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1. Introduction

The goal of this essay is to provide a proof of the uniformisation theorem. We closely follow
the approach taken in the last chapter of T. Gamelin’s Complex Analysis [3]. The main change
lies in the organisation of the material, since propositions that are not required for the proof of
the uniformisation theorem are omitted.
The Riemann mapping theorem states that any non-empty simply connected proper open

subset of the complex plane is conformally equivalent to the open unit disc. The uniformisation
theorem is a significant generalisation of the Riemann mapping theorem. It states that every
simply connected Riemann surface is conformally equivalent to the open unit disc, the complex
plane, or the Riemann sphere. The theorem was originally conjectured by Felix Klein in 1882.
It is said [1] that the theorem occurred to him at 2:30am while in the middle of an asthma
attack. Rigorous proofs were given by Paul Koebe and Henri Poincare in 1907.
The proof given here is centred around solving Laplace’s equation by using Perron’s method

and Green’s functions. The prerequisites are an undergraduate course in complex analysis and
point set topology. We assume the Riemann mapping theorem. The proof outline is as follows:

(1) Define harmonic and subharmonic functions on Riemann surfaces.
(2) Define a Perron family of subharmonic functions on a Riemann surface.
(3) Define a Green’s function on Riemann surface by taking the supremum of a certain Perron

family.
(4) Show that if a Green’s function exists on a Riemann surface R, then R can be conformally

mapped to the open unit disc via the Riemann mapping theorem.
(5) Define a bipolar Green’s function on a Riemann surface, and show that bipolar Green’s

functions exist for all Riemann surfaces.
(6) Use bipolar Green’s functions to show that if a Riemann surface R does not admit a

Green’s function, then R can be conformally mapped to either the complex plane or the Rie-
mann sphere.
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2. Review of Complex Analysis

Before launching into Riemann surfaces, we review some facts from undergraduate complex
analysis that will be used in the proof of the uniformisation theorem. No proofs will be provided
in this section.

A domain Ω ⊆ C is a connected open set. Recall that a function u(x, y) : Ω → R is
called harmonic if its first and second order partial derivatives exist and are continuous, and u
satisfies Laplace’s equation: ∆u = ∂2u

∂x2 +
∂2u
∂y2

= 0.

Example 2.1. It is a straight-forward calculation to check that f(z) = log |z| is a harmonic
function.

Proposition 2.1. (Poisson Integral) Let h(θ) be a continuous function defined on the bound-
ary of an open disc D of radius a > 0. Then the function u : D → R given by

u(r, θ) =
1

2π

∫ 2π

0

h(ϕ)
a2 − r2

a2 − 2ar cos(θ − ϕ) + r2
dϕ

is a harmonic function, and u extends to a continuous function on D that agrees with h on ∂D.

Definition 2.1. Let Ω be a domain in the complex plane. A continuous function u : Ω →
[−∞,∞) is subharmonic if for each z0 ∈ Ω, there exists an ε > 0 such that

u(z) ≤
1

2π

∫ 2π

0

u(z0 + reiθ)dθ

for all r ∈ (0, ε).

By evaluating the Poisson integral formula at the centre of a disc (after possibly translating
the origin), we see that every harmonic function is subharmonic.

Proposition 2.2. (Maximum Principle) Let u be a subharmonic function on a domain Ω.
If u attains a maximum at p ∈ Ω, then u ≡ const.

Proposition 2.3. Let u be a continuous function on a domain Ω. Then u is subharmonic if
and only if for all discs Br(z0) = {z ∈ C : |z − z0| < r} such that Br(z0) ⊂ Ω, and for all

harmonic functions v : Br(z0) → R, if u ≤ v on ∂B then u ≤ v on all of B.
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Proposition 2.4. If f : Ω → C is a holomorphic function defined on a domain Ω, then log |f(z)|
is a subharmonic function.

The Cauchy-Riemann equations yield a connection between harmonic functions and holomor-
phic functions, as shown by the two following propositions.

Proposition 2.5. Let V, U be open sets in C. If F : V → U is a holomorphic function and
u : U → R is harmonic, then u ◦ F is harmonic.

Before stating the next proposition, we must introduce some terminology. The same termi-
nology will be used for Riemann surfaces so we shall use definitions valid in general topological
spaces.

Let R be a topological space. A path in R from x0 ∈ R to x1 ∈ R is a continuous map
f : [0, 1] → R such that f(0) = x0 and f(1) = x1. We define a notion of equivalence be-
tween two paths with the same endpoints if one can be “dragged” onto the other while pinning
down the endpoints. More precisely, two paths f : [0, 1] → R and g : [0, 1] → R such that
f(0) = g(0) = x0 and f(1) = g(1) = x1 are path homotopic if there exists a continuous map
F : [0, 1]× [0, 1] → R such that

(1) F (t, 0) = f(t) and F (t, 1) = g(t) for all t ∈ [0, 1], and
(2) F (0, s) = x0 and F (1, s) = x1 for all s ∈ [0, 1].

A topological space R is path connected if for any two distinct points x0, x1 ∈ R, there is
a path from x0 to x1. A space R is simply connected if it is path connected, and any two paths
with the same starting and ending points are path homotopic. For the case when R is a domain
in C, we can intuitively think of R as simply connected when it has no holes.

Proposition 2.6. Let u be a real-valued harmonic function on a simply connected domain
Ω ⊆ C. Then there exists a holomorphic function F : Ω → C such that Re(F ) = u. Further-
more, the imaginary part of this function is uniquely determined up to an additive real constant.

Certain sequences of harmonic functions behave nicely and allow us to extract a subsequence
that converges to a harmonic function.

