
ELEMENTARY SPECTRAL THEORY OF SOME SCHRÖDINGER OPERATORS

Abstract. We prove some elementary properties regarding Schrödinger operators of the form ´∆`

V . In particular we prove for a certain class of potentials V that the spectrum of ´∆` V has only

eigenvalues below 0. We also prove a basic Lieb-Thirring inequality for large sums of eigenvalues

for Schrödinger operators and show that this inequality is dual to a type of Sobolev inequality for

fermionic particles.

1. Solutions of the Schrödinger equation

The time independent Schrödinger equation (TISE) for a particle interacting with a potential V pxq

in Rn is given by

´∆ψpxq ` V pxqψpxq “ Eψpxq (1)

where ∆ is the (distributional) Laplacian. Here, V : Rn Ñ R is some real valued measureable

function. ψ is a wave function and the physical interpretation is that |ψpxq|2dx is the probability

density associated with finding a particle at the point x. We therefore require the normalization

condition,

}ψ}2 “ 1, (2)

with }¨}p denoting the Lp norm on Rn as usual. We are interested in the eigenfunctions and eigenvalues

for which (1) holds. Formally associated with the equation (1) and the operator´∆`V is the quadratic

form given by

Epψq “ Tψ ` Vψ (3)

where

Tψ “

ż

Rn

|∇ψpxq|2dx, Vψ “

ż

Rn

V pxq|ψpxq|2dx. (4)

Physically, Tψ is the kinetic energy of the particle, and Vψ is the potential energy. One of our tasks

is to find a class of wave functions and assumptions on V so that the above definitions make sense.

It is natural to assume that ψ has finite kinetic energy, i.e., that ψ P H1pRnq, where H1pRnq is the

space of square integrable wave functions with square integrable weak first derivatives. We will later

see that in the case n “ 3, a suitable assumption on the potential is that V P L3{2pR3q ` L8pR3q.

Supposing that the definition of Epψq makes sense, we define the ground state energy

E0 “ inf
 

Epψq : }ψ}2 “ 1, ψ P H1pRnq
(

. (5)

We would also like to find assumptions under which E0 ą ´8. Minimizers of Epψq, i.e. functions

ψ0 so that Epψ0q “ E0 will turn out to be solutions to (1) with eigenvalue E0. We will also define

and investigate higher eigenvalues and obtain a complete description of the part of the spectrum of

´∆`V (under suitable assumptions on V ) that lies below 0. Note that physically the negative part of

the spectrum corresponds to bound states. They are stationary with respect to the dynamics induced

by the semigroup tÑ eitp´∆`V q. However, this is unimportant for us and we will not mention this in

the remainder of the paper.

From now on we will consider the physical case n “ 3. We comment that the situations for n ą 3

are relatively similar to the situation described below, as the nature of the Sobolev inequalities in

dimensions n ľ 3 are similar. Similar statements for n “ 1 and n “ 2 can be made, and in general,
1
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less regularity can be assumed on the potentials. In n “ 1, the potential can be any bounded Borel

measure.

Lemma 1. Let Epψq be as in (3) and assume that the potential satisfies V pxq P L3{2pR3q ` L8pR3q.

Then there exists a constant C so that @ψ P H1pR3q,

Epψq ľ 1

2
Tψ ´ C }ψ}2 (6)

Proof. For ψ P H1pR3q the Sobolev inequality

ż

R3

|∇ψpxq|2dx ľ S3

ˆ
ż

R3

|ψpxq|6dx

˙1{3

(7)

holds, with S3 “ 3p2π3q2{3{4. By assumption, we can write V pxq “ wpxq ` hpxq with w P L3{2pR3q

and h P L8pR3q. Define for λ ą 0,

wλpxq “

#

wpxq, |wpxq| ĺ λ

0, else.
(8)

By dominated convergence, limλÑ8 }w ´ wλ}3{2 “ 0. Since V pxq “ pwpxq ´wλpxqq ` pwλpxq ` hpxqq,

for any δ ą 0 we can write V pxq “ vδpxq ` vpxq, where }vδ}3{2 ă δ and v P L8pR3q. Take δ “ S3{2.

Then,

|Vψ| ĺ

ż

R3

|vδpxq||ψpxq|
2dx`

ż

R3

|vpxq||psipxq|2dx

ĺ

ˆ
ż

R3

|vδpxq|
3{2dx

˙2{3 ˆż

R3

|ψpxq|6dx

˙1{3

` }v}8 }ψ}
2
2

ĺ
1

2
Tψ ` }v}8 }ψ}

2
2 . (9)

In the second line we have applied Hölder’s inequality. In the last line we have applied the Sobolev

inequality (7) and our bound on the L3{2 norm of vδ. Note that the above argument also shows that

under the assumption that V pxq P L3{2pR3q ` L8pR3q, the function ψ Ñ Vψ is well defined whenever

ψ P H1pR3q. Therefore,

Epψq “ Tψ ` Vψ ľ Tψ ´ |Vψ| ľ
1

2
Tψ ´ }v}8 }ψ}

2
2 . (10)

�
In particular, Lemma 1 implies that E0 ą ´8. We will now turn to establishing the existence of a

minimizer ψ0. The main technical element is the following, in which we establish weak semicontinuity

of the potential.

Lemma 2. Assume the potential V P L3{2pR3q ` L8pR3q. Additionally, assume that V vanishes at

infinity, that is, for any a ą 0,

|tx : |V pxq| ą au| ă 8, (11)

where | ¨ | denotes the Lebesgue measure of a set. Then the function ψ Ñ Vψ is weakly (sequentially)

continuous on H1pR3q. That is, if ψj á ψ in H1pR3q, then Vψj
Ñ Vψ.

Proof. Let ψj á ψ in H1pR3q. By the uniform boundedness principle and the fact that H1pR3q is a

Hilbert space the H1pR3q norms of the ψj are uniformly bounded. For δ ą 0, define

Vδpxq “

#

V pxq, |V pxq| ĺ δ´1

0, else.
(12)
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Note that limδÑ0 }V ´ Vδ}3{2 “ 0. Since,

|Vψj ´ Vψ| ĺ

ż

R3

|Vδpxq ´ V pxq||ψjpxq|
2dx`

ż

R3

|Vδpxq ´ V pxq||ψ|
2dx`

ż

R3

|Vδpxq|
ˇ

ˇ|ψj |
2 ´ |ψ|2

ˇ

ˇdx

ĺ }Vδ ´ V }3{2 2S3 ˆ sup
j
}ψj}H1 `

ż

R3

|Vδpxq|
ˇ

ˇ|ψjpxq|
2 ´ |ψpxq|2

ˇ

ˇdx, (13)

we have that

lim sup
jÑ8

|Vψj
´ Vψ| ĺ Cδ ` lim sup

jÑ8

ż

R3

|Vδpxq|
ˇ

ˇ|ψjpxq|
2 ´ |ψpxq|2

ˇ

ˇdx, (14)

where Cδ is a constant independent of j that goes to 0 as δ Ñ 0. Note we have used that }ψ}H1 ĺ

supj }ψj}H1 . We are therefore left with proving that for any δ ą 0, lim supjÑ8
ş

R3 |Vδpxq|
ˇ

ˇ|ψjpxq|
2 ´

|ψpxq|2
ˇ

ˇdx “ 0.

