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We show existence of solutions for second order linear equations of hyperbolic,
parabolic and elliptic type. We use the finite difference approach, which uses a dis-
crete approximation of the PDEs on a grid. The general goal is to show that as the grid
size tends to zero, the solution of the discretized equation can be used to construct a
continuous solutions of the PDEs.

1 Linear advection

We begin with a trivial case to set the notation and show the basic principles that will
be used for more complicated cases.

1.1 Exact solution

We want to solve the equation

ut + ux = 0 onR2 (1)

u(x, 0) = f(x) (2)

Using the method of characteristics, the solution is easily found to be

u(x, t) = f(x− t). (3)

This means that the solution at a point (x, t) is completely determined by the information
at the point (x − t, 0). We thus expect any scheme approximating this PDE to have a
similar behavior.

1.2 Naive discretization

We want to discretize the problem (1)-(2) to have an approximated solution v on a grid
Σ. For simplicity, we only care about positive time t. We define the grid, for fixed values
h and k, to be

Σ := {(ih, jk) | i ∈ Z, j ∈ N}
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The simplest way to discretize the PDE (1) is to replace the derivatives using forward
Euler differences. This gives the scheme

v(x, t+ k)− v(x, t)

k
+
v(x+ h, t)− v(x, t)

h
= 0 for (x, t) ∈ Σ (4)

v(x, 0) = f(x) for (x, 0) ∈ Σ. (5)

This scheme formally approximates the PDE, in the sense that as h, k → 0, (4)-(5) be-
comes (1)-(2). But it is unclear that a solution of the discrete scheme will give a solution
of the continuous PDE. It isn’t even clear how to create a function u defined on R2 from
v, especially for irrational points.

We can still analyse the discrete scheme and keep those convergence questions for
later. Since the transport equation at a time (t+k) is simply the transported information
at the time t, we would like to write our scheme in a more general way in terms of
v(x, t+ k) and v(x, t) only. To do this we define the spatial shift operator

Eg(x) = Ehg(x) := g(x+ h).

We can then write (4) as

v(x, t+ k) =

(
1 +

k

h

)
v(x, t)− k

h
v(x+ h, t)

=

(
1 +

k

h
− k

h
E

)
v(x, t). (6)

Doing this allows us to have an explicit expression for v(x, nk), ensuring that the discrete
scheme can be solved for any point of Σ. But we still need to check if v converges to a
solution of the PDE. Iterating (6) and using the binomial expansion, we get

v(x,mk) =

(
1 +

k

h
− k

h
E

)m
v(x, 0)

=

(
1 +

k

h
− k

h
E

)m
f(x)

=
m∑
i=0

(
m
i

)(
1 +

k

h

)i(
−k
h

)m−i
Em−if(x)

=
m∑
i=0

(
m
i

)(
1 +

k

h

)i(
−k
h

)m−i
f(x+ (m− i)h)

(7)

Written in this form, it is clear that the solution v(x,mk) is constructed using only the
information at the points {(x+ ih, t+ jk) : 0 ≤ i ≤ m− j}, and ultimately using only
the information of f(x + ih) for 0 ≤ i ≤ m, as shown in figure 1. But since the exact
solution u(x, t) for the PDE depends only on the information of f(x− t), there is no way
v could converge to the solution u. This argument can be made rigorous by looking at
the Courant-Friedrichs-Lewy (CFL) condition for the domain of dependence of a scheme.
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Figure 1: Dependance domain of the solutions. The characteristic for the PDE at the
point (x,mk) is shown as a dashed line. All the black dots are the points that affect the
discrete solution at (x,mk). We see that those point are not related to the information
on the characteristic line for the PDE.

1.3 Stable discretization

To solve this problem, we need to use a more complicated difference scheme to discretize
the equation. Instead of (4)-(5), we use a backward Euler difference for the space
derivative, which yield the scheme

v(x, t+ k)− v(x, t)

k
+
v(x, t)− v(x− h, t)

h
= 0 for (x, t) ∈ Σ (8)

v(x, 0) = f(x) for (x, 0) ∈ Σ. (9)

and the solution can be written explicitly as

v(x,mk) =

m∑
i=0

(
m
i

)(
1− k

h

)i(k
h

)m−i
f(x− (m− i)h) (10)

(11)

and now, we see that the domain of dependence of the solution at (x,mk) will include

the characteristic line if
k

h
≤ 1. Then, by sending the grid size to 0, there is a chance the

discrete solution will converge to the exact solution. Since this ratio
k

h
is important to

the correctness of the scheme, we define λ :=
k

h
. It is called the Courant number for this

difference scheme, and the inequality λ ≤ 1 is called the CFL condition for this scheme.
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This λ plays an important role in the stability of the scheme, and the Lax-Richtmyer
theorem could be employed to show convergence of the scheme, but we won’t go into
any details here since the goal is to introduce the techniques for more complicated cases.
In those cases we won’t know a priori the existence of a solution to the PDE, so we will
need to proceed differently.