Proposition 2.7. Let {un} be a sequence of harmonic functions on Ω that is uniformly bounded
on each compact subset of Ω. Then {un} has a convergent subsequence that converges uniformly
to a harmonic function on each compact subset of Ω.
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Proposition 2.8. (Harnack’s Inequality) Let K be a compact subset of a domain Ω, and u
a non-negative harmonic function. There is a constant C > 1 such that

1

C
≤
u(x)

u(y)
≤ C

for all x, y ∈ K.

Proposition 2.9. (Harnack’s Principle) Let {un} be a pointwise increasing sequence of har-
monic function on a domain Ω. Then either un(x) → ∞ for all x ∈ Ω, or {un} converges
uniformly on compact subsets of Ω to a harmonic function.

Next, we state the monodromy theorem. This theorem allows us under certain conditions to
extend an analytic function from a subset of a simply connected domain Ω to all of Ω.

Theorem 2.1. (Monodromy Theorem) Let Ω ⊆ C be a simply connected domain. Suppose
f : Ω → C is analytic at z0, and it is possible to analytically extend f on any curve starting at
z0. Then for two paths γ1 and γ2 from z0 to z1, the analytic continuation of f along γ1 and γ2
yield the same value at z1.

Definition 2.2. Let U, V be open sets in C. A bijective holomorphic function f : U → V is
called conformal.

It turns out that if a bijective function is holomorphic, then its inverse is automatically holo-
morphic. For this reason, conformal maps between domains in the complex plane are sometimes
called biholomorphic.

Proposition 2.10. Let U, V be open sets in C, and let f : U → V be a bijective holomorphic
function. Then f−1 : V → U is a holomorphic function.

To conclude this section, we state the Riemann mapping theorem.

Theorem 2.2. (Riemann Mapping Theorem) Let Ω be a non-empty, simply connected
subset of C that is not the whole of C. Then there exists a conformal map from Ω to the open
unit disc.
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3. Riemann Surfaces

We explore the notion of a Riemann surface. Intuitively, it can be thought as a globally
curved version of the complex plane which, on a small enough scale, resembles a patch of the
complex plane.

First, we establish some terminology. Let R be a topological space. A chart (U, ϕ) is an
open set U in R together with a homeomorphism ϕ from U to an open set ϕ(U) ⊆ C.
Two charts (U, ϕ), (V, ψ) are compatible if either U ∩V = ∅, or if U∩V 6= ∅ and the transition

map ϕ ◦ ψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ) is analytic.
A collection of charts (Uα, ϕα) such that {Uα} forms an open covering of R and any two

charts are compatible is called an atlas. An atlas is called maximal if it is not contained in any
strictly larger atlas. In other words, given a chart in a maximal atlas, any other chart that is
compatible with the original chart is in the maximal atlas.
It is usually not convenient to explicitly describe a maximal atlas. However, it turns out that

each smooth atlas for R is contained in a unique maximal atlas. This fact can be proved by
considering the set of all charts that are compatible with the original atlas and showing that
this set is indeed an atlas. Therefore, by specifying some atlas for R, we uniquely determine
the maximal atlas containing it.
Recall that a topological space R is Hausdorff if for any points p, q ∈ R, there exists disjoint

open sets U, V such that p ∈ U and q ∈ V . The topological space R is second countable if there
is a countable basis for its topology.
We can now give a precise definition of a Riemann surface.

Definition 3.1. A Riemann surface is a connected, Hausdorff, second countable topological
space R with a maximal atlas.

Example 3.1. The complex plane C is a Riemann surface with an atlas consisting of a single
chart (U, ϕ), where U = C and ϕ = id. Similarly, any domain in the complex plane is a Rie-
mann surface.

Example 3.2. The Riemann sphere Ĉ = C ∪ {∞} is the simplest nontrivial Riemann sur-
face. We can use the charts (U1, ϕ1) and (U2, ϕ2) as our atlas, where U1 = C, ϕ1(z) = z and

U2 = Ĉ\{0}, ϕ2(z) = 1/z. The transition map is indeed analytic: ϕ1 ◦ ϕ
−1
2 : C\{0} → C,

ϕ1 ◦ ϕ
−1
2 (z) = 1/z.

Let (Uα, ϕα) be a chart on R. If D ⊂ C is a closed unit disc contained in ϕα(Uα), then we let
∆ = ϕ−1

α (D) and call (∆, ϕα) a coordinate disc in R. Note that ϕ−1
α is well-defined on ∂D.

We can see that for any q ∈ R, there is a coordinate disc (∆, ϕ) containing q such that
ϕ(q) = 0. There is a chart (V, ψ) such that q ∈ V , and since ψ(V ) is open, there is a disc
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of radius r > 0 centred at ψ(q) such that its closure is contained in ψ(V ). Call this disc Br

and let ∆ = ψ−1(Br). Then we can translate and rescale to obtain a map ϕ : ∆ → D where
ϕ(p) = (ψ(p)− ψ(q))r−1.

A map f : R → S between Riemann surfaces R, S, is analytic at p ∈ R if there is a co-
ordinate disc (∆1, ϕ1) in R containing p and a coordinate disc (∆2, ϕ2) in S containing f(p)
such that ϕ2 ◦ f ◦ ϕ−1

1 is analytic at ϕ1(p). We say f is analytic if f is analytic at every p ∈ R.
In the specific case f : R → C ∪ {∞}, we say f meromorphic at p ∈ R if f is analytic at p.
Two Riemann surfaces R, S are conformally equivalent if there is a bijective analytic map

f : R → S.

Proposition 3.1. Every Riemann surface R has a countable basis of precompact coordinate
discs.

Proof. We only sketch the proof. For a more detailed proof, we refer the reader to [4]. Each
point in R is contained in a chart (Uα, ϕα), and we can use these charts to form an open cover
{Uα} of R. Since R is second countable, we can obtain a countable subcover {Ui}. For each
(Ui, ϕi), obtain a countable basis of precompact discs in the image ϕi(Ui) by considering balls of
rational centre and radius. Pulling this basis back to R for each chart (Ui, ϕi) yields a countable
basis of precompact coordinate discs.

