
MATH 580 LECTURE NOTES 1: EXAMPLES OF PARTIAL

DIFFERENTIAL EQUATIONS

TSOGTGEREL GANTUMUR

Abstract. In these notes, we learn about several fundamental examples of partial differen-
tial equations, and get a glimpse of what will be covered in the course. A tiny bit of historical
information is included, and an attempt is made to emphasize the interrelations between the
equations.
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1. Transport equations

A linear homogeneous transport equation reads

α · ∇u = 0, (1)

where α : Rn → Rn is a vector field subject to some smoothness condition (such as continuity),
and α ·∇u ≡

∑n
i=1 αi∂iu is the directional derivative of u along the vector α. Here ∂i denotes

the partial derivative along the i-th coordinate direction. The equation tells us that if we
consider a small neighbourhood around any point x, the function u must be constant along
the direction α(x). Consequently, if there is a differentiable curve γ going through x, whose
tangent at each of its points is aligned with α at that point, then u must be constant along
γ. We know from the theory of ordinary differential equations that a unique family of such
curves exist, going through every point in space, whenever α is Lipschitz continuous. So in
this case, we see that any differentiable function that does not vary along the integral curves
of α will be an honest solution of (1). Obviously this is a lot of solutions. To get a precise
idea of exactly “how many” solutions are there, we can proceed as follows. Imagine a smooth
hypersurface Γ ⊂ Rn (i.e., a surface of dimension n − 1) that cuts nontangentially through
every integral curve of α exactly once. Whether it is possible to find such a hypersruface, or
how to construct them are interesting questions, but for the purposes of this discussion we
assume that it is possible (imagine for example, a nonzero constant vector field α). Every
solution u of (1) defines a differentiable function f on Γ given by the restriction of u to Γ.
Conversely, every function f : Γ → R can be uniquely extended to Rn so that the extension
is constant along the integral curves of α, and we will prove later in this course that if f is
differentiable then the extension is differentiable and satisfies (1). Hence, we conclude that
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the solutions of (1) are in a one-to-one correspondence with the differentiable functions on
Γ. Intuitively, the equation (1) restricts the behaviour of u exactly as much as going from
functions on Rn (or on a piece of it) to functions defined on an n− 1 dimensional surface.

A special case of (1) is
∂u

∂t
+ β · ∇u = 0, (2)

where one of the independent variables is singled out as “time” t. Here β(x, t) ∈ Rn, and
the directional derivative β · ∇ is with respect to the variable x ∈ Rn. In this case, the
hyperplane {(x, t) : t = 0} can always (i.e., no matter what β is) play the role of the surface Γ
as in the previous paragraph. So if we consider the equation (2) together with the condition
u(x, 0) = f(x), x ∈ Rn, for some differentiable f , then the resulting problem has a unique
solution. This is called the initial value problem or Cauchy problem for (2) with the initial
data f . One can give a physical meaning to this problem by saying that the initial mass (or
charge) distribution f is being transported under the velocity field β.

Later in this course, we will study the more general inhomogeneous quasilinear transport
equation

α(x, u) · ∇u = φ(x, u). (3)

Note that now the velocity field α can depend on u itself, and the growth of u along α is given
by a function of x and u.

2. Laplace, Poisson, and Cauchy-Riemann equations

In his investigations on Newtonian gravitation, Pierre-Simon Laplace was led around 1782
to the Laplace equation

∆u = 0, (4)

where ∆ = ∇2 = ∂21 + . . . + ∂2n is called the Laplace operator, or the Laplacian. It should
be noted however that the same equation had been written down by Joseph-Louis Lagrange
in 1760 in connection with his study of fluid flow problems. By 1687 Isaac Newton had
discovered that the force exerted on a point mass Q at x ∈ R3 by another point mass q at
y ∈ R3 is given by

F =
CqQ

|x− y|2
x− y
|x− y|

, (5)

with a universal constant C < 0 (like masses attract). Moreover, the same law of interaction
between point charges was published in 1785 by Charles Augustin de Coulomb, now with
C > 0 (like charges repel). Observe that