To show convergence, since here we know explicitly the exact solution, we can directly
compare it with the discrete solution. If the CFL condition holds, and supposing ||f ′′|| <
∞, we have

|u(x, t+ k)− v(x, t+ k)| (12)

= |f(x− t− k)− (1− λ)f(x− t)− λf(x− t− h)|.

Developing f around (x− t), we get, for some ξ1 and ξ2,

=

∣∣∣∣f(x− t)− kf ′(x− t) +
k2

2
f ′′(ξ1)− (1− λ)f(x− t)− λ(f(x− t)− hf ′(x− t) +

h2

2
f ′′(ξ2))

∣∣∣∣
=

∣∣∣∣k2

2
f ′′(ξ1) + λ

h2

2
f ′′(ξ2)

∣∣∣∣
=

∣∣∣∣λ2h2

2
f ′′(ξ1) + λ

h2

2
f ′′(ξ2)

∣∣∣∣
≤h2λ

2 + λ

2
sup |f ′′| (13)

Now, define w := u− v. By taking m = 1 in (10) we get

v(x, t+ k)− (1− λ)v(x, t)− λv(x− h, t) = 0

and so we have by (13) the estimate

|w(x, t+ k)− (1− λ)w(x, t)− λw(x− h, t)| ≤ h2λ
2 + λ

2
sup |f ′′|

which yields

sup
x
|w(x, t+ k)| ≤(1− λ) sup

x
|w(x, t)|+ λ sup

x
|w(x− h, t)|+ h2λ

2 + λ

2
sup |f ′′|

= sup
x
|w(x, t)|+ h2λ

2 + λ

2
sup |f ′′|.

Recursively applying this estimate gives

sup
x
|w(x,mk)| ≤ sup

x
|w(x, 0)|+mh2λ

2 + λ

2
sup |f ′′|
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and since w(x,0) = 0,

= mh2λ
2 + λ

2
sup |f ′′| = t

k
h2λ

2 + λ

2
sup |f ′′| = th

λ

λ2 + λ

2
sup |f ′′|

and so we have that for fixed λ and t, w(x, t) → 0 as h, k → 0. This shows that the
solution to the difference equation tends to the exact solution of the PDE as the grid
size goes to 0.

For this trivial case, we already knew the existence and uniqueness of the solution,
and so showing that the solution of the discrete scheme tends to this exact solution was
relatively easy. For the next case, we will not know a priori the existence of a solution
to the PDE, and we will need to construct this solution from the solution of the discrete
scheme, which will require much more work.

2 Linear first order symmetric systems of hyperbolic equations

We want to use here the same ideas used in section 1 for the case of a linear first order
system of hyperbolic equations. Namely, we want to solve the system

A0(~x, t)∂tu+

n∑
j=1

Aj(~x, t)∂ju+B(~x, t)u = w(~x, t) (14)

along with given initial data u(~x, 0) for a function u = (u1(~x, t), ..., uM (~x, t)) : Ω =
Rn × (0, T ) → RM . A symmetric hyperbolic system means here that all the Aj are
symmetric and A0 is positive definite. The interest of solving such a system is mainly
because a lot of higher order hyperbolic equations can be transformed in such a system.
In particular, any second order hyperbolic PDE can be written as such a system.

2.1 Notation

We extend the notation used in section 1 in higher dimensions. We will work on the grid
Σ defined for fixed lengths h and k by

Σ := {(α1h, ..., αnh, jk) |αi ∈ Z ∀i, j ∈ N} .

We will use a multi index notation defined by

(x1, ..., xn, t) = (α1h, ..., αnh, jk) =: (αh, jk).

As we did previously, we will need the shift operators

E0g(x1, ..., xn, t) = g(x1, ..., xn, t+ k)

Ejg(x1, .., xn, t) = g(x1, ..., xj + h, ..., xn, t)
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with their inverses

E−1
0 g(x1, ..., xn, t) = g(x1, ..., xn, t− k)

E−1
j g(x1, .., xn, t) = g(x1, ..., xj − h, ..., xn, t)

and for clarity, we also define the divided difference operators

δ0 =
E0 − 1

k

δj =
Ej − 1

h
.