Let ε ą 0, and define Aε “ tx : |Vδ| ą εu. By our assumptions on V we have |Aε| ă 8. By

Theorem 8.6 of [LL], we have ψj Ñ ψ strongly in LrpAεq, for 2 ĺ r ă 6 (this follows from the fact

that ψj á ψ in H1pR3q and Aε is of finite measure). By the elementary inequality,
ˇ

ˇ|ψj |
2 ´ |ψ|2

ˇ

ˇ “ ||ψj | ´ |ψ|| ˆ ||ψj | ` |ψ|| ĺ |ψj ´ ψ| ˆ ||ψj | ` |ψ||, (15)

we have that |ψj |
2 Ñ |ψ|2 strongly in Lr{2pAεq. Let 1 ĺ s ĺ 8 be a number so that 1{s ` 2{r “ 1.

Since Vδ P L
8pR3q, we have that Vδ P L

spAεq. It follows that,
ż

R3

|Vδpxq|
ˇ

ˇ|ψjpxq|
2 ´ |ψpxq|2

ˇ

ˇdx ĺ

ż

Aε

|Vδpxq|
ˇ

ˇ|ψjpxq|
2 ´ |ψpxq|2

ˇ

ˇdx

`

ż

R3zAε

|Vδpxq|
ˇ

ˇ|ψjpxq|
2 ´ |ψpxq|2

ˇ

ˇdx

ĺ }Vδ}s
›

›|ψj |
2 ´ |ψ|2

›

›

2

r{2
` 2εˆ sup

j
}ψj}

2
2 (16)

In the last line we have applied Hölder’s inequality. Taking lim sup on both sides and then ε Ñ 0

yields the claim. �
We record here the following Corollary of the above proof, which will be useful later.

Corollary 1. Let U be a nonnegative potential satisfying the conditions of Lemma 2. Then, multipli-

cation by
?
Upxq is a compact operator from H1pR3q to L2pR3q. That is, if ψj á ψ weakly in H1pR3q,

then
?
Uψj Ñ

?
Uψ strongly in L2pR3q.

Proof. Applying the Sobolev and Hölder inequalities as before, we see that multiplication by
?
U is

indeed a bounded operator from H1pR3q to L2pR3q. To see that it is compact, we need to prove that

if ψj á ψ weakly then

lim
jÑ8

ż

R3

Upxq|ψjpxq ´ ψpxq|
2dx “ 0. (17)

However, this precisely the content of the proof of Lemma 2. �
We are now in position to prove the existence of a minimizer for Epψq.

Theorem 1. Let V pxq be a real valued function satisfying V P L3{2pR3q ` L8pR3q. Assume further-

more that V vanishes at infinity. Let Epψq “ Tψ ` Vψ as before and assume that

E0 “ inf
 

Epψq : ψ P H1pR3q, }ψ}2 “ 1
(

ă 0. (18)

Then there exists a ψ0 P H
1pR3q satisfying }ψ0}2 “ 1 and Epψ0q “ E0. Furthermore, ψ0 satisfies the

TISE,

´∆ψ0pxq ` V pxqψ0pxq “ E0ψpxq, (19)

in the sense of distributions.
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Proof. By Lemma 1, E0 ą ´8. Let ψj be a minimizing sequence of H1pR3q functions with }ψj}2 “ 1

so that Epψjq Ñ E0. By (6), the H1pR3q norms of the ψj are uniformly bounded, since the Epψjq are

a converging sequence of real numbers. Since H1pR3q is weakly compact, there exists a subsequence,

which we continue to denote by ψj , that converges weakly to some H1pR3q function ψ0. By the fact

that norms are weakly lower semicontinuous,

lim inf
jÑ8

ż

R3

|ψjpxq|
2dx ľ

ż

R3

|ψ0pxq|
2dx (20)

lim inf
jÑ8

ż

R3

|∇ψjpxq|2dx ľ

ż

R3

|∇ψ0pxq|
2dx. (21)

By (20), }ψ0}2 ĺ 1. By (21) and Lemma 2 the function ψ Ñ Epψq is weakly lower semicontinuous,

i.e.,

lim inf
jÑ8

Epψjq ľ lim inf
fÑ8

Tψj
` lim inf

jÑ8
Vψj

ľ Tψ0
` Vψ0

“ Epψ0q. (22)

Therefore, E0 ľ Epψ0q. Since E0 ă 0 by assumption, ψ0 cannot be the zero function, i.e., }ψ0}2 ą 0.

We have

0 ą E0 ľ Epψ0q “ E pψ0{ }ψ0}2q }ψ0}
2
2 ľ E0 }ψ0}

2
2 , (23)

and so }ψ0}2 ľ 1. But since we already had that }ψ0}2 ĺ 1, we must have }ψ0}2 “ 1 and so

Epψ0q “ E0.

We now prove that ψ0 satisfies (19). For functions H1pR3q functions φ and ϕ define

Epφ, ϕq “
ż

R3

Ď∇φpxq ¨∇ϕpxqdx`
ż

R3

V pxqsφpxqϕpxqdx. (24)

Obviously, Epφ, ϕq is well defined and Epψ,ψq “ Epψq. Let ε ą 0 and f P C8c pR3q any infinitely

differentiable function of compact support. Let ψεpxq “ ψ0pxq ` εfpxq. Define for ε small enough the

function,

Rpεq “
Epψεq
pψε, ψεq

“
Epψ0q ` εEpψ0, fq ` εEpf, ψ0q ` ε

3Epf, fq
pψ0, ψ0q ` εpψ0, fq ` εpf, ψ0q ` ε2pf, fq

, (25)

where p¨, ¨q is the inner product on L2pR3q. Clearly Rpεq is differentiable at ε “ 0 and since ψ0 is a

minimizer, the derivative must be 0 there. We compute,

0 “
d

dε
Rpεq

ˇ

ˇ

ˇ

ˇ

ε“0

“ Epψ0, fq ` Epf, ψ0q ´ Epψ0q rpψ0, fq ` pf, ψ0qs (26)