∂

∂x1

(
|x|2
)−3/2

x1 = −3

2

(
|x|2
)−5/2 · 2x1 · x1 +

(
|x|2
)−3/2

=
−2x21 + x22 + x23

|x|5
, (6)

and so

∇ · x

|x|3
=

∂

∂x1

(
|x|2
)−3/2

x1 +
∂

∂x2

(
|x|2
)−3/2

x2 +
∂

∂x3

(
|x|2
)−3/2

x3

=
−2x21 + x22 + x23

|x|5
+
−2x22 + x21 + x23

|x|5
+
−2x23 + x21 + x22

|x|5
= 0,

(7)

where ∇ · E = ∂1E1 + ∂2E2 + ∂3E3 is the divergence of the vector field E = (E1, E2, E3).
Therefore

∇ · F = 0, except at x = y. (8)

Observe also that

∂

∂x1

1

|x|
=

∂

∂x1

(
|x|2
)−1/2

= −1

2

(
|x|2
)−3/2 · 2x1 = − 1

|x|2
· x1
|x|
, (9)
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and so

∇ 1

|x|
= − 1

|x|2
· x
|x|
, (10)

where ∇v = (∂1v, ∂2v, ∂3v) is the gradient of the scalar field v. This shows that

F = −Cq∇u, with u(x) =
Q

|x− y|
, (11)

the latter called the potential, and therefore

∆u = ∇ · ∇u = ∇ · F = 0, except at x = y. (12)

By the principle of superposition, the field generated by a finite number of point charges also
satisfies the same equation in free space. Here free space means the set of points not occupied
by the charges. A bit more involved analysis on the extension of the law (5) to continuous
distribution of charges will show that the fields generated by continuous distribution of charges
in space or on smooth surfaces also satisfies the Laplace equation in free space. Obviously, we
do not need the Laplace equation if we know the distribution of charges: We would just use
(5) or its counterpart for continuous distribution of charges to calculate the field. However,
there are important situations where the density of the distribution must be implied from
some indirect information. For example, imagine a closed surface in space, with some charges
distributed inside and possibly also outside of it. Then we pose the problem of replacing
the charges inside the surface by charges at the surface, so that the potential outside the
surface remains the same. This amounts to finding a function u satisfying ∆u = 0 inside
the surface, that agrees with the old values of the potential at the surface. The functions
satisfying ∆u = 0 are called harmonic functions, and the afore-mentioned problem is called
the Dirichlet problem. Characterizing harmonic functions and solving the Dirichlet problem is
much more complicated than characterizing the solutions of (1) and solving the corresponding
Cauchy problem. Just to get some feel about harmonic functions, let us consider harmonic
functions that are polynomials in R2. In 1 dimension, all harmonic functions are simply
linear functions. Likewise in 2 dimensions, all linear and bilinear polynomials are harmonic.
However, there are more harmonic polynomials in R2, such as x2− y2 and y3− 3x2y. Playing
with some explicit examples will reveal that harmonic polynomials do not have any maximum
or minimum points; for example polynomials like x4 + y4 can never be harmonic. If the
gradient of a harmonic polynomial vanishes at some point, then this point is necessarily a
saddle point, like the point (0, 0) for x2 − y2. This is actually the tip of the iceberg known as
mean value property and maximum principles, which hold for general harmonic functions.

One special case of a Dirichlet problem that can be solved explicitly is when the underlying
domain is a ball:

u(x) =

ˆ
Sn−1

1− |x|2

ωn|x− y|n
u(y) dSy, (|x| < 1), (13)

where Sn−1 ⊂ Rn is the n− 1 dimensional unit sphere in Rn, and ωn is its surface area. The
formula for n = 2 and n = 3 was discovered by Siméon Denis Poisson in 1820-23. Later in
this course, we will study the Dirichlet problem in great detail for more general domains.

The inhomogeneous counterpart of the Laplace equation is the Poisson equation

∆u = f, (14)

which is satisfied, e.g., by the electric potential generated by the charge distribution with
density proportional to f . This equation was derived by Poisson in 1813.