We will often omit the arguments of the function and write E0g(~x, t) =: E0g. We will
also apply the multi index to these operators to get

δi0δ
αg := δi0δ

α1
1 ... δαn

n g

2.2 Existence proof

2.2.1 Behavior of the discrete scheme

The first thing to do is to find a suitable discretization of the system (14). As was
exposed in section 1, the most intuitive schemes sometime don’t have the properties
required to converge to the solution of the PDE. For instance, in this case, one would
be tempted to discretize (14) by

A0δ0v +
n∑
j=1

Ajδjv +Bv = w (15)

but for reasons similar to those exposed by figure 1, this scheme will not be stable and
won’t give us a correct solution to the PDE. We will instead use a scheme which replaces
the space derivatives by the central difference quotients

Ej − E−1
j

2h

The simplest scheme using these central differences would be

1

k
A0(E0 − 1)v +

1

2h

n∑
j=1

Aj(Ej − E−1
j )v +Bv = w

but it turns out that this isn’t stable enough yet. One has to replace the values of v
in the leftmost term by an average along the neighboring points in space. This can be
interpreted as a way of increasing the continuity of the solution to the scheme. Taking
this average on the two closest points in every variable, we get the scheme

1

k
A0

E0 −
1

2n

n∑
j=1

(Ej + E−1
j )

 v +
1

2h

n∑
j=1

Aj(Ej − E−1
j )v +Bv = w (16)
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and this scheme is finally correct and it is the one we will use. Since the matrix A0 is
positive definite, it is invertible, and we can rewrite (16) as

v(~x, t+ k) = kA−1
0

 n∑
j=1

[
1

2n
A0(Ej + E−1

j )− 1

2h
Aj(Ej − E−1

j )

]
−B

 v + w

 .

(17)

This gives us an explicit expression for v(~x, t+mk) for any m ∈ N by iterating (17) m
times, and thus proves the existence of a solution v to the finite difference scheme. We
now want to ensure that this discrete solution behaves well when we sent the grid size
to zero.

Define λ :=
k

h
to be the Courant number for this scheme. We won’t go into the

details here, but it is possible, by defining the right energies, to get the estimates

hnk
∑

(x,t)∈Σ

(v(x, t))TA(x, t)v(x, t) ≤ γTeCT
∑

(x,t)∈Σ

(w(x, t))TA(x, t)w(x, t) (18)

max
(x,t)∈Σ

|δαv(x, t)|2 = O

 ∑
β|≤|α|+n

∫
Ω

∣∣∣∂βw(x, t)
∣∣∣2 d~xdt

 (19)

for small enough values of λ and some constants γ and C. See [1] for details on those
calculations. If w is smooth enough, which we will assume, then these estimates give us
a bound on v and its derivatives that doesn’t depend on the grid size. Using the Sobolev
embedding theorem, we can go from an L2 bound to an L∞ bound to have

max
(x,t)∈Σ

|∂αv(x, t)| <∞ ∀ 0 ≤ |α| ≤ 2. (20)

which means that the |∂αv(x, t)| aren’t only bounded, they are Lipschitz ∀ |α| ≤ 1.

2.2.2 Refining the grid

Now that we know the discrete function v has a good behavior, we are ready to shrink
the grid size. Fix λ small enough do that (20) holds and take h = 2−q and k = λ2−q for
q ∈ N. Doing so gives us a sequence of grids Σq such that

Σp ⊂ Σq if p < q.

Define vq to be the solution on Σq and σ = ∪qΣq. Since v and its first order derivatives
are bounded, there is a subset S1 ⊂ N such that the limit

lim
q∈S1
q→∞

vq(x, t)
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exists for (x, t) ∈ σ. We can then take a subset S2 ⊂ S1 so that the limit

lim
q∈S2
q→∞

δ0vq(x, t)

exists, and so on, and we can take the last of these subsets, call it S, so that all the
limits converge for q ∈ S, q →∞, and define

lim
q∈S
q→∞

δi0δ
α
xvq(x, t) =: ui,α(x, t) ∀ |α|+ i ≤ 1

for (x, t) ∈ σ. Since the set σ is dense in Ω, every point not in σ is the limit of a sequence
of points (xq, tq) ∈ Σq for S 3 q → ∞. And since the functions ui,α are Lipschitz on σ,
we can extend the functions ui,α to points (x, t) /∈ σ to a Lipschitz function on Ω by

ui,α(x, t) = lim
q∈S
q→∞

δitδ
α
xvq(xq, tq).