�

Definition 3.2. Let R be a Riemann surface. A real-valued function u : R → R is harmonic
at p ∈ R if there exists a coordinate disc (∆, ϕ) containing p such that u ◦ ϕ−1 : D → R is a
harmonic function. If u is harmonic at each p ∈ R, we say u is a harmonic function on R.

We note that harmonicity at p is invariant with respect to the choice of coordinate disc. In-
deed, if (∆1, ϕ1) and (∆2, ϕ2) are two coordinate discs containing p and u◦ϕ−1

1 is harmonic, then
u ◦ ϕ−1

2 = (u ◦ ϕ−1
1 ) ◦ (ϕ1 ◦ ϕ

−1
2 ) is the composition of a harmonic function with a holomorphic

function, hence is harmonic.

Definition 3.3. A continuous function u : R → [−∞,∞) is subharmonic if for every coor-
dinate disc (∆, ϕ), if v : ∆ → R is a harmonic function such that u(p) ≤ v(p) for all p ∈ ∂∆,
then u(p) ≤ v(p) for all p ∈ ∆.

Equivalently, we can define a continuous function u : R→ [−∞,∞) to be subharmonic if for
each p ∈ R, there exists a coordinate disc (∆, ϕ) containing p such that u ◦ ϕ−1 : D → R is a
subharmonic function. As expected, every harmonic function on R is subharmonic on R.

Proposition 3.2. (Maximum Principle) Let u be a subharmonic function on a Riemann
surface R. If u attains a maximum at p ∈ R, then u ≡ const.
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Proof. Let M be the supremum of u. Consider the set Γ = {p ∈ R : u(p) = M}. Then
Γ = u−1({M}) is closed by continuity of u. Let q ∈ Γ. There is a coordinate disc (∆, ϕ)
containing q such that u ◦ ϕ−1 : D → R is a subharmonic function. If we let z0 = ϕ(q), we
see that u ◦ ϕ−1 is a subharmonic function on D that achieves its maximum at zo ∈ D. By the
maximum principle for subharmonic functions on domains in the complex plane, u◦ϕ−1 ≡ const.
Since ϕ is bijective, u ≡ M in ∆. This shows that Γ is open. Since Γ is non-empty, open, and
closed, by connectedness of R we have R = Γ.

�

Let (∆, ϕ) be a coordinate disc, and u be a subharmonic function on R. By using the Poisson
integral, we can solve the Dirichlet problem

{

∂2w
∂x2 + ∂2w

∂y2
= 0 in D

w = u ◦ ϕ−1 on ∂D.

We then define

u∆(p) =

{

u(p) p /∈ ∆
w ◦ ϕ(p) p ∈ ∆.

By construction, u∆ is harmonic in ∆. Notice that u∆ ≥ u and that the function u∆ is
subharmonic.

It is immediate that if u, v are subharmonic functions, then max{u, v} is a subharmonic func-
tion. Therefore, the following definition makes sense:

Definition 3.4. A Perron family on R is a collection F of subharmonic functions such that
(1) If u1, u2 ∈ F , then max{u1, u2} ∈ F .
(2) If u ∈ F , then u∆ ∈ F .

Taking the supremum of a Perron family is a useful method of obtaining a harmonic function,
and will be used in our definition of the Green’s function.

Proposition 3.3. Let F be a Perron family on R. Then u(p) = sup{v(p) : v ∈ F} is either
harmonic, or u(p) = +∞ for all p ∈ R.

Proof. We proceed as in [2]. First, we show that the set {z ∈ R : u(z) < ∞} is open and u is
harmonic in this set.

Let p ∈ R be such that u(p) < ∞ and let (∆, ϕ) be a coordinate disc containing p. There
exists a sequence {f ′

n} ∈ F such that f ′
n(p) converges to u(p). If we define fn = max{f ′

1, . . . , f
′
n},

we obtain a sequence of increasing subharmonic functions. Therefore, {(fn)∆} is a sequence of
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increasing functions that are harmonic on ∆.

By Harnack’s Theorem, f = sup{(fn)∆} is either +∞ or harmonic in ∆. But since (fn)∆ ∈ F ,
we have (fn)∆ ≤ u, hence f ≤ u. Therefore f(p) < ∞, and so f is harmonic in ∆. Note
that f(p) = u(p). Indeed, fn(p) is an increasing sequence converging to u(p), so f(p) =
supn{(fn)∆(p)} ≥ supn{fn(p)} = u(p).

We now show that f = u in ∆, and hence u < ∞ in ∆ and u is harmonic in ∆. Sup-
pose f(q) < u(q) for some q ∈ ∆. There exists a sequence {g′n} ∈ F such that g′n(q) converges
to u(q). If we define gn = max{g′1, . . . , g

′
n, f

′
1, . . . , f

′
n}, we obtain a sequence of increasing sub-

harmonic functions such that gn ≥ fn. Proceeding as above, we obtain g = sup{(gn)∆}, a
harmonic function in ∆ such that g(p) = u(p), g(q) = u(q), and g ≥ f . But since g(p) = f(p)
and g(q) > f(q), then (f − g) is a non-constant harmonic function on ∆ that achieves its max-
imum at p. Hence we have a contradiction to the maximum principle.

We have shown that the set {z ∈ R : u(z) < ∞} is open and u is harmonic in this set.
Its complement, {z ∈ R : u(z) = ∞} is also open. If u(p) = ∞, then using the above notation,
f = ∞ in ∆ by Harnack’s theorem. But f ≤ u in ∆, so u = ∞ in ∆.

Therefore, {z ∈ R : u(z) <∞} is both open and closed, hence is either equal to R or ∅. If it
is equal to R, then u is harmonic, else u = ∞.