Finally, Augustin-Louis Cauchy observed in 1814 that with u(x, y) and v(x, y) being differ-
entiable and real valued, complex differentiability of u+ iv as a function of x+yi is equivalent
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to [
∂x −∂y
∂y ∂x

] [
u
v

]
≡
[
∂xu− ∂yv
∂yu+ ∂xv

]
= 0. (15)

However, Cauchy did not make much use of these differential equations. It was Georg Friedrich
Bernhard Riemann who put them at the front stage in his 1851 dissertation to build up his
function theory. Hence the equations are nowadays called the Cauchy-Riemann equations.
Their solutions, i.e., holomorphic functions, share many of the properties of the harmonic
functions. In fact, the Cauchy-Riemann system and the Laplace equation are the simplest
representatives of the big family of elliptic equations, whose theory subsumes to a great extent
that of the formers. It should be remarked that the Cauchy-Riemann equations seem to have
appeared the first time in 1752 in a work of Jean le Rond d’Alembert on the theory of fluid
flow.

Exercise 1. Suppose that u and v satisfy the Cauchy-Riemann equations (15), and that
they both have continuous second derivatives. Show that each of them satisfies the Laplace
equation.

3. Wave equation

The wave equation in 1 dimension was written down by d’Alembert in 1747 as a model of
small vibrations of a stretched elastic string. It was extended to 2 dimensions by Leonhard
Euler in 1759 as a model of vibrations of drumheads, and to 3 dimensions by Daniel Bernoulli
in 1762 as a model of sound propagation. In general, the homogeneous wave equation reads

∂2u

∂t2
= ∆u. (16)

When the preceding equation is considered in the whole x-space Rn, explicit formulas can
be given for the solution u(x, t) in terms of u(x, 0) and ut(x, 0), where ut is of course the
t-derivative of u. Hence in the Cauchy problem for the wave equation, one needs to give both
functions u(x, 0) and ut(x, 0) as initial data. The formula for n = 1 is called d’Alambert’s
formula, which reads

u(x, t) =
u(x− t, 0) + u(x+ t, 0)

2
+

1

2

ˆ x+t

x−t
ut(y, 0) dy, (17)

where if t < 0, the integral over (x − t, x + t) is understood to be the minus of the integral
over (x+ t, x− t). It is discovered by Euler in 1748 based on the earlier work of d’Alambert.
The formula

u(x, t) =
1

4πt

ˆ
|y−x|≤|t|

ut(y, 0) dy√
t2 − |y − x|2

+
∂

∂t

(ˆ
|y−x|≤|t|

u(y, 0) dy√
t2 − |y − x|2

)
, (18)

for n = 2 was published by Marc-Antoine Parseval des Chênes in 1800, and the case n = 3

u(x, t) =
1

4πt

ˆ
|y−x|=|t|

ut(y, 0) dSy +
∂

∂t

(
1

4πt

ˆ
|y−x|=|t|

u(y, 0) dSy

)
, (19)

was published by Poisson in 1819. That said, usually (18) is called Poisson’s formula and (19)
is called Kirchhoff’s formula. It is notable that the Cauchy problem can be solved forward
and backward in time, i.e., the formulas are valid for all t ∈ R. Extensions to inhomogeneous
equations, the so-called retarded potentials, and higher dimensions have been achieved by
Gustav Robert Kirchhoff, Vito Volterra, and Orazio Tedone during the period 1882-98. A
common feature of the preceding formulas is that information has a finite speed of propagation,
meaning that the solution at (x, t) cannot “feel” the influence of the initial data outside the
sphere of radius t centred at x. In other words, if one starts with initial data vanishing
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outside a small sphere around the origin, then at any instant of time the solution will also be
vanishing outside a sphere around the origin, with the radius of the sphere increasing with
velocity 1 as time proceeds. One consequence of this is that we can take initial data growing
arbitrarily fast as |x| → ∞, and still get well-defined solution of the wave equation. A very
notable property of (19) that is not in (17) and (18) is that since the integration is over the
sphere of radius t, not including the interior of the sphere, the solution at (x, t) depends only
on the values of the initial data exactly at the sphere of radius t centred at x. This is known
as the strong Huygens’ principle, and is consistent with the familiar experience that when
you listen to a sound source that is localized both in time and space, like a thud or a knock,
you hear them only for a brief amount of time and then you hear nothing. In contrast, if we
lived in two dimensions (or in fact in any even dimensions), every sound would be followed
by an infinite echo (because the integral in (18) is over a disk). Language would be nearly
impossible since the echo of what you said before would be mingled with what you are saying
now. One way to make sense of this is to consider two dimensional waves from point sources
as three dimensional waves from line sources that are parallel to each other. Then, thinking
of the single source case, one would first hear the wave coming from the nearest point on
the line, and then the waves from the other points on the line, with the waves from far away
points coming later. Hence, one would hear a sharp beginning of the sound, followed by
an infinite echo. This phenomenon is known as diffusion of waves. We will study such and
related subjects in the next semester.