Now all we have to do is to show that

ui,α(x, t) = ∂it∂
α
xu

0,0(x, t) on Ω (21)

∀ i + |α| = 1 and then, since the difference equation (16) tends to the PDE (14) as
h, k → 0, we will have shown that u0,0 is a solution of the PDE. We only show (21) for
i=1, but the argument is exactly the same for |α| = 1.

Fix a value ε ≥ 0. Fix s > 0 such that (x, t+ s) ∈ σ and define cq ∈ N the value such
that s = cq2

−q for large enough values of q. Since the vq converge to u0,0, we have for
S 3 q large enough,

|u0,0(x, t)− vq(x, t)| < ε

⇒|u0,0(x, t+ s)− vq(x, t+ s)| < ε

Thus,

⇒
∣∣∣∣u0,0(x, t+ s)− u0,0(x, t)

s
− vq(x, t+ s)− vq(x, t)

s

∣∣∣∣ < 2ε

s
(22)
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We also have that∣∣∣∣vq(x, t+ s)− vq(x, t)
s

− δ0vq(x, t)

∣∣∣∣
=

∣∣∣∣vq(x, t+ c2−q)− vq(x, t)
c2−q

− δ0vq(x, t)

∣∣∣∣
=

∣∣∣∣vq(x, t+ c2−q)− vq(x, t+ (c− 1)2−q)

c2−q
+ ...+

vq(x, t+ 2−q)− vq(x, t)
c2−q

− δ0vq(x, t)

∣∣∣∣
=

∣∣∣∣∣
c−1∑
i=0

δ0vq(x, t+ i2−q)

c
− δ0vq(x, t)

∣∣∣∣∣
=

∣∣∣∣∣
c−1∑
i=0

δ0vq(x, t+ i2−q)− δ0vq(x, t)

c

∣∣∣∣∣
=

∣∣∣∣∣2−qc
c−1∑
i=0

δ0vq(x, t+ i2−q)− δ0vq(x, t+ (i− 1)2−q)

2−q
+ ...+

δ0vq(x, t+ 2−q)− δ0vq(x, t)

2−q

∣∣∣∣∣
=

∣∣∣∣∣∣2
−q

c

c−1∑
i=0

i−1∑
j=0

δ2
0vq(x, t+ j2−q)

∣∣∣∣∣∣
≤ 2−q

c
c2 sup

Ω

∣∣δ2
0vq
∣∣

= sD (23)

for some constant D <∞ by the estimate (19) for the second order difference quotients.
Joining (22) and (23), we get∣∣∣∣u0,0(x, t+ s)− u0,0(x, t)

s
− δ0vq(x, t)

∣∣∣∣
≤
∣∣∣∣u0,0(x, t+ s)− u0,0(x, t)

s
− vq(x, t+ s)− vq(x, t)

s

∣∣∣∣+

∣∣∣∣vq(x, t+ s)− vq(x, t)
s

− δ0vq(x, t)

∣∣∣∣
≤ 2ε

s
+ sD.

Sending q to ∞ yields∣∣∣∣u0,0(x, t+ s)− u0,0(x, t)

s
− u1,0(x, t)

∣∣∣∣ ≤ 2ε

s
+ sD

and sending ε to zero gives∣∣∣∣u0,0(x, t+ s)− u0,0(x, t)

s
− u1,0(x, t)

∣∣∣∣ ≤ sD
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and finally, sending s to zero, we have

∂tu
0,0 = u1,0

and similarly for all derivatives, we have proved (21), and thus the existence proof is
complete.

3 Parabolic Second Order PDE

We will here use the same ideas as for the hyperbolic equation. We want to solve the
general parabolic equation

ut −
n∑
i=1

ai(~x, t)∂
2
xiu− 2

n∑
i=1

bi(~x, t)∂xiu− c(~x, t)u = d(~x, t) in Ω := Rn × (0, T ) (24)

u(x, 0) = f(x) (25)

for a function u : Ω = Rn × (0, T )→ R. We will assume that ai, bi, c, d ∈ C∞ uniformly
bounded with uniformly bounded derivatives. We also assume that

inf
Ω
aj(x, t) > 0 ∀ j. (26)