�
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4. Green’s Functions

The goal of this section is to develop the machinery of Green’s functions on a Riemann surface.

Fix a point q ∈ R, and let (∆, ϕ) be a coordinate disc containing q such that ϕ(q) = 0.
Let Pq be a family of subharmonic functions on R\{q} such that

(1) every u ∈ Pq has compact support, and
(2) every u ∈ Pq is such that v(p) = u(p) + log |ϕ(p)| is subharmonic on ∆.

This definition makes Pq a Perron family on R\{q}. This is a non-empty set since u = 0 ∈ Pq;
this follows since log |ϕ(p)| is a subharmonic function by Proposition 2.4.

Definition 4.1. Suppose sup{u(p) : u ∈ Pq} < ∞ for some p ∈ R. A Green’s function for
R with pole at q is defined as g(p, q) = sup{u(p) : u ∈ Pq} for all p ∈ R\{q}.

If the supremum is identically infinite, then we say that Green’s function for R with pole at
q does not exist. The Green’s function will be a central tool in the proof of the uniformisation
theorem. We collect some more important facts about the Green’s function.

Proposition 4.1. Let g(p, q) be a Green’s function for R with pole at q. Then g(p, q) > 0 and
g(p, q) is harmonic for all p ∈ R\{q}. Furthermore, if (∆, ϕ) is a coordinate disc such that
ϕ(q) = 0, then h(p) = g(p, q) + log |ϕ(p)| is harmonic on ∆.

Proof. We can see that g(p, q) is harmonic in R\{q} by Proposition 3.3. We have g(p, q) ≥ 0
since u = 0 ∈ Pq. By the maximum principle, −g cannot attain zero on R\{q}, from which it
follows that g(p, q) > 0 for p ∈ R\{q}.

Next, we want to show that h(p) : ∆ → R, h(p) = g(p, q) + log |ϕ(p)| is harmonic. We
can see that h(p) is harmonic on ∆\{q}, since

h ◦ ϕ−1(z) = g ◦ ϕ−1(z) + log |z|

is a harmonic function on the punctured unit disc. If we can show that h is bounded, Riemann’s
removable singularity theorem will allow us to conclude that h is harmonic on ∆.

Let M denote the maximum achieved by g(p, q) on the compact set ∂∆ = {p ∈ R : |ϕ(p)| =
1}. For any u ∈ Pq, we have u ≤ M on ∂∆. Since u + log |ϕ(p)| is subharmonic on ∆ and
log |ϕ(p)| = 0 on ∂∆, we can apply the maximum principle to conclude u(p) + log |ϕ(p)| ≤ M
for all p ∈ ∆. Taking the supremum, we obtain

h(p) = g(p, q) + log |ϕ(p)| ≤ M.
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On the other hand, the function v : R→ R defined as

v(p) =

{

− log |ϕ(p)| p ∈ ∆
0 p /∈ ∆.

is a member of Pq.

Hence g(p, q) ≥ − log |ϕ(p)| for all p ∈ ∆. Therefore we have shown

0 ≤ h(p) ≤M.

This completes the proof.
�

Proposition 4.2. Let g(p, q) be a Green’s function on R with a pole at q. Then

inf
p∈R

g(p, q) = 0.

Proof. Select a coordinate disc (∆, ϕ) containing q such that ϕ(q) = 0. Suppose infp∈R g(p, q) =
a > 0. Then g(p, q) − a > 0 for all p ∈ R\{q}, and furthermore g(p, q) − a + log |ϕ(p)| is
harmonic for p ∈ ∆.

Let u ∈ Pq. By definition, u(p) + log |ϕ(p)| is subharmonic in ∆. The logarithms cancel
after subtracting g(p, q) − a + log |ϕ(p)| from u(p) + log |ϕ(p)|, and we obtain a subharmonic
function u(p) − (g(p, q) − a) on ∆. Since u is compactly supported, u(p) − (g(p, q) − a) < 0
outside a compact set, and we can apply the maximum principle to conclude u(p) < g(p, q)− a
for all p ∈ R. Taking the supremum over all such u ∈ Pq, we obtain g(p, q) ≤ g(p, q) − a, a
contradiction.

�

We now prove a surprising fact about the existence of Green’s functions.

Proposition 4.3. Suppose a Green’s function g(p, q0) with pole at q0 exists for some q0 ∈ R.
Then a Green’s function with pole at q exists for all points q ∈ R.

Before launching into the proof, we lay some ground work in preparation. Fix q ∈ R, and let
(U, ϕ) be a chart containing q such that ϕ(q) = 0. Choose r > 0 small enough such that

∆r = {p ∈ R : |ϕ(p)| ≤ r} ⊂ U

is defined. We define the following Perron family of functions:

F = {v : R\∆r → R : v subharmonic, v ≤ 1, v compactly supported}.
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We know that ṽ : R\∆r → R defined by ṽ(p) = sup{v(p) : v ∈ F} is a harmonic function by
Proposition 3.3. The analysis of ṽ will be our main tool in the proof.

Let s > r such that ∆s = {p ∈ R : |ϕ(p)| ≤ s} ⊂ U is defined. By looking for a so-
lution of the form c0 + c1 log |z|, we can solve the Dirichlet problem for a function w0 in the
annulus {z ∈ C : r < |z| < s} with boundary conditions w0(z) = 1 if |z| = r and w0(z) = 0 if
|z| = s:

w0(z) = 1−
log(r)

log(r/s)
+

log |z|

log(r/s)
.

We compose with our coordinate function to obtain a subharmonic function on R\∆r:

v0(p) =

{

w0 ◦ ϕ(p) p ∈ ∆s\∆r

0 p /∈ ∆s.

