRn Mdk (67)

where we have used that k?/([27k]? + E) < (2m)?. By Hoélder’s inequality, the RHS is bounded above
by a power of the L norm of § times a constant. By Hausdorff-Young inequality (Theorem 5.7 in
[LL]), we have that ||g]|,, < C|g|, for a constant C. We therefore conclude that ¢ — Gg * g is indeed
a bounded linear map of L"(R") into H'(R™). This proves our claim. O

We have now characterized K as a compact and positive integral kernal operator on L?(R"). By
the spectral theorem, it therefore has a list of eigenvalues, where denote the jth eigenvalue of Kp
by )\%, which are nonnegative, decreasing in j, and converge to 0. With this in hand, we prove the
Birman-Schwinger principle:

Lemma 6. Let Ng(U) denote the number of eigenvalues of —A — U that are less than —E. Then
Ng(U) equals the number of eigenvalues of Kg that are greater than 1.



12 ELEMENTARY SPECTRAL THEORY OF SOME SCHRODINGER OPERATORS

Proof. We have already seen that every solution of the Schrodinger equation v gives rise to an eigen-
function ¢ = VU4 of the Birman Schwinger kernel. Note that ¢ cannot be 0. If it were, this would
imply that —Avy = —Et which is impossible for an H*(R") function. Now, if ¢ is an L?(R") function
satisfying Kp¢ = ¢, then we define ¢ = (—A + E)~'\/U¢. Our argument using the Fourier charac-
terization of G to prove compactness of the Birman-Schwinger kernel in the proof of Lemma 5 shows
that v is an H'(R") function. We have then

(~A+ E)p =VUp =VUKgp = Uy (68)

and so 9 is a solution of the Schrédinger equation with eigenvalue E. This one-to-one correspondence
between 1 and ¢ implies that the multiplicities of the eigenvalue —F of —A — U and the eigenvalue
1 of Kg are the same.

Since the Birman-Schwinger kernel is decreasing in F, we see that the function £ — )\%, the jth
eigenvalue of K, is monotonically decreasing. In particular, AL (the first and largest eigenvalue of
Kg) is a monotonically decreasing function of E. Now if E is very large, then every eigenvalue of Kg
will lie below 1 because Kg — 0 uniformly as E — oo (this follows from the Fourier characterization
of G used in the proof of Lemma 5) and we will also have that Ng(U) = 0 (our assumptions on U
imply that —A — U is bounded below - Lemma 1).

Now as we start to decrease E, eventually we will have AL, = 1 for some E, when AL crosses the
threshold 1. At this point, we have Ng(U) = 1 (by our one-to-one correspondence between ¢ and
described above) and there is precisely one eigenvalue of K above 1 (here we assume that the ground
state is unique - if it is not, then the first m functions £ — )\gﬂJ all cross 1 simultaneously and so
Ng(U) = m too). Now we continue to decrease E. Each time that, for some j, the function E — X\,
crosses the threshold 1, we get another eigenvalue of —A — U at this value —F and Ng(U) increases
by 1. On the other hand, everytime Ng(U) increases by 1, we get another eigenvalue of Kg, and by
monotonicty, this eigenvalue is larger than 1 for all larger E. This proves the claim. O
Remark. We have implicitly assumed that the functions £ — )\% are continuous in E. However it is
easy to see that this is the case. For 0 < ' < E’, we have from the Fourier representation of Gg, the
inequality 0 < K — Kp < [(E' — E)/E'| K. By the min-max principle (see, e.g., Thm 12.1 of [LL])
the eigenvalues of K differ from the corresponding eigenvalues of Kg/ by at most (E' — E)/E’ times
the norm of Kg. This proves continuity.

2.2. Proof of the LT inequalities (54). . By the min-max principle, the eigenvalues of —A + V
are all larger than the eigenvalues of —A — V_ so it is no loss of generality to assume that V = —V_.
We continue to denote U = V_.