In order to solve the wave equation in a spatial domain Ω ⊂ Rn, we need to specify both
a boundary condition, such as u(x, t) = 0 for all x at the boundary of Ω and all t, and
initial data u(x, 0) and ut(x, 0) for x ∈ Ω. This problem is called an initial-boundary value
problem, or a mixed problem. One of the first questions one could ask about such a problem
is whether there is any stationary solution, i.e., whether one can tweak the initial data so
that the solution does not depend on t at all. Another way to think of this would be to ask
what happens to the system after so long time that all oscillations and motions have been
damped out by the frictions and dissipative processes present in the system (assuming that
the wave equation describes our system well for short time intervals). So putting the condition
∂tu ≡ 0 into (16), we infer that all stationary solutions must satisfy the Laplace equation.
In this light, we can think of the maximum principle for harmonic functions as saying that
when an elastic membrane is in equilibrium, it must be in a “maximum stretched” position,
in particular without any maximum or minimum in the interior.

More generally, we can look for solutions of the form u(x, t) = v(x)eiωt, i.e., solutions that
oscillate harmonically in time, and arrive at the equation

∆v + ω2v = 0, (20)

called the Helmholtz equation. In certain situations, e.g., when the domain Ω is bounded
and the condition u ≡ 0 is imposed at the boundary of Ω, the equation (20) has no nonzero
solutions except for countably many values of ω. In other words, for time-harmonic solutions
most of the frequencies are forbidden, except countably many values, that are called the
natural or resonant frequencies of Ω. These frequencies are determined by the shape and size
of the domain Ω. For example, in a typical 1 dimensional situation the natural frequencies
are integer multiples of some fundamental frequency. Most musical instruments that use
vibrations of stretched string or air columns produce such (harmonic) frequencies. For higher
dimensions, like in the case of drumheads and bells, the natural frequencies are far from
being integer multiples of a fundamental tone. Posed as a problem of finding the resonant
frequencies, (20) is known as the eigenvalue problem for the Laplace operator. Then the
eigenvalues of ∆ would be the numbers λi = −ω2

i , where ωi are the resonant frequencies.
Note that in the literature λi = ω2

i are sometimes defined as the eigenvalues, in order to
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have them nonnegative. To avoid any confusion, let me remark that we do not know a
priori if the eigenvalues are even real, let alone positive, but rather one must study the
problem (20) to address such questions. Now suppose that vi is a nontrivial solution of
(20) corresponding to the eigenvalue λi. Then the corresponding time-harmonic solutions

vi(x)e±it
√
−λi , or equivalently, vi(x) cos(t

√
−λi) and vi(x) sin(t

√
−λi), of the wave equation

are called the i-th normal modes of Ω. In 1750, Daniel Bernoulli essentially asked if we can
write an arbitrary solution of the wave equation as an infinite linear combination of the normal
modes, as in

u(x, t) =
∑
i

Aivi(x) cos(t
√
−λi) +Bivi(x) sin(t

√
−λi), (21)

where the (infinite collection of) constants Ai and Bi are to be determined from the initial
data. The question was quickly dismissed by Euler, as solutions of the wave equation can be
nonsmooth while every term in the above series is smooth in time, but later picked up by
Jean Baptiste Joseph Fourier, who at least managed to give some evidence for an affirmative
answer.