We see that v0 ∈ F , and v0(p) → 1 as p → ∂∆r by design. Since 1 ≥ ṽ ≥ v0, we conclude
ṽ(p) → 1 as p→ ∂∆r.

Since v = 0 ∈ F , we have 0 ≤ ṽ ≤ 1. But if ṽ(p) = 0 for some p ∈ R\∆r, we can ap-
ply the maximum principle on −ṽ to conclude that ṽ ≡ const. Similarly, ṽ cannot achieve 1
unless it is a constant. Hence we are left with two cases: either ṽ(p) ∈ (0, 1), or ṽ ≡ 1. The
strategy will be to show that ṽ(p) ∈ (0, 1) if and only if a Green’s function g(p, q) with pole at
q exists.

Proof. We now prove Proposition 4.3. Let Γ be the set of all q ∈ R such that a Green’s function
g(p, q) with pole at q exists. First, we show that Γ is open.

Fix q0 ∈ Γ, and let (U, ϕ) be a chart containing q0 such that ϕ(q0) = 0. Define ∆r ⊂ U
and ṽ : R\∆r → R as above. It will be shown that if g(p, q0) exists at q0 ∈ R, then ṽ ∈ (0, 1).

Select a ∈ R such that g(p, q0) > a > 0 for all p ∈ ∂∆r. Therefore ṽ(p) ≤ 1 < g(p, q0)/a for
p ∈ ∂∆r, and hence by the maximum principle,

ṽ(p) < g(p, q0)/a

for all p ∈ R\∆r. Since inf g(p, q0) = 0, we conclude that inf ṽ(p) = 0 and hence ṽ 6≡ 1. There-
fore ṽ ∈ (0, 1).
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We next show that if ṽ ∈ (0, 1), then g(p, q) exists for all q ∈ ∆r. Let q ∈ ∆r, and de-
fine ∆s such that ∆r ⊂ ∆s ⊂ U as before. Take any u ∈ Pq. Then u(p) + log |ϕ(p) − ϕ(q)|
is subharmonic on ∆s. Choose C > 0 large enough such that for all p ∈ ∂∆r ∪ ∂∆s we have
| log |ϕ(p)−ϕ(q)|| ≤ C. SelectMu > 0 such that for all p ∈ ∂∆s we have |u(p)| ≤Mu. Therefore,
we have the estimate

u(p) + log |ϕ(p)− ϕ(q)| ≤ C +Mu

for all p ∈ ∂∆s, and hence by the maximum principle, for all p ∈ ∆s. In particular,

u(p) ≤ 2C +Mu

for all p ∈ ∂∆r. Since ṽ = 1 on ∂∆r, we have u(p) ≤ (2C+Mu)ṽ(p) for all p ∈ ∆r, and hence by
the maximum principle and since u has compact support, the estimate holds for all p ∈ R\∆r.
In particular, if we take the maximum over all p ∈ ∂∆s we obtain

Mu ≤ (2C +Mu) max
p∈∂∆s

ṽ(p).

We can solve for Mu and obtain a bound independent of u, that is, Mu ≤ K for some K > 0.
Then u ≤ K on ∂∆s, and by the maximum principle, u ≤ K on ∆s. Since this holds for all
u ∈ Pq, by taking the supremum we see that the Green’s function exists. This shows that Γ is
open.

Let q0 ∈ Γc, that is, suppose there does not exists a Green’s function g(p, q0) with pole
at q0. Using the same notation as before, set up a chart (U, ϕ) centred at q0, define a disc ∆r,
and obtain the associated function ṽ : R\∆r → R. If ṽ ∈ (0, 1), then by the above argument
g(p, q) exists for all q ∈ ∆r, which is a contradiction. Therefore ṽ ≡ 1. If a Green’s function
exists with pole at some q ∈ ∆r, then ṽ ∈ (0, 1) by the argument at the beginning of this proof.
Therefore, no Green’s function exists in ∆r, and hence Γc is open.

Since Γ is both open and closed, either Γ = R or Γ = ∅.
�

Proposition 4.4. Let S be a Riemann surface. Let R be a Riemann surface that is a con-
nected open subset of S. Suppose R has an atlas that consists of a finite number of precompact
coordinate discs in S. Then for all q ∈ R, there exists a Green’s function on R with pole at q.

Proof. We only need to show existence of a Green’s function with a pole at a single q, so we
can select a q that is inside a precompact coordinate disc (U, ϕ) which is at the “edge” of R,
i.e. such that ∂R ∩ ∂U ⊂ S is non-empty. Select a point b ∈ ∂R ∩ ∂U . Then ϕ(b) ∈ ∂D.
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Consider the function w : D → R defined by

w(z) = Re(ϕ(b) · z)− 1.

One can check that w is subharmonic (indeed, it is harmonic), w(ϕ(b)) = 0, and w(z) < 0
for all other z 6= ϕ(b). We want to extend ζ(p) = w ◦ ϕ(p) to all of R such that it remains
subharmonic and ζ(p) ≤ 0 with equality if and only if p = b. This can be done by extending ζ
one coordinate disc at a time. If (V, ψ) is another coordinate disc such that U ∩ V 6= ∅, then
ζ(p) ≤ 0 for all p ∈ ∂V ∩ U . Using Tietze extension theorem, we can continuously extend ζ
along ∂V such that ζ(p) < 0 for all p ∈ ∂V \U . Since ζ is now defined along the boundary of the
coordinate disc V , we can then use the Poisson formula to solve for a harmonic function defined
inside V and use it to define ζ inside V . This may redefine ζ on U ∩V , but that is unimportant;
ζ will now be defined on U ∪ V such that it is subharmonic and ζ(p) ≤ 0 with equality if and
only if p = b. This procedure can be repeated for all of the finitely many coordinate discs which
define R.