Lemma 6 implies that

Np(U) < Ng™ =Y\, (69)

J
where the RHS is possibly co. The RHS is just the trace of (Kg)™. Note that (Kg)™ is perfectly
well defined as a (positive) operator through the functional calculus since Kg > 0. We therefore have

Np(U) < NI = e(VUGVU)™
< te(U)™2(Gp)™ (U)™?

f U(@)"Gp(0)de

(L. e [ voras )

Above we have used the operator trace inequality tr(B/2ABY2)™ < tr B™/2A™B™/? which holds for
positive A and B. A proof of this inequality is in [LS]. Since (I/)"™/?(Gg)™(U)™? is an integral kernel
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operator, its trace is just the integral over its diagonal entries, which we have applied in the third line.
The fourth line follows by the Fourier characterization of Gg in Proposition 1. The integral over k is
finite iff 2m > n, in which case it is equal to

1 - LM —=n/2) 1\,
J.. @ = 0 (M)

We wish to employ the bound (70). We write
a0
SB[ =7 | Ne@)ETaE, (72)
- 0
j

which follows by integration by parts and noting that the derivative of Ng(U) is just a sum of delta
functions at the numbers |E;|. We cannot however use (70) directly in (72) or we would be led to
a divergent integral. We instead note that Ng(U) < Ng/;((U — E/2)4) (where (2)4 := max{0, z}).
This follows from the fact that the number of eigenvalues for —A — U below —FE must be the same as
the number of eigenvalues below —FE/2 for —A — U + E/2, and so Ng(U) = Ng/,»(U — E/2). But by
the min-max principle deleting the positive part of the potential only decreases the eigenvalues and
$0 Ngjo(U — E/2) < Ngj3((U — E/2),). Using this bound in (72) and then using the bound (70) but
with (U — E/2), in place of U, we obtain

_n Dm—n/2) (® E\™ (E\ ™2 .
|E;|7 < (4m) ”/277f f Uxr) — = - deE"dE. (73)
; I I'(m) o Jrn 2),\2
We do the E-integration first. A computation shows

% 1
‘[ (A— E)SE'dE = AstHH! f (1 —y)*y'dy

0 0
= AT (s + DDt + 1) /T(s + t + 2) (74)
Therefore,
_ L'(m —n/2)T(—m + v + n/2)
Y n/29y y+n/2
Z|EJ\ < (4m)"V227ym TG i) . Ulz) dz. (75)

J

In order for the E-integration in (73) to be finite, we require —m + n/2 + v > 0. Recall that we also
require m > n/2. We therefore require v + n/2 > m > n/2.

By choosing m = (y +n)/2 when n > 1 or n = 1,7 > 1 and m = 1 for other cases, we obtain the
claims (54) except in the critical cases n > 3,y =0and n =1,y = 1/2. a

3. KINETIC ENERGY INEQUALITIES

We will now give a useful application of the LT inequalities (54). In the case v = 1 we have,

Z |Ej| < LLnJ V_(z)2dg. (76)
J

R

Our goal is to use (76) to obtain an upper bound on the kinetic energy of N quantum particles. More
precisely, let 1 € H'(RY™) be a function with L? norm 1. 1) is a wave function describing N quantum
particles and the function

py(x) = Z;JR(NM [Y(21, ..., )| ?d2y...day...dey (77)
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(where the hat indicates that d/x\l is omitted in the integration) is the probability density associated
with finding a particle at the point x € R™. The kinetic energy of the N particles is just the sum of
the kinetic energies of each of the individual particles:

Ty = EJ Ve, (21, ..., zx)|?dzy...dzy. (78)

The single particle density matrix associated with 1 is given by

(1) (z,2") Z Jw T1y ey Ti1, T ,...,xN)@/J(:cl,...,xi_l,x',...,:rN)d:rl...cT:r\i...de. (79)

It is easy to see that '71(11) is a positive integral kernal operator on L?(R") satisfying tr 715}1) = N. Its

largest eigenvalue is denoted ||*y$)\|oo. It is bounded above by N. If 4 is antisymmetric function (i.e.
1 describes fermions) then ||71(/,1)Hoc is less than 1.