4. Heat equation

In his study of heat conduction, presented in 1807 to the French Academy of Sciences and
published in 1822, Jean Baptiste Joseph Fourier derived the heat equation

∂u

∂t
= ∆u. (22)

Here u(x, t) is interpreted as the temperature at the point x ∈ Rn and time moment t. Just
after Fourier’s results were announced, in 1809, Laplace derived the n = 1 case of the solution
formula

u(x, t) =
1

(4πt)n/2

ˆ
Rn

exp

(
−|x− y|

2

4t

)
u(y, 0) dy, (23)

for the initial value problem. The extensions to higher dimensions were published by Poisson
in 1819 and by Fourier in 1822. It is not clear they knew each other’s results, but both
acknowledge that their result is an easy extension of Laplace’s formula. Looking at this
formula, we note some striking differences between the wave and heat equations. First of all,
information has infinite speed of propagation for the heat equation, because however large
the distance between x and y is, the weight exp(−|x− y|2/4t) in the integral (23) is nonzero.
So one needs to restrict the growth of the initial datum u(y, 0) as |y| → ∞, since otherwise
contributions to u(x, t) from far away points y may build up to the point the integral in (23)
does not make sense. In particular, it is possible for a solution ceases to exist after a finite
time t, as the weight exp(−|x− y|2/4t) actually grows with time if |x− y| is large. A related
issue is that there can be more than one solution to the heat equation. All these issues can
be avoided by restricting ourselves to the situation where the solution cannot grow too fast
at spatial infinity. The second difference to the wave equation is that the heat equation has
a direction of time, i.e., the integral in (23) is well-behaved only for t > 0. Moreover, even
if the initial datum decays sufficiently fast so that the integral is convergent for t < 0, the
limit u(x, t) as t → 0 does not exist. This sense of time direction is actually a feature that
makes the heat equation a good candidate for describing irreversible processes, such as heat
propagation and the diffusion of an ink drop in a glass of water. Finally, the third point we
wanted to discuss, that is also related to irreversibility, is that the heat equation is smoothing,
in the sense that the solution is infinitely often differentiable as long as t > 0 even if one starts
with, say, only continuous initial datum u(y, 0). For the wave equation, the solution is not
smooth unless the initial data are smooth.
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Similarly to the wave equation, one can study the initial-boundary value problem for the
heat equation on a spatial domain Ω ⊂ Rn. Then the stationary solutions are given by
the solutions of the Laplace equation, with the boundary condition inherited from the heat
equation. In this setting, the maximum principle for harmonic functions has the interpretation
that in equilibrium, the temperature field cannot have local maximum or minimum, which is
consistent with physical intuition that such local maximum or minimum cannot be stationary.
The substitute of the time-harmonic solutions for the heat equation would be the exponentially
decaying solutions u(x, t) = v(x)e−ωt, which leads again to the Helmholtz equation and the
eigenvalue problem for the Laplace operator. Then the analogue of the normal mode expansion
(21) is

u(x, t) =
∑
i

Aivi(x)eλit, (24)

where vi and λi are the eigenfunctions and eigenvalues of the Laplacian as before, and the
constants Ai are to be determined from the initial datum

u(x, 0) =
∑
i

Aivi(x). (25)

In his 1822 manuscript Fourier gave formulas to calculate Ai in terms of u(x, 0) in several
special settings, and by way of examples showed that the expansion (25) converges even when
u(x, 0) is discontinuous. This initiated the study of trigonometric series, as in a typical one
dimensional setting (25) is such a series. We will start tackling this question towards the end
of this semester.

5. Schrödinger equation

The basic equation of the non-relativistic quantum mechanics

i
∂u

∂t
= −∆u+ V u, (26)

was discovered by Erwin Rudolf Josef Alexander Schrödinger in 1926. Here i =
√
−1, V is

a given (scalar) function depending on x ∈ Rn and t. The solution u has the interpretation
that |u(x, t)|2 is the probability density of the particle being found at (x, t), and V represents
the potential of the external field. The equation can be generalized to many particle systems,
where now x varies in Rn×m for m-particle systems, and certain symmetry conditions must
be imposed on u depending on the spins of the particles. For some special cases of the
potential V , the solution can be expressed in terms of explicit formulas similar to (23). The
free Schrödinger equation (i.e., with V ≡ 0) has a vague resemblance to both the heat and
the wave equations. It has infinite speed of propagation, as well as a smoothing property.
Connected to this, one has issues with solutions that grow too fast at infinity. On the other
hand, the Schrödinger equation is reversible. A finer inspection will show that high frequency
components of the initial datum travels faster than the low frequency components, so the
equation is dispersive. We will look closely at these properties in the next semester.