If we think of this last condition in the context of the heat equation, this is just assuming
that the information is dissipated as we advance forward in time. The backward heat
equation isn’t well-posed, and we want to avoid such situations so that our scheme
converges nicely. Note that by definition, any parabolic equation can be written in the
form (24) with a change of variables. The general idea is once again to approximate the
PDE using a discrete scheme on a grid Σ and then show that this discretized solution
converges to a solution to the PDE when the grid size is sent to 0. Unless stated
explicitely, we use the same notation as in section 2. We discretize the equation with
central differences for the space derivatives to get the scheme

v(x, t+ k)− v(x, t)

k
−

n∑
i=1

ai(x, t)
v(x+ h, t)− 2v(x, t) + v(x− h, t)

h2

− 2

n∑
i=1

bi(x, t)
v(x+ h, t)− v(x− h, t)

2h
− c(x, t)v(x, t) = d(x, t). (27)

We differ from section 2 by defining the constant

λ :=
k

h2
.

which will be our CFL constant for the parabolic case, as will be made clear shortly. We
can write the scheme (27) explicitely in terms of v(x, t+ k) by using the shift operators.
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We get

v(x, t+ k) =

1 +
k

h2

n∑
j=1

aj(Ej − 2 + E−1
j ) +

k

h

n∑
i=j

bj(Ej − E−1
j ) + kc

 v(x, t) + kd(x, t)

=
n∑
j=1

{
(λaj + hλbj)Ej +

(
1

n
− 2λaj +

h2λ

n
c

)
+ (λaj − hλbj)E−1

j

}
v(x, t) + kd(x, t).

(28)

Written in this form, we are sure that a solution to the discretized problem (27) exists
∀(x, t) ∈ Σ. We directly have, using the infinity norm || · || := || · ||∞,

|v(x, t+ k)| ≤
n∑
j=1

{
|λaj + hλbj |+

∣∣∣∣ 1n − 2λaj +
h2λc

n

∣∣∣∣+ |λaj − hλbj |
}
||v||+ k||d||.

(29)

Justifying the use of this particular λ as our CFL condition, suppose we have

2λmax
j

sup
Ω
aj(x, t) <

1

n
(30)

and that

hmax
j

sup
Ω
|bj | < min

j
inf
Ω
aj . (31)

Note that this last assumption is possible because of (26). These conditions allow us to
take out some of the absolute values in the summation of (29), and we have

|v(x, t+ k)| ≤
n∑
j=1

{
λaj + hλ|bj |+

1

n
− 2λaj +

h2λ|c|
n

+ λaj − hλ|bj |
}
||v||+ k||d||

= (1 + h2λ|c|)||v||+ k||d||.

which gives the bound

||v(x, t+ k)|| ≤ (1 + k||c||)||v||+ k||d||. (32)

If ||c|| = 0, then the bound (32) is sufficient. Else, using the last result recursively for
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v(x, t = mk) with the initial condition (25) , we get

||v(x, t+mk)|| ≤ (1 + k||c||)||f ||+
m−1∑
i=0

(1 + k||c||)ik||d||

= (1 + k||c||)||f ||+ ((1 + k||c||)− 1)
||d||
||c||

≤ emk||c||||f ||+ (emk||c|| − 1)
||d||
||c||

≤ et||c||||f ||+ tet||c||||d||
≤ eT ||c||||f ||+ TeT ||c||||d||

This gives a discrete analog to the maximum principle for parabolic PDEs,

||v|| ≤ eT ||c||||f ||+ TeT ||c||||d||

We then need similar estimates for the difference quotients of v. This task was hard
for the case of hyperbolic PDEs because we only had bounds in the L2 norm for v,
and expanding these bounds to the difference quotients wasn’t trivial. But here the
maximum principle analog deals with the || · ||∞ norm,which will simplify the task. For
the quotient δ1, we can take the difference quotient of equation (28). Noting (x+h, t) :=
(x1 + h, x2, ..., xn, t), we get

|δ1v(x, t+ k)|

=

∣∣∣∣∣∣δ1


n∑
j=1

{
(λaj + hλbj)Ej +

(
1

n
− 2λaj +

h2λ

n
c

)
+ (λaj − hλbj)E−1

j

}
v(x, t) + kd(x, t)


∣∣∣∣∣∣

=

∣∣∣∣∣∣
n∑
j=1

{
δ1[(λaj + hλbj)Ejv] + δ1

[(
1

n
− 2λaj +

h2λ

n
c

)
v

]
+ δ1[(λaj − hλbj)E−1

j v]

}
+ kδ1d(x, t)

∣∣∣∣∣