With these definitions we can state the following fundamental kinetic energy inequality:

Theorem 4. With the kinetic energy and density defined above, the inequality (76) implies

K /
_ P
Tw ||7(1)Hp/p f Pw(f) dz (80)
where p =1+ n/2 (the power appearing in (76)) p' = p/(p—1) (the dual index to p) and K satisfying
(pL1n)" (P K)P = 1. (81)
Proof. Consider now the operator H = —A +V acting on H!(R"), i.e., single particle wave functions,

where V' is a potential to be determined. We then consider the N-body operator

N
Ky =) H (82)
i=1

with H; acting as H on the ith particle. With the aid of the one particle density matrix 'yfbl) we can

write
(b, Knv) = tr[Hy)]. (83)

Let us pause to comment on the above notation. Instead of worrying about defining —A as an
unbounded operator on a dense domain, we are interpreting the expectation (¢, Kn) by the formally
associated quadratic form, i.e.,

N
. Kn) =Tt Y [ V@dl(ar, o) Pdar..da. (34)
i=1 JRN"
Note that

Z JRM z) [ (z1, .., o) Pdey .. dey = J V(z)py(z)de (85)

n

For positive trace class operators A on L?(R"™) we interpret tr(HA) as follows. Since A has the
decomposition A = 3377 \ii(¢i, ) for orthonormal 1; € L?(R™) and positive \;, we can define

= Z A€ (i) (86)

with £(¢) as before. We define the trace wherever the RHS makes sense (in particular, whever the
sum is absolutely summable and every ¢; € H'(R™).)
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It is the content of Chapter 3 of [LS] that the equality (83) holds (see the footnote on page 45).
We now continue with the proof. The minimum of of tr [H A] over all positive trace-class operators
A with ||A]]e < ||7$)Hoo is clearly given by the sum of the negative eigenvalues of H times ||71(211)||00'

That is, the optimal choice of A is ||’y$) || times the projection onto the negative spectral subspace
of H. Therefore,

(¥ Kn) = Iy o 25 By (87)
j
We now apply (76):
Ty + J ) V(z)py(z)dz = (¢, Kyy) = _\|’be1)||ooL1,n JRH V_(2)Pda. (88)

We now make a choice for V. Let V(x) = —Cpy(2)/P~1 where C' > 0 is a constant to be determined.
We obtain the inequality

7,20 polaydo = oLinC” | puto)d. (39)

We know optimize over C' and choose C' = (pH'yS)HOOLLn)_p//P. This proves the claim. O
An interesting fact is that the kinetic energy inequality is equivalent to the LT inequality for v = 1.
This is captured by the following theorem:

Theorem 5. Suppose that (80) holds for every N particle wave function ¢ (for every N ), with the
constant K as in (81). Then (76) holds.

Proof. Let ¢ be the N particle wave function formed by the Slater determinant of the eigenfunctions
for the N lowest eigenvalues of —A + V. More precisely, if E; are the negative eigenvalues of —A +V
and (—A + V)’(/JJ = j¢j7 then

Y1, ) = (N) 72 det{yi ()} 1. (90)
It is straightforward to check that

N—-1
J;) E; =Ty, + JRH V(2)py(z)de. (91)

For v of this form, we have that H’yqul)Hoo < 1. Applying (80) we have

Ty + JW V(x)py(z)de = K pd,(x)P'dx - f [(pL1.) PV (2)][(pL1n) P py ()] dar

n

R

/ 1 /
=K | py@)Pde—— | [(pLin) Ppy(@)]? da
R™ P Jrn
1
- J [(pLyn) PV (@)]Pdz = —Ly. J V. (2)de. (92)
n R
The third equality comes from Holder’s inequality followed by ab < a?/p + b’ /p’. The equality comes
from the definition of the constants in 81. Taking N — oo yields the claim. g

What these two theorems show are that the inequalities (in the case of antisymmetric 1)

tr(—A V). f V_(z)Pdz (93)
and
N
(.3 -800) 2 K | pula)ds (94)
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are dual to each other, in the sense that the integrands on the RHS are a certain Legendre transform
of each other. The same holds for the LHS. For suitable convex functions, taking a double Legendre
transform reproduces the original function. Thus, Theorems 4 and 5 represent an attractive method
of computing sharp constants in the LT inequality in the physical case of interest, that is with v = 1.
If one can compute the sharp constant in the kinetic energy inequality (80), then one immediately
obtains the sharp constant in (76).
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