In this context, the time-harmonic solutions u(x, t) = v(x)e−iωt are called the stationary
solutions, because for these solutions the quantity |u|2 is constant in time. The stationary
solutions satisfy the stationary Schrödinger equation

−∆u+ V u = ωu, (27)

which is the eigenvalue problem for the Schrödinger operator −∆ + V . This can explicitly be
solved for a few simple cases, including the harmonic oscillator, V (x) = |x|2, and the hydrogen
atom, V (x) = −1/|x|. We may well be able to say a few things about some more general
cases later.
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6. Maxwell equations

The basic equation of the classical electrodynamics

∂tE = ∇×B − J, ∂tB = −∇× E, ∇ · E = ρ, ∇ ·B = 0, (28)

was published by James Clerk Maxwell in 1861. Here J is the electric current density, and
ρ is the charge density, which are the sources of the electromagnetic field. The field itself
is described by the electric field E : R3 → R3 and the magnetic field B : R3 → R3, whose
physical meaning is given by

F = qE + qv ×B, (29)

where F is the electromagnetic force acted on the test charge q with velocity v. In particular,
the electric field is the force per unit charge when the test charge is at rest. By differentiating
the first equation of (28) in time, and with the help of the second and third equations, we
can derive

∂2tE = −∇×∇× E − ∂tJ = ∆E −∇ρ− ∂tJ, (30)

where we have used the identity

−∇×∇× E = ∆E −∇(∇ · E). (31)

In particular, the components of the electric field satisfies the homogeneous wave equation in
the region of space-time where ∇ρ = 0 and ∂tJ = 0.

Exercise 2. Derive the analogous wave equation for the magnetic field B.

Now we relate Maxwell’s equations to our earlier discussion about the electric field potential.
By the last equation of (28), B is divergence free, so there is a vector field A such that
B = ∇×A. Plugging this into the second equation, we get ∇× (E + ∂tA) = 0. Hence there
is a scalar field u such that E + ∂tA = ∇u. To summarize, there is a vector field A and a
scalar field u, called respectively vector and scalar potentials, such that

B = ∇×A, E = ∇u− ∂tA. (32)

Then the first and third equations of (28) become

∂2tA = −∇×∇×A+∇∂tu+ J, ∆u = ∂t∇ ·A+ ρ. (33)

Exercise 3. Show that with the definitions (32), the equations (33) imply the Maxwell equa-
tions (28), hence demonstrating the equivalence of the two formulations.

It is possible that two different pairs (A, u) and (A′, u′) give rise to the same physical fields
(E,B). In this situation, we need to consider the two different mathematical configurations
as describing the same physical reality. If there is enough flexibility in choosing a pair (A, u)
among all pairs that describe the same physics, we can use this freedom to simplify the
mathematical formulation (33). Such a freedom in general is called gauge freedom. Let us
identify the gauge freedom of the formulation (33). First of all, we can add the gradient of
any scalar field to A, since it would not alter ∇ × A. Conversely, if ∇ × A = ∇ × A′, then
A′ = A + ∇χ for some scalar field χ. Secondly, such a transformation would affect E as
E′ = ∇u− ∂tA− ∂t∇χ. So in order to have E = E′, we need to transform u as u′ = u− ∂tχ.
To conclude, any transformation (A, u) 7→ (A′, u′) that leaves E and B invariant in (32) can
be written as

A′ = A+∇χ u′ = u− ∂tχ, (34)

with some scalar function χ.
A convenient gauge choice is the Coulomb gauge given by the condition ∇ ·A = 0. In this

gauge, the equations (33) read

∂2tA = ∆A+∇∂tu+ J, ∆u = ρ. (35)
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We see that the scalar potential satisfies the Poisson equation. Note that here the gauge is set
up so that even in the case of dynamic fields, the Poisson equation is satisfied by the electric
potential. If we require ∂tA ≡ 0 and ∂tu ≡ 0, the Poisson equation would be satisfied by the
components of the vector potential as well. The Coulomb gauge is realizable, since from any
given gauge we can shift to the Coulomb gauge by solving the Poisson equation ∆χ+∇·A = 0.
Another popular gauge is the so-called Lorenz gauge, given by ∂tu − ∇ · A = 0, which gives
rise to

∂2tA = ∆A+ J, ∆u = ∂2t u+ ρ. (36)

Hence both the scalar potential and the vector potential satisfy (inhomogeneous) wave equa-
tions.