Integrating by parts we have

p´∆f ` V f, ψ0q ` pψ0,´∆f ` V fq “ E0 rpf, ψ0q ` pψ0, fqs . (27)

Because we take f to be purely imaginary or purely real, we see that the real and imaginary parts of

ψ0 satisfy the TISE separately, and therefore all of ψ0 satisfies the TISE. �
We have shown that minimizers of the functional Epφq satisfy the TISE. The converse also holds:

Lemma 3. Let the potential V be as in Theorem 1, and let ψ P H1pR3q satisfy

´∆ψpxq ` V pxqψpxq “ Eψpxq (28)

in the sense of distributions for E P R. Then,

Epψq “ E }ψ}
2
2 (29)

In particular, if ψ satisfies (28) with eigenvalue E0, then ψ minimizes the functional Epφq.
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Proof. Let φj be a sequence of C8c pR3q functions converging to ψ in H1pR3q norm. By the Sobolev

inequalities they also converge in L6pR3q norm. For every j we have by taking the conjugate of (28),

´

ż

R3

sψpxq∆φjpxqdx`

ż

R3

V pxq sψpxqφjpxqdx “ E

ż

R3

sψpxqφjpxqdx. (30)

Let us take j Ñ8 on both sides. Integrating by parts (which we may do because ψ is an H1 function)

we obtain

lim
jÑ8

´

ż

R3

sψpxq∆φjpxqdx “ lim
jÑ8

ż

R3

∇ sψpxq ¨∇φjpxqdx “
ż

R3

|∇ψpxq|2dx. (31)

The last equality follows from Cauchy-Schwarz. Also by Cauchy-Schwarz, limÑ8pψ, φjq “ pψ,ψq.

Let V pxq “ wpxq ` hpxq, with w P L3{2pR3q and h P L8pR3q. By Hölder’s inequality,
ˇ

ˇ

ˇ

ˇ

ż

R3

V pxq sψpxqφjpxqdx´

ż

R3

V pxq|ψpxq|2dx

ˇ

ˇ

ˇ

ˇ

ĺ }w}3{2 }ψ}6 }ψ ´ φj}6 ` }h}8 }ψ}2 }ψ ´ φj}2 (32)

Therefore,

E }ψ}
2
2 “ lim

jÑ8
Epψ, φjq “ lim

jÑ8
´

ż

R3

sψpxq∆φjpxqdx`

ż

R3

V pxq sψpxqφjpxqdx “ Epψq. (33)

�
Remark. We did not require that V vanishes at infinity.

We have shown that under suitable assumptions on V that the ground state energy E0 is attained

if it is negative. We would now like to turn to the definition of higher eigenvalues. Before, doing so we

should make a comment on our choice of terminology. In the remainder of the paper, we will use the

term orthogonal to refer to two functions that are orthogonal in L2pR3q, even though the Hilbert

space we are considering is H1pR3q. We will also use orthonormal to denote a set of functions which

are pairwise orthogonal in L2pR3q and have L2pR3q norms equal to 1.

Let us now proceed with our discussion of higher eigenvalues. We define the first higher eigenvalue

as

E1 “ inf
 

Epψq : ψ P H1pR3q, }ψ}2 “ 1, pψ0, ψq “ 0
(

. (34)

Again, p¨, ¨q is the inner product on L2pR3q. We are minimizing the functional Epψq over the part of

L2pR3q that is orthogonal to the minimizer ψ0. This leads us to a natural inductive definition. If the

eigenvalue E1 is attained by some function ψ1 (that is normalized to have L2 norm 1 and is orthogonal

to ψ0), then we can define the second higher eigenvalue E2 by the same formula as in (34) but also

require that the functions are orthogonal to ψ1. If this eigenvalue is attained, then we can define E3,

and so on and so forth.

To make this precise, suppose that the first k eigenvalues have been defined and are attained. What

we mean is that for each 0 ĺ j ĺ k there is an H1pR3q function ψj with }ψj}2 “ 1 so that pψj , ψlq “ 0

for any 0 ĺ l ă j, and Epψjq “ Ej where

Ej “ inf
 

Epψq : ψ P H1pR3q, }ψ}2 “ 1, pψl, ψq “ 0, 0 ĺ l ă j
(

. (35)

Then we define the pk ` 1qth eigenvalue Ek`1 by

Ek`1 “ inf
 

Epψq : ψ P H1pR3q, }ψ}2 “ 1, pψl, ψq “ 0, 0 ĺ l ă k ` 1
(

. (36)

We continue to define eigenvalues until one is not attained. If an eigenvalue Ek is not attained by

some wave function ψk with the required orthogonality properties, then we stop this definition.

Obviously we have E0 ĺ E1 ĺ ..... The following theorem says this process does not stop until we

hit Ek “ 0.
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Theorem 2. Let V be as in Theorem 1 and assume that the pk ` 1qth eigenvalue is negative. This

includes the assumption that the first k eigenfunctions exist and attain the first k eigenvalues. Then

the pk ` 1qth eigenfunction also exists and satisfies

´∆ψkpxq ` V pxqψkpxq “ Ekψkpxq (37)

in the sense of distributions (note that the pk` 1qth eigenvalue is Ek since the first eigenvalue is E0).

Proof. The proof is nearly identical to that of Theorem 1. We take a minimizing sequence of nor-

malized H1 functions φj so that Epφjq Ñ Ek. By Lemma 1 the H1 norms of the φl’s are bounded

and so we extract a subsequence (which we continue to denote by φj) converging weakly to some ψk.

The same argument of Theorem 1 shows us that Ek “ Epψkq and }ψk}2 “ 1 if we can show that ψk
is orthogonal to each ψj , 0 ĺ i ă k. But ψ Ñ pψi, ψq defines a linear functional on H1pR3q and so

0 “ limjÑ8pψi, φjq “ pψi, ψkq.

Let us now prove that (37) holds. Let f P C8c pR3q be a function so that pf, ψiq “ 0, for 0 ĺ i ă k. As

in the proof of Theorem 1, define for ε small enough the function εÑ Rpεq “ Epψk` εfq{ }ψk ` εf}22.

Arguing as in Theorem 1 by evaluating the derivative of Rpεq at ε “ 0, we see that the distribution

D :“ p´∆` V ´Ekqψk satisfies Dpfq “ 0 for every C8c pR3q that is orthogonal to every ψi, for i ă k.