Now, select an r > 0 small enough such that ∆r = {p ∈ R : |ϕ(p)| ≤ r} ⊂ U is de-
fined. Define F and ṽ : R\∆r → R as in the previous proof. Select a > 0 such that −ζ(p) > a
for all p ∈ ∂∆r. For any v ∈ F , we have v(p) + ζ(p)/a ≤ 0 for all p ∈ ∂∆r. Using subhar-
monicity, the fact that v has compact support in R, and the maximum principle, we conclude
that v(p) + ζ(p)/a ≤ 0 for all p ∈ R\∆r. Taking the supremum, we obtain ṽ(p) ≤ −ζ(p)/a on
R\∆r. Since −ζ(p) → 0 as p → b, we also have ṽ(p) → 0 as p → b. Therefore ṽ 6≡ 1, and by
the proof of the previous theorem, a Green’s function for R exists with pole at q for all q ∈ ∆r,
hence for all q ∈ R.

�

The uniformisation theorem classifies all simply connected Riemann surfaces R. To conclude
this section, we show that if a Green’s function exists on R, then R is conformally equivalent to
the open unit disc. First, we need a lemma to help construct our conformal map to the unit disc.

Lemma 4.1. Suppose R is a simply connected Riemann surface such that a Green’s function
g(p, q) with pole at q exists. There exists an analytic function F : R→ C such that

|F (p)| = e−g(p,q).

Proof. Let A = {(∆α, ϕα)} be an atlas of charts for R. For convenience, assume that each chart
(∆α, ϕα) ∈ A is a coordinate disc.

Select a chart (∆α, ϕα) ∈ A. First, suppose q /∈ ∆α. Then g(p) := g(p, q) is harmonic
in ∆α, hence g ◦ϕ

−1
α is a real harmonic function on D. Therefore, by Proposition 2.6 there exists

an analytic function Gα : D → C such that g ◦ ϕ−1
α = Re(Gα). We define Hα : ∆α → C to be

the analytic function Hα = Gα ◦ ϕα. It follows that
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Re(Hα) = Re(Gα ◦ ϕα) = Re(Gα) ◦ ϕα = g ◦ ϕ−1
α ◦ ϕα = g.

Therefore, the function Fα : ∆α → C defined by Fα = e−Hα is such that

|Fα(p)| = |e−Re(Hα(p))e−iIm(Hα(p))| = e−g(p,q).

Note that Im(Hα) is unique up to an additive real constant, hence Fα is unique up to multi-
plication by eiθ for some θ ∈ R.

Now select the a chart (∆α, ϕα) such that q ∈ ∆α. Then the function

f(p) = g(p, q) + log |ϕα(p)− ϕα(q)|

is real harmonic in ∆α. By the same procedure as above, there exists an analytic function
Hα : ∆α → C such that Re(Hα(p)) = f(p). Define the function Fα : ∆α → C as

Fα(p) = (ϕα(p)− ϕα(q))e
−Hα(p).

Then we have

|Fα(p)| = |ϕα(p)− ϕα(q)|e
−Re(Hα(p)) = |ϕα(p)− ϕα(q)|e

−g(p,q)−log |ϕα(p)−ϕα(q)| = e−g(p,q).

Therefore, we have a collection of functions {Fα} that are unique up to multiplication by eiθ

for some θ ∈ R such that |Fα(p)| = e−g(p,q). It follows that if ∆α ∩∆β 6= ∅, then |Fα| = |Fβ| on
∆α ∩∆β . Hence

Fα

Fβ

= eiθ,

for some θ ∈ R on ∆α ∩∆β .
Therefore, Fα = eiθFβ is an analytic continuation of Fα from ∆α ∩ ∆β to ∆β. It follows

that Fα can be analytically extended along any path in R starting in Uα. By the Monodromy
theorem, Fα admits an analytic continuation to R, and by construction, |Fα(p)| = e−g(p,q).

�

Note that the F given above only has one zero (at q), and |F (p)| < 1 for all p ∈ R since
g(p, q) > 0.
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Theorem 4.1. Let R be a simply connected Riemann surface such that a Green’s function
g(p, q) exists. Then there exists a conformal map from R to the open unit disc.

Proof. Fix q0 ∈ R, and obtain a Green’s function g(p, q0) with pole at q0. Let F : R→ C be an
analytic function such that |F (p)| = e−g(p,q0). Fix q1 ∈ R such that q1 6= q0. Define ϕ : R → C

ϕ(p) =
F (p)− F (q1)

1− F (q1)F (p)
.

Since |F (p)| < 1 for all p ∈ R, ϕ is well-defined. Furthermore, ϕ is analytic, ϕ(q1) = 0,
and ϕ(q0) = −F (q1). Next, we show that |ϕ(p)| < 1 for any given p ∈ R. Let |F (p)|2 = 1 − ε0
and |F (q1)|

2 = 1− ε1, where εi ∈ (0, 1]. Then we have

|F (p)|2 + |F (q1)|
2 = (1− ε0) + (1− ε1) < (1− ε0) + (1− ε1) + ε0ε1 = 1 + |F (p)|2|F (q1)|

2.

From this identity, we can derive

|F (p)− F (q1)|
2 = |F (p)|2 − F (p)F (q1)− F (p)F (q1) + |F (q1)|

2

< 1− F (p)F (q1)− F (p)F (q1) + |F (p)|2|F (q1)|
2

= |1− F (p)F (q1)|
2.

Hence we have shown |ϕ(p)| < 1.

Next, we show that ϕ is injective. If u ∈ Pq1, then u(p) + log |ϕ(p)| is subharmonic, and
furthermore u(p) + log |ϕ(p)| < 0 on the complement of the compact support of u. By the
maximum principle, u(p) + log |ϕ(p)| < 0 everywhere in R.
Since g(p, q1) is the supremum over all such functions u ∈ Pq1, we obtain

g(p, q1) + log |ϕ(p)| ≤ 0

for all p ∈ R.