Exercise 4. Show that the Lorenz gauge is realizable.

7. Incompressible fluids

The fundamental equation for incompressible Newtonian fluids

∂tu+ (u · ∇)u = ν∆u−∇p+ f, ∇ · u = 0, (37)

was derived by Claude-Louis Navier in 1822. Here the unknowns are u(x, t) the velocity of the
fluid element at (x, t), and p(x, t) the pressure at (x, t). The viscosity coefficient ν ≥ 0 and
the external force field f are considered to be given. The equation is called the Navier-Stokes
equations, honouring Navier and Sir George Gabriel Stokes, whose 1845 work was important
in understanding the nature of the equations. For inviscid fluids, i.e., for ν = 0, the equations
reduce to the Euler equations

∂tu+ (u · ∇)u = −∇p+ f, ∇ · u = 0, (38)

which were derived by Euler in 1757. Note that there are also compressible versions of the
above equations, where the condition ∇·u = 0 is suitably relaxed. Then for example, under a
certain approximate regime, the compressible Euler equations give rise to the wave equation,
providing a basis for the study of sound in fluids as pressure waves. However, we will not
have much to say about the compressible equations themselves in this sequence. Many people
contributed to the realization that adding the viscosity term ν∆u to the Euler equation
was important, most notably including d’Alambert and Jean Claude Barré de Saint-Venant.
Some basic properties of fluids can be understood by studying irrotational flows, meaning
that the flow is such that ∇ × u = 0. In this case, we can write u = ∇ϕ for some scalar
function ϕ, called the flow potential, hence the incompressibility condition ∇ · u = 0 becomes
the Laplace equation ∆ϕ = 0 for the potential. This is the reason why d’Alambert and
Lagrange encountered Cauchy-Riemann and Laplace equations in their study of fluid flows.
For completeness, we can simplify the other equation as

∂t∇ϕ+ (u · ∇)u+∇p+ f = ∇(∂tϕ+ 1
2u · u+ p+ Φ) = 0, (39)

where we assumed that f = ∇Φ, and have used the identity

1
2∇(u · u) = u× (∇× u) + (u · ∇)u. (40)

The equation (39) requires that the quantity ∂tϕ + 1
2u · u + p + Φ be constant throughout

space, with a possible dependence only on time. Now similarly to the Maxwell equations, we
have a freedom to add any function of time to ϕ (as well as Φ), so that under a certain gauge
we get the Bernoulli equation

∂tϕ+ 1
2 |∇ϕ|

2 + p+ Φ = 0, (41)
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for inviscid, incompressible, irrotational fluid flows. When nonlinear effects are negligible, i.e.,
the term (u · ∇)u is small, the Navier-Stokes equations simplify to give the Stokes equations

∂tu = ν∆u−∇p+ f, ∇ · u = 0. (42)

Before studying the Navier-Stokes equations, it is important to understand the Stokes equa-
tions. As with the story of the heat, Laplace and Helmholtz equations, the first steps to
getting a grip of the Stokes equations are the stationary Stokes problem, and the correspond-
ing Stokes eigenvalue problem. In a fluid mechanics course you would study special solutions
to the afore-mentioned equations, and learn heuristic reasonings based mainly on physical in-
tuition. In this course, we will study the equations from a purely mathematical point of view,
concentrating on proving the existence and uniqueness of solutions for a wide range of cases,
as a necessary ingredient in a full mathematical understanding of the equations. In fact, there
are many open mathematical problems related to the existence and uniqueness of solutions
for fluid equations, that resisted the attacks of the best mathematicians for generations. Note
that this is not merely a hobby of mathematicians, as the existence theory would shed light
on the correctness of the model, and more importantly, the knowledge and experience gained
from trying to establish such a theory would be priceless.
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