It follows from Theorem 6.14 in [LL] that

D “
k´1
ÿ

i“0

ciψi, (38)

where c0, ..., ck´1 are constants. We would like to show that every constant cl is 0. Let φj be a

sequence of C8c pR3q functions converging to ψl in H1 norm, for some l ă k. Taking the conjugate of

D, we have

k´1
ÿ

i“1

pψi, φjq “

ż

R3

∇Ďψkpxq ¨∇φjpxqdx`
ż

R3

V pxqĎψkpxqφjpxqdx´ Ekpψk, φjq. (39)

Above, we have integrated by parts which is justifed because ψk P H
1pR3q. Let us take j Ñ 8 on

both sides. The same arguments that appear in Lemma 3 show that we can pass the limit inside the

integral on both sides of the above equality. We obtain

cl “

ż

R3

∇Ďψkpxq ¨∇ψlpxqdx`
ż

R3

V pxqĎψkpxqψlpxqdx (40)

by the orthogonality of ψi’s. Let now ϕj be a sequence of C8c pR3q functions converging to ψk in

H1 norm. Since ψl satisfies the Schrödinger equation (37) with the eigenvalue El, we have, after an

integration by parts,
ż

R3

∇Ďϕjpxq ¨∇ψlpxqdx`
ż

R3

V pxqĎϕjpxqψlpxqdx “ Elpϕj , ψlq. (41)

Again, we may take the limit j Ñ8 on both sides and pass the limit inside the integral. We obtain,
ż

R3

∇Ďψkpxq ¨∇ψlpxqdx`
ż

R3

V pxqĎψkpxqψlpxqdx “ Elpψk, ψlq “ 0. (42)

Comparing with (40) we see that each cl “ 0. The claim follows. �
Let us now prove some elementary properties of the eigenfunctions:

Lemma 4. Consider our sequence of eigenvalues E0 ĺ E1... and our sequence of orthonormal eigen-

functions ψ0, ψ1.... Then each eigenvalue has finite multiplicity. That is any number Ek ă 0 occurs

only finitely many times in our list of eigenvalues. Furthermore, let ψ be any H1 function satisfying

(37) with eigenvalue Ek. Then ψ is a linear combination of the eigenfunctions that have an eigenvalue

equal to Ek.
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Proof. Assume that there is some Ek that occurs in our list of eigenvalues infinitely many times with

Ek ă 0 (i.e., Ek “ Ek`1 “ ...). By the theorem just proved, there are then infinitely many orthonormal

eigenfunctions ψj , j ľ k, each with eigenvalue Ej “ Ek. Since any sequence of orthonormal functions

converges weakly to 0 in L2, we have that ψj á 0 in L2.

By Lemma 1 the H1 norms of the ψj ’s are uniformly bounded, and so we may pass to a subsequence

converging weakly in H1. But this subsequence must have the same weak limit in L2 as the entire

sequence does, so this subsequence, which we continue denote by ψj , must converge to 0 weakly in

H1. By Lemma 2 we must have that limjÑ8 Vψj
“ 0. But,

0 ą Ek “ lim
jÑ8

Epψjq “ lim
jÑ8

`

Tψj
` Vψj

˘

ľ 0. (43)

we therefore have a contradiction and the first claim is proven.

Let now ψ be an H1pR3q function satisfying the TISE with eigenvalue Ek ă 0. Say that Ek has

multiplicty l, so that ψk, ..., ψk`l´1 are the l orthonormal eigenfunctions with eigenvalue Ek. WLOG,

assume that Ek´1 ă Ek. Let φj be a sequence of C8c pR3q functions converging to ψi in H1 norm,

with i ă k. Since ψ satisfies the TISE with eigenvalue Ek we have that

Ekpψ,ψiq “ lim
jÑ8

Ekpψ, φjq “ lim
jÑ8

ż

R3

∇ sψpxq ¨∇φjpxq dx`
ż

R3

V pxq sψpxqφjpxqdx

“

ż

R3

∇ sψpxq ¨∇ψipxq dx`
ż

R3

V pxq sψpxqψipxqdx. (44)

The integration by parts and passing the limits through the integrals is justifed by the same argument

appearing in Lemma 3. However, since ψi satisfies the TISE with eigenvalue Ei, the same argument

shows that

Eipψ,ψiq “

ż

R3

∇ sψpxq ¨∇ψipxq dx`
ż

R3

V pxq sψpxqψipxqdx. (45)

Since Ei ‰ Ek, pψ,ψiq “ 0. Therefore ψ is orthogonal to each ψi, with i ă k. Assume that

ψpxq ´
řk`l´1
i“k pψi, ψqψipxq is not the 0 function (if it is, then we are done - note that this the sum is

just the projection of ψ onto the eigenspace of Ek). Let now,

pψpxq “
ψpxq ´

řk`l´1
i“k pψi, ψqψipxq

›

›

›
ψpxq ´

řk`l´1
i“k pψi, ψqψipxq

›

›

›

2

(46)

Then pψ is a normalized wave function that is orthogonal to each ψi, for i ĺ k ` l ´ 1. Therefore,

Ep pψq ľ Ek`l ą Ek. However, pψ clearly satisfies the TISE with eigenvalue Ek and so by Lemma 3,

Ep pψq “ Ek. This is a contradiction, and so

ψpxq “
k`l´1
ÿ

i“k

pψi, ψqψipxq. (47)

�
With a bit more work regarding defining the operator ´∆ ` V as an unbounded operator on L2,

what we have proven can be turned into a statement about its spectrum. What we have shown is

that the spectrum of ´∆` V that lies below 0 consists purely of eigenvalues. The general picture is

that above 0 one expects continuous spectrum which is related to scattering.

2. Lieb-Thirring Inequalities

We turn now to a slightly different, however related, topic regarding the operator ´∆` V , specif-

ically that of bounds on large sums of its negative eigenvalues. We begin with a heuristic discussion

which will hopefully motivate the topic. The semiclassical approach to quantum mechanics goes back

to some of the earliest days of its development. The main idea was to literally quantize the classical
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phase space (i.e. the 2d-dimensional space consisting of pairs pp, xq, with p the momentum of a particle

in n dimensions and x its position) by saying that every allowed unit of p2πqn of phase space volume

can support a single quantum state.

This prescription allows one to ’calculate’ the number of negative eigenvalues by integration as

follows:
ÿ

j

|Ej |
0 « p2πq´n

ż

RnˆRn

Θp´p2 ´ V pxqqdpdx. (48)

Here, Θptq is the step function which is 0 for t ă 0 and 1 otherwise. The heuristic justification of

(48) is as follows. The RHS is the volume of phase space where the classical energy of the particle,

p2 ` V pxq, is negative. Dividing this volume by the normalization p2πqn we obtain the number of

quantum states that this part of phase space can support. This is equal to the LHS, the number of

nonpositive eigenvalues (here 00 “ 1).