In particular, we have g(q0, q1) + log |ϕ(q0)| ≤ 0. We can also write

g(q0, q1) + log |ϕ(q0)| = g(q0, q1) + log |F (q1)| = g(q0, q1)− g(q1, q0).

Therefore, g(q0, q1) − g(q1, q0) ≤ 0. However, we can repeat this entire argument while
writing q0 in place of q1 and vice-versa, and obtain g(q1, q0) − g(q0, q1) ≤ 0. Hence we have
shown symmetry of Green’s function, and in particular,
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g(q0, q1) + log |ϕ(q0)| = g(q0, q1)− g(q1, q0) = 0.

But earlier we showed that the subharmonic function g(p, q1)+ log |ϕ(p)| is less than or equal
to zero on all of R, hence by the maximum principle it is identically zero and

g(p, q1) = − log |ϕ(p)|.

Since g(p, q1) is finite on R\{q1}, we conclude that ϕ has no zeroes in R\{q1}. Therefore,
F (p)−F (q1) 6= 0 in R\{q1}, and hence F (p) = F (q1) if and only if p = q1. Since q1 was chosen
arbitrarily, we conclude that F is one-to-one.

It follows that F : R → F (R) ⊆ D is conformal, and since F (R) is a simply connected
open set, there is a conformal map from F (R) to the open disc by the Riemann mapping theo-
rem. Therefore there is a conformal map from R to the open disc.

�

Corollary 4.1. Let R be a Riemann surface such that a Green’s function exists. Then for all
distinct p, q ∈ R, g(p, q) = g(q, p).

Proof. This was shown while proving the previous theorem. �
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5. Bipolar Green’s Functions

In this section, we classify simply connected Riemann surfaces R that do not admit a Green’s
function. It will be shown that in this case, we can construct a conformal map to the Riemann
sphere if R is compact, or a conformal map to the complex plane otherwise.

Definition 5.1. Let q1, q2 be distinct points in a Riemann surface R. Let (∆1, ϕ1) and (∆2, ϕ2)
be coordinate discs such that ∆1 ∩ ∆2 = ∅, and ϕ1(q1) = ϕ2(q2) = 0. A harmonic function
G(p, q1, q2) on R\{q1, q2} such that

* G(p, q1, q2) + log |ϕ1(p)| is harmonic at q1,
* G(p, q1, q2)− log |ϕ2(p)| is harmonic at q2, and
* G(p, q1, q2) is bounded on R\(∆1 ∪∆2),

is called a bipolar Green’s function for R with poles at q1 and q2.

Proposition 5.1. For all points q1, q2 ∈ R such that q1 6= q2, there exists a bipolar Green’s
function G(p, q1, q2).

Proof. Let S be a Riemann surface with an atlas that consists of finitely many precompact
coordinate discs, whose closure is contained in a Riemann surface R. Further assume that R
is an open set of a Riemann surface R′ and that R has an atlas that consists of finitely many
precompact coordinate discs. We will start by deriving results with these assumptions, then
move to the general case by taking countable unions of coordinate discs.

Let q1, q2 be distinct points in S, and let (U1, ϕ1) and (U2, ϕ2) be charts such that q1 ∈ U1,
ϕ1(q1) = 0, q2 ∈ U2, ϕ2(q2) = 0, and U1 ∩ U2 = ∅. Choose r > 0 such that ∆i = {p ∈ Ui :
|ϕi(p)| ≤ r} is well defined. Select s > 0 such that r > s and σi = {p ∈ Ui : |ϕi(p)| ≤ s} is well
defined. We know Green’s functions exist on R by Proposition 4.4. The first objective is to give
a bound on the difference of the Green’s functions gR(p, q1) and gR(p, q2) for p ∈ R\(∆1 ∪∆2),
and furthermore we want this bound to be independent of R.

Let Mi = maxp∈∂σi
gR(p, qi). Since infp∈R g(p, qi) = 0, we have g(p, qi) → 0 as p → ∂R.

Now g(p, qi) is a harmonic function on R\(σ1 ∪ σ2), so we can apply the maximum principle to
conclude gR(p, qi) ≤Mi for p ∈ R\(σ1∪σ2). In particular,Mi−gR(p, qi) ≥ 0 for p ∈ S\(σ1∪σ2).

Let zi ∈ ∂∆i be such that g(p, qi) ≤ g(zi, qi) for all p ∈ ∂∆i. This is possible by compactness
of ∂∆i. Since gR(p, qi) + log |ϕi(p)| is harmonic on ∆i, we apply the maximum principle to
conclude
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gR(p, qi) + log |ϕi(p)| ≤ g(zi, qi) + log r

for all p ∈ ∆i. In particular, we can take the maximum over all values in ∂σi and obtain:

Mi − g(zi, qi) ≤ log r/s.

Since Mi − gR(p, qi) is a non-negative harmonic function on S\(σ1 ∪ σ2) and ∂∆1 ∪ ∂∆2 is
compact, we can apply Harnack’s estimate to obtain a C > 0 such that

Mi − gR(p, qi)

Mi − gR(zi, qi)
≤ C

for all p ∈ ∂∆1 ∪ ∂∆2. Therefore,

Mi − gR(p, qi) ≤ C(Mi − gR(zi, qi)) ≤ C log r/s = C0,

for p ∈ ∂∆1 ∪ ∂∆2, where C0 is independent of R. We can rewrite this as

Mi − C0 ≤ gR(p, qi) ≤ Mi

for all p ∈ ∂∆1 ∪ ∂∆2. Therefore,

|gR(p, q1)− gR(p, q2)| ≤ M1 − (M2 − C0) = (M1 −M2) + C0

for all p ∈ ∂∆1 ∪ ∂∆2. We know that infp∈R g(p, qi) = 0, so g(p, qi) → 0 as p → ∂R, hence
applying the maximum yields the estimate for all p ∈ R\(∆1 ∪∆2). However, the Mi depend
on R. We must work a little harder in order to obtain a bound independent of R.