It is easy to do the p integral first; for every fixed x, the p integration just gives the volume of

the d dimensional ball of radius
a

V´pxq, where V´pxq “ maxt0,´V pxqu is the negative part of the

potential. Hence,

ÿ

j

|Ej |
0 “

1

p4πqn{2Γpn{2` 1q

ż

Rn

V´pxq
n{2dx. (49)

Above, Γptq is the gamma function. One can go further and compute moments of the negative

eigenvalues,
ř

j |Ej |
γ for γ ľ 0. Now every volume p2πqn of phase space where p2 ` V pxq ă 0

contributes |p2 ` V pxq|γ to this sum. By this reasoning,

ÿ

j

|Ej |
γ «

ż

p2`V pxqă0

|p2 ` V pxq|γdpdx. (50)

Again, one can do the p integration first and arrive at

ÿ

j

|Ej |
γ « Lcl

γ,n

ż

Rn

V´pxq
γ`n{2dx, (51)

where Lcl
γ,n is the ’classical’ constant

Lcl
γ,n “ p2πq

´n

ż

Rn:|p|ĺ1

p1´ p2qγdp

“
Γpγ ` 1q

p4πqn{2Γpγ ` 1` n{2q
. (52)

The interesting fact is that under suitable assumptions on V , the formula (51) is actually asymptoti-

cally correct in the semiclassical limit, where we scale V Ñ λV and send λÑ 8 (see Theorem 12.12

in [LL] for the case γ “ 1). In physics, this corresponds to taking the value of Planck’s constant

~Ñ 0.

We will not be interested in this semiclassical limit, but we will be interested in whether or not

the equality in (51) can be turned into an inequality for the sums of moments of negative eigenvalues

which holds for any potential V . Our next theorem says that this can, in fact, be achieved. We record

here suitable assumptions on the potential V pxq, which generalize the assumptions we made in the

case n “ 3. ”Suitable assumptions” on V : Rn Ñ R will from now on mean:

V P

$

’

’

&

’

’

%

Ln{2pRnq ` L8pRnq, n ľ 3,

L1`εpR2q ` L8pR2q, n “ 2,

L1pR1q ` L8pR1q, n “ 1

(53)
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Theorem 3. Fix γ ľ 0. Assume that the potential V “ V` ´ V´ satisfies (53) and that V´ P

Lγ`d{2pRnq. Let E0 ă E1 ĺ E2... be the negative eigenvalues, if there are any. Then, for suitable n,

there is a constant Lγ,n so that

ÿ

jľ0

|Ej |
γ ĺ Lγ,n

ż

Rn

V´pxq
γ`n{2dx. (54)

By suitable n, we mean that the inequality holds for the following pairs of γ and n:

γ ľ
1

2
for n “ 1,

γ ą 0 for n “ 2,

γ ľ 0 for n “ 3. (55)

For any other pair, there is a choice of potential V´ that violates (54). We can take the constants to

be

Lγ,n “ p4πq
´n{22γγ ˆ

$

’

’

&

’

’

%

pn` γqΓpγ{2q2Γpγ ` 1` n{2q, if n ą 1, γ ą 0

or n “ 1, γ ľ 1,
?
π{pγ2 ´ 1{4q, if n “ 1, γ ą 1{2

(56)

Note that our assumptions on the potential here are weaker than the assumptions of Theorem 2,

and so we are not guaranteed discrete spectra below 0. However, our definition of the eigenvalues is

still valid: we define inductively each higher eigenvalue only if the previous eigenvalues are achieved

by requiring that the functions we are minimizing over are orthogonal to the previous eigenfunctions.

Note, however, that through an application of the min-max principle (i.e., Theorem 12.1 in [LL]), it

is easy to see that the operator ∆` V can only have eigenvalues below 0, by the assumptions on V´.

The proof of (54) in all cases except n ľ 3, γ “ 0 and n “ 1, γ “ 1{2 is due to E.H. Lieb and

W. Thirring [LT]. The inequalities in the case of γ “ 0, n ľ 3 were proven independently in [C], [L]

and [R], each by completely different methods and are known as the CLR bounds (for an amusing

anecdote of B. Simon regarding the three almost simultaneuous proofs see [Si]. For a correction to

this anecdote see [SRY]). The proof in the case γ “ 1{2, n “ 1 came much later in [1]. It is also one

of the few cases where the sharp constant is currently known [HLT].

It is an open (if not as active as it once was) area of research to compute the sharp constants in

(54). It is known in some cases that Lγ,n “ Lcl
γ,n, while in other cases that Lγ,n ą Lcl

γ,n. Unfortunately

the sharp constant is not known in the physically most interesting case, γ “ 1, n “ 3. It is conjectured

that Lcl
1,3 “ L1,3 [LT]. It is also known that for γ ă 1, Lγ,n ą Lcl

γ,n.

2.1. The Birman-Schwinger Principle. Birman [B] and Schwinger [Sch] independently discovered

that the problem of computing the number of eigenvalues of ´∆`V that lie below some number can

be recast as a problem of computing the number of eigenvalues of an integral kernal operator. For U ľ

0, U P Lγ`n{2pRnq consider the eigenvalue equation p´∆´Uqψ “ ´Eψ with ψ P H1pRnq and E ą 0.

Define φpxq “
a

Upxqψpxq. Our eigenvalue equation then says that p´∆ ` Eqψpxq “
a

Upxqφpxq,

or equivalently, ψ “ p´∆ ` Eq´1
a

Upxqφpxq. Therefore if ψpxq is an eigenvalue of ´∆ ` E, then φ

satisfies

φ “ KEφ (57)

where KE (called the Birman-Schwinger kernal) is the integral kernal operator given by

KEpx, yq “
a

Upxq
1

´∆` E
px, yq

a

Upyq (58)



10 ELEMENTARY SPECTRAL THEORY OF SOME SCHRÖDINGER OPERATORS

where p´∆`Eq´1px, yq is the usual Green’s function for´∆`E (i.e., the Yukawa potential). Explicity,

1

´∆´ E
px, yq “ GEpx´ yq,

GEpxq “

ż 8

0

p4πtq´n{2exp

„

´|x|2

4t
´ Et



dt. (59)

Elementary properties of the Yukawa potential are proven in Theorem 6.23 of [LL]. We record here a

few facts that we will use in our study of the Birman-Schwinger kernel.

Proposition 1. The Yukawa potential GEpxq is in LqpRnq if 1 ĺ q ĺ 8 if n “ 1, 1 ĺ q ă 8, if

n “ 2, or 1 ĺ q ă n{pn “ 2q if n ľ 3.

If f P LppRnq for some 1 ĺ p ĺ 8, then upxq “ GE ˚ fpxq P L
spRnq where, p ĺ s ĺ 8 if n “ 1

; p ĺ s ĺ 8 when p ą 1 and n “ 2; 1 ĺ s ĺ 8 when p “ 1 and n “ 2 ; p ĺ s ĺ np{pn ´ 2pq when

1 ă p ă n{2 and n ľ 3; p ĺ s ĺ 8 when p ľ n{2 and n ľ 3; 1 ĺ s ĺ n{pn ´ 2q when p “ 1 and

n ľ 3.

Lastly, the Fourier transform of GE is given by

yGEpkq “
1

p2πkq2 ` E
(60)

We collect some elementary properties of the Birman Schwinger operator. Because we will not

provide proofs of the n “ 1, γ “ 1{2 and n ľ 3, γ “ 0 cases of the LT inequalities (54), we will always

assume that γ ą 0 and if n “ 1 that γ ą 1{2.

Lemma 5. The Birman-Schwinger operator is a bounded operator from L2 to L2. It is positive; that

is, it satisfies pf,KEfq ľ 0 for every f P L2. It is compact; that is, if fj á f weakly in L2pRnq,
then KEfj Ñ KEf strongly in L2pRnq. It is monotonically decreasing in E; that is, if E ă E1, then

pf,KEfq ľ pf,KE1fq for every f .

Remark. That KE is compact actually follows from the fact that it is Schatten class; that is, for m

large enough, trpKEq
m ă 8. The fact that this implies that KE is compact requires quite a bit of

functional analysis machinery, and we will therefore look for a different proof of the compactness of

KE .

Proof. Let us first prove boundedness. For any L2pRnq function f a straightforward calculation using

Hölder’s inequality shows that
?
Uf is in LrpRnq with

r “
2pγ ` n{2q

1` γ ` n{2
.. (61)

Furthermore, the Lr norm of
?
Uf is bounded by a constant times the L2 norm of f . Note that

1 ă r ă 2. For L2pRnq functions f and g,

pKEg, fq “

ż

RnˆRn

sfpxq
?
UpxqGEpx´ yqgpyq

?
Upyqdxdy, (62)

if the functions on the RHS are integrable. However, Young’s inequality (Theorem 4.2 in [LL]) states

that,
ż

RnˆRn

ˇ

ˇ

ˇ
p sfpxq

?
UpxqqpGEpx´ yqqpgpyq

?
Upyqq

ˇ

ˇ

ˇ
dxdy ĺ C

›

›

›

?
Uf

›

›

›

r

›

›

›

?
Ug

›

›

›

r
}GE}q (63)

where 2{r`1{q “ 2 and C a constant. It is straightforward but tedious to check that with r as in (61)

and q as in Proposition 1 that this equality for r and q can be satisfied. Since the Lr norm of
?
Uf is

bounded by a constant times the L2 norm of f , we have f Ñ pKEg, fq is a bounded linear functional

on L2 with norm less than a constant times the L2 norm of g, and so the mapping g Ñ KEg P L
2 is

bounded.
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Let us now prove positivity. First consider f P C8c pRnq. Then, by our assumptions on U ,
?
Uf P

L2pRnq, and by Proposition 1, GE ˚ p
?
Ufq P L2pRnq, and ˚ denotes convolution as usual. By

Plancherel’s theorem,

pf,KEfq “ p
?
Uf,GE ˚

?
Ufq “ p

z

?
Uf,

{

GE ˚
?
Ufq, (64)

with ph denoting the Fourier transform of h. Because
?
Uf P L2pRnq and because of the regularity on

GE stated in Proposition 1 (i.e., which Lq spaces GE is in), we may apply Theorem 5.8 of [LL] to

turn the Fourier transform of a convolution into the product of the Fourier transforms:

{

GE ˚
?
Uf “yGE

z

?
Uf. (65)

Here, it is crucial which Lp spaces our functions are in. Since the Fourier transform of GE is positive

by Proposition 1, we have immediately by (64) and (65) that pf,KEfq ľ 0 for f P C8c pRnq. By

density of C8c pRnq in L2pRnq, positivity of KE for general f P L2pRnq follows immediately.

Additionally, monotonicity also follows immediately from the Fourier characterization of GE . For if

E ă E1, then yGEpkq ľ yGE1pkq. By our above argument, pf,KEfq ľ pf,KE1fq for every f P C8c pRnq
and by density this extends to all of L2pRnq.

Lastly, we prove compactness. We first comment that Corollary 1 holds for our Upxq because of

our (stronger) assumption that U P Ln{2`γpRnq, even if n ‰ 3 (Corollary 1 is stated only in the case

n “ 3). The proof in the case n ‰ 3 is identical and is the content of Theorem 11.4 in [LL]. We take

the result without proof.

Our claim will therefore follow if we can prove that f Ñ GE ˚
?
Uf is a bounded mapping from

L2pRnq to H1pRnq. We already have argued that f Ñ
?
Uf is a bounded mapping of L2pRnq to

LrpRnq with r as in (61). We therefore need only show that g Ñ GE ˚ g is a bounded mapping of

LrpRnq into H1pRnq. However, that GE ˚ g is in L2pRnq follows from Proposition 1 (again, this is

straightforward but tedious to check). By the Fourier characterization of H1pRnq (see, e.g., Theorem

7.9 of [LL]) we need only prove that k {GE ˚ gpkq P L
2pRnq (i.e., that its first derivative is square

integrable).

Again, the constant r and the regularity of GE given in Proposition 1 are such that we may apply

Theorem 5.8 of [LL] to write

{GE ˚ gpkq “yGEpkqpgpkq. (66)

Here, pgpkq P Lr
1

pRnq, with r1 the dual index to r (here, we are applying the Lr Fourier transform

which exists because r ĺ 2). We have then that

›

›

›
k {GE ˚ g

›

›

›

2

2
ĺ p2πq2

ż

Rn

|pgpkq|
2

p2πkq2 ` E
dk (67)

where we have used that k2{pr2πks2`Eq ĺ p2πq2. By Hölder’s inequality, the RHS is bounded above

by a power of the Lr
1

norm of pg times a constant. By Hausdorff-Young inequality (Theorem 5.7 in

[LL]), we have that }pg}r1 ĺ C }g}r for a constant C. We therefore conclude that g Ñ GE ˚ g is indeed

a bounded linear map of LrpRnq into H1pRnq. This proves our claim. �
We have now characterized KE as a compact and positive integral kernal operator on L2pRnq. By

the spectral theorem, it therefore has a list of eigenvalues, where denote the jth eigenvalue of KE

by λjE , which are nonnegative, decreasing in j, and converge to 0. With this in hand, we prove the

Birman-Schwinger principle:

Lemma 6. Let NEpUq denote the number of eigenvalues of ´∆ ´ U that are less than ´E. Then

NEpUq equals the number of eigenvalues of KE that are greater than 1.
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Proof. We have already seen that every solution of the Schrödinger equation ψ gives rise to an eigen-

function φ “
?
Uψ of the Birman Schwinger kernel. Note that φ cannot be 0. If it were, this would

imply that ´∆ψ “ ´Eψ which is impossible for an H1pRnq function. Now, if φ is an L2pRnq function

satisfying KEφ “ φ, then we define ψ “ p´∆ ` Eq´1
?
Uφ. Our argument using the Fourier charac-

terization of GE to prove compactness of the Birman-Schwinger kernel in the proof of Lemma 5 shows

that ψ is an H1pRnq function. We have then

p´∆` Eqψ “
?
Uφ “

?
UKEφ “ Uψ (68)

and so ψ is a solution of the Schrödinger equation with eigenvalue E. This one-to-one correspondence

between ψ and φ implies that the multiplicities of the eigenvalue ´E of ´∆ ´ U and the eigenvalue

1 of KE are the same.