Since gR(p, q1) is harmonic for p ∈ ∆2, we can apply the maximum principle on the boundary
of ∆2 to conclude M1 − C0 ≤ gR(p, q1) ≤M1 for all p ∈ ∆2. In particular,

M1 − C0 ≤ gR(q2, q1) ≤M1.

The same argument also yields

M2 − C0 ≤ gR(q1, q2) ≤M2.

Since gR(q1, q2) = gR(q2, q1), we have

M1 − C0 ≤ gR(q1, q2) ≤M2.
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Therefore |M1 −M2| ≤ C0, which is independent of R. Hence

|gR(p, q1)− gR(p, q2)| ≤ 2C0

for all p ∈ R\∆1 ∪∆2.

We are now equipped to deal with an arbitrary Riemann surface M . Let q1, q2 be distinct
points inM , and (∆1, ϕ1), (∆2, ϕ2) coordinate discs such that ∆1∩∆2 = ∅, q1 ∈ ∆1, ϕ1(q1) = 0,
q2 ∈ ∆2, and ϕ2(q2) = 0. By Proposition 3.1, we have

M =

∞
⋃

i=1

Si,

where Si is a Riemann surface who has an atlas consisting of finitely many precompact coordinate
discs. By taking finite unions are relabelling, we can assume ∆1 ∪∆2 ⊂ S1, and Si ⊆ Si+1. For
each Sn, obtain Green’s functions gi(p, q1) and gi(p, q2) and create the sequence

Gn(p, q1, q2) = gn(p, q1)− gn(p, q2).

As shown above, |Gn(p, q1, q2)| ≤ 2C0 for all n, hence we have a sequence of uniformly bounded
harmonic functions. By Proposition 2.7, there is a subsequence {Gnk

} that converges to a har-
monic function G(p, q1, q2) on M\(∆1 ∪∆2).

Also, gnk
(p, q1) + log |ϕ1(p)| − gnk

(p, q2) = Gnk
(p, q1, q2) + log |ϕ1(p)| is harmonic in ∆1, and

on ∂∆1 we have the uniform bound

|Gnk
(p, q1, q2) + log |ϕ1(p)|| = |gnk

(p, q1)− gnk
(p, q2)| ≤ 2C0.

By the maximum principle, the bound holds in ∆1. Therefore, we have convergence to a
harmonic function G(p, q1, q2) + log |ϕ(p)| on ∆1. The same process can be repeated on ∆2.
Hence G(p, q1, q2) is the bipolar Green’s function for M .

�

Lemma 5.1. Let R be a Riemann surface, and suppose there exists a nonconstant, bounded,
complex-valued analytic function on R. Then there exists a Green’s function on R.

Proof. Fix q ∈ R. Let h be a nonconstant complex-valued analytic function such that |h| < B0.
Then

ϕ(p) =
h(p)− h(q)

B0
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is an analytic function such that ϕ(q) = 0 and |ϕ| < 1. For any u ∈ Pq, then u(p) + log |ϕ(p)|
is a subharmonic function such that u(p) + log |ϕ(p)| < 0 for all p outside the compact support
of u. By the maximum principle, we have

u(p) < − log |ϕ(p)|.

Since this holds for all u ∈ Pq, the supremum is not identically infinite and hence a Green’s
function exists.

�

Theorem 5.1. Let R be a simply connected Riemann surface such that a Green’s function
g(p, q) does not exists. Then either there exists a conformal map from R to the complex plane,
or there exists a conformal map from R to the Riemann sphere.

Proof. Fix q1, q2 distinct points in R. Let G(p, q1, q2) be a bipolar Green’s function for R.
By making slight modifications to the proof of Lemma 4.1, we can see that there exists a
meromorphic function F : R→ C ∪ {∞} such that

|F (p)| = e−G(p,q1,q2).

Notice that F has one simple zero at q1 and one simple pole at q2. We want to show that F is
injective. Let q0 ∈ R be distinct from q1, q2. Let H : R → C ∪ {∞} be a meromorphic function
such that

|H(p)| = e−G(p,q0,q2).

From the definition of bipolar Green’s function, F is bounded away from q1, q2 and H is
bounded away from q0, q2. Also, we have F (q1) = H(q2) = 0 and F (q2) = H(q2) = ∞. Since all
poles and zeros are simple, the function ϕ : R → C defined as

ϕ(p) =
F (p)− F (q0)

H(p)

is well-defined, as well as analytic and bounded. By the lemma, ϕ ≡ const. Since ϕ(q1) =
−F (q0)/H(q1) 6= 0, we see that ϕ is nonzero. Hence F (p) = F (q0) if and only if p = q0. Since
q0 was arbitrary, we have proved that F is injective.

Denote the image of F as Ω ⊆ C∪{∞} = Ĉ. We know that Ω is open and simply connected,

and F : R → Ω is conformal. If Ĉ\Ω has more than one point, we can move a point in the
complement of Ω to ∞ via a fractional transformation, and obtain a conformal map from Ω to
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a subset of C that is not all of the complex plane. By the Riemann mapping theorem, Ω can
be mapped conformally to the open unit disc, and hence R can be conformally mapped to the
open unit disc. But then there exists a non-constant, bounded analytic function on R; by the
lemma, a Green’s function must exist. This is a contradiction, and hence Ĉ\Ω is either a single
point, or the empty set.

If Ĉ\Ω has exactly one point, then we can move that point to ∞ via a fractional trans-

formation and hence obtain a conformal map from Ω to all of C. If Ω is all of Ĉ, then F maps
R conformally to the Riemann sphere.

�
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