Since the Birman-Schwinger kernel is decreasing in E, we see that the function E Ñ λjE , the jth

eigenvalue of KE , is monotonically decreasing. In particular, λ1
E (the first and largest eigenvalue of

KE) is a monotonically decreasing function of E. Now if E is very large, then every eigenvalue of KE

will lie below 1 because KE Ñ 0 uniformly as E Ñ 8 (this follows from the Fourier characterization

of GE used in the proof of Lemma 5) and we will also have that NEpUq “ 0 (our assumptions on U

imply that ´∆´ U is bounded below - Lemma 1).

Now as we start to decrease E, eventually we will have λ1
E “ 1 for some E, when λ1

E crosses the

threshold 1. At this point, we have NEpUq “ 1 (by our one-to-one correspondence between φ and ψ

described above) and there is precisely one eigenvalue of KE above 1 (here we assume that the ground

state is unique - if it is not, then the first m functions E Ñ λjE all cross 1 simultaneously and so

NEpUq “ m too). Now we continue to decrease E. Each time that, for some j, the function E Ñ λjE
crosses the threshold 1, we get another eigenvalue of ´∆´ U at this value ´E and NEpUq increases

by 1. On the other hand, everytime NEpUq increases by 1, we get another eigenvalue of KE , and by

monotonicty, this eigenvalue is larger than 1 for all larger E. This proves the claim. �
Remark. We have implicitly assumed that the functions E Ñ λjE are continuous in E. However it is

easy to see that this is the case. For 0 ă E ĺ E1, we have from the Fourier representation of GE , the

inequality 0 ĺ KE ´KE1 ĺ rpE
1´Eq{E1sKE . By the min-max principle (see, e.g., Thm 12.1 of [LL])

the eigenvalues of KE differ from the corresponding eigenvalues of KE1 by at most pE1´Eq{E1 times

the norm of KE . This proves continuity.

2.2. Proof of the LT inequalities (54). . By the min-max principle, the eigenvalues of ´∆ ` V

are all larger than the eigenvalues of ´∆´ V´ so it is no loss of generality to assume that V “ ´V´.

We continue to denote U “ V´.

Lemma 6 implies that

NEpUq ĺ N
pmq
E :“

ÿ

j

pλjEq
m, (69)

where the RHS is possibly 8. The RHS is just the trace of pKEq
m. Note that pKEq

m is perfectly

well defined as a (positive) operator through the functional calculus since KE ľ 0. We therefore have

NEpUq ĺ N
pmq
E “ trp

?
UGE

?
Uqm

ĺ trpUqm{2pGEq
mpUqm{2

“

ż

Rn

UpxqmGEp0qdx

“

ˆ
ż

Rn

1

pp2πkq2 ` Eqm

˙
ż

Rn

Upxqmdx. (70)

Above we have used the operator trace inequality trpB1{2AB1{2qm ĺ trBm{2AmBm{2 which holds for

positive A and B. A proof of this inequality is in [LS]. Since pUqm{2pGEq
mpUqm{2 is an integral kernel
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operator, its trace is just the integral over its diagonal entries, which we have applied in the third line.

The fourth line follows by the Fourier characterization of GE in Proposition 1. The integral over k is

finite iff 2m ą n, in which case it is equal to
ż

Rn

1

pp2πkq2 ` Eqm
“ p4πq´n{2

Γpm´ n{2q

Γpmq
E´m`n{2. (71)

We wish to employ the bound (70). We write

ÿ

j

|Ej |
γ “ γ

ż 8

0

NEpUqE
γ´1dE, (72)

which follows by integration by parts and noting that the derivative of NEpUq is just a sum of delta

functions at the numbers |Ej |. We cannot however use (70) directly in (72) or we would be led to

a divergent integral. We instead note that NEpUq ĺ NE{2ppU ´ E{2q`q (where pzq` :“ maxt0, zu).

This follows from the fact that the number of eigenvalues for ´∆´U below ´E must be the same as

the number of eigenvalues below ´E{2 for ´∆´ U ` E{2, and so NEpUq “ NE{2pU ´ E{2q. But by

the min-max principle deleting the positive part of the potential only decreases the eigenvalues and

so NE{2pU ´E{2q ĺ NE{2ppU ´E{2q`q. Using this bound in (72) and then using the bound (70) but

with pU ´ E{2q` in place of U , we obtain

ÿ

j

|Ej |
γ ĺ p4πq´n{2γ

Γpm´ n{2q

Γpmq

ż 8

0

ż

Rn

ˆ

Upxq ´
E

2

˙m

`

ˆ

E

2

˙´m`n{2

dxEγ´1dE. (73)

We do the E-integration first. A computation shows

ż 8

0

pA´ Eqs`E
tdE “ As`t`1

ż 1

0

p1´ yqsytdy

“ As`t`1Γps` 1qΓpt` 1q{Γps` t` 2q (74)

Therefore,

ÿ

j

|Ej |
γ ĺ p4πq´n{22γγm

Γpm´ n{2qΓp´m` γ ` n{2q

Γpγ ` 1` n{2q

ż

Rn

Upxqγ`n{2dx. (75)

In order for the E-integration in (73) to be finite, we require ´m` n{2` γ ą 0. Recall that we also

require m ą n{2. We therefore require γ ` n{2 ą m ą n{2.

By choosing m “ pγ ` nq{2 when n ą 1 or n “ 1, γ ľ 1 and m “ 1 for other cases, we obtain the

claims (54) except in the critical cases n ľ 3, γ “ 0 and n “ 1, γ “ 1{2. �

3. Kinetic Energy Inequalities

We will now give a useful application of the LT inequalities (54). In the case γ “ 1 we have,

ÿ

j

|Ej | ĺ L1,n

ż

Rn

V´pxq
1`n{2dx. (76)

Our goal is to use (76) to obtain an upper bound on the kinetic energy of N quantum particles. More

precisely, let ψ P H1pRNnq be a function with L2 norm 1. ψ is a wave function describing N quantum

particles and the function

ρψpxq :“
n
ÿ

i“1

ż

RpN´1qn

|ψpx1, ..., xN q|
2dx1...ydxi...dxN (77)
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(where the hat indicates that xdxi is omitted in the integration) is the probability density associated

with finding a particle at the point x P Rn. The kinetic energy of the N particles is just the sum of

the kinetic energies of each of the individual particles:

Tψ “
N
ÿ

i“1

ż

RNn

|∇xiψpx1, ..., xN q|
2dx1...dxN . (78)

The single particle density matrix associated with ψ is given by

γ
p1q
ψ px, x1q “

N
ÿ

i“1

ż

ψpx1, ..., xi´1, x, ..., xN qψpx1, ..., xi´1, x
1, ..., xN qdx1...ydxi...dxN . (79)

It is easy to see that γ
p1q
ψ is a positive integral kernal operator on L2pRnq satisfying tr γ

p1q
ψ “ N . Its

largest eigenvalue is denoted ||γ
p1q
ψ ||8. It is bounded above by N . If ψ is antisymmetric function (i.e.

ψ describes fermions) then ||γ
p1q
ψ ||8 is less than 1.

With these definitions we can state the following fundamental kinetic energy inequality:

Theorem 4. With the kinetic energy and density defined above, the inequality (76) implies

Tψ ľ
K

||γ
p1q
ψ ||

p1{p
8

ż

Rn

ρψpxq
p1dx (80)

where p “ 1`n{2 (the power appearing in (76)) p1 “ p{pp´ 1q (the dual index to p) and K satisfying

ppL1,nq
p1pp1Kqp “ 1. (81)

Proof. Consider now the operator H “ ´∆`V acting on H1pRnq, i.e., single particle wave functions,

where V is a potential to be determined. We then consider the N -body operator

KN “

N
ÿ

i“1

Hi (82)

with Hi acting as H on the ith particle. With the aid of the one particle density matrix γ
p1q
ψ we can

write

pψ,KNψq “ tr
”

Hγ
p1q
ψ

ı

. (83)

Let us pause to comment on the above notation. Instead of worrying about defining ´∆ as an

unbounded operator on a dense domain, we are interpreting the expectation pψ,KNψq by the formally

associated quadratic form, i.e.,

pψ,KNψq “ Tψ `
N
ÿ

i“1

ż

RNn

V pxiq|ψpx1, ..., xN q|
2dx1...dxN . (84)

Note that
N
ÿ

i“1

ż

RNn

V pxiq|ψpx1, ..., xN q|
2dx1...dxN “

ż

Rn

V pxqρψpxqdx (85)

For positive trace class operators A on L2pRnq we interpret trpHAq as follows. Since A has the

decomposition A “
ř8

i“1 λiϕipϕi, ¨q for orthonormal ψi P L
2pRnq and positive λi, we can define

tr rHAs :“
8
ÿ

i“1

λiEpϕiq (86)

with Epφq as before. We define the trace wherever the RHS makes sense (in particular, whever the

sum is absolutely summable and every ϕj P H
1pRnq.)
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It is the content of Chapter 3 of [LS] that the equality (83) holds (see the footnote on page 45).

We now continue with the proof. The minimum of of tr rHAs over all positive trace-class operators

A with ||A||8 ĺ ||γ
p1q
ψ ||8 is clearly given by the sum of the negative eigenvalues of H times ||γ

p1q
ψ ||8.

That is, the optimal choice of A is ||γ
p1q
ψ ||8 times the projection onto the negative spectral subspace

of H. Therefore,

pψ,KNψq ľ ||γ
p1q
ψ ||8

ÿ

j

Ej . (87)

We now apply (76):

Tψ `

ż

Rn

V pxqρψpxqdx “ pψ,KNψq ľ ´||γ
p1q
ψ ||8L1,n

ż

Rn

V´pxq
pdx. (88)

We now make a choice for V . Let V pxq “ ´Cρψpxq
1{pp´1q where C ą 0 is a constant to be determined.

We obtain the inequality

Tψ ľ C

ż

Rn

ρψpxq
p1dx´ ||γ

p1q
ψ ||8L1,nC

p

ż

Rn

ρψpxq
p1dx. (89)

We know optimize over C and choose C “ pp||γ
p1q
ψ ||8L1,nq

´p1{p. This proves the claim. �
An interesting fact is that the kinetic energy inequality is equivalent to the LT inequality for γ “ 1.

This is captured by the following theorem:

Theorem 5. Suppose that (80) holds for every N particle wave function ψ (for every N), with the

constant K as in (81). Then (76) holds.

Proof. Let ψ be the N particle wave function formed by the Slater determinant of the eigenfunctions

for the N lowest eigenvalues of ´∆`V . More precisely, if Ej are the negative eigenvalues of ´∆`V

and p´∆` V qψj “ Ejψj , then

ψpx1, ..., xN q “ pN !q´1{2 dettψipxjqu
N
i,j . (90)

It is straightforward to check that

N´1
ÿ

j“0

Ej “ Tψ `

ż

Rn

V pxqρψpxqdx. (91)

For ψ of this form, we have that ||γ
p1q
ψ ||8 ĺ 1. Applying (80) we have

Tψ `

ż

Rn

V pxqρψpxqdx ľ K

ż

Rn

ρψpxq
p1dx´

ż

Rn

rppL1,nq
1{pV´pxqsrppL1,nq

´1{pρψpxqsdx

ľ K

ż

Rn

ρψpxq
p1dx´

1

p1

ż

Rn

rppL1,nq
´1{pρψpxqs

p1dx

´
1

p

ż

Rn

rppL1,nq
1{pV´pxqs

pdx “ ´L1,n

ż

Rn

V´pxq
pdx. (92)

The third equality comes from Hölder’s inequality followed by ab ĺ ap{p` bp
1

{p1. The equality comes

from the definition of the constants in 81. Taking N Ñ8 yields the claim. �
What these two theorems show are that the inequalities (in the case of antisymmetric ψ)

tr p´∆` V qĺ

ż

V´pxq
pdx (93)

and

pψ,
N
ÿ

i“1

´∆xiψq ľ K

ż

Rn

ρψpxq
p1dx (94)
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are dual to each other, in the sense that the integrands on the RHS are a certain Legendre transform

of each other. The same holds for the LHS. For suitable convex functions, taking a double Legendre

transform reproduces the original function. Thus, Theorems 4 and 5 represent an attractive method

of computing sharp constants in the LT inequality in the physical case of interest, that is with γ “ 1.

If one can compute the sharp constant in the kinetic energy inequality (80), then one immediately

obtains the sharp constant in (76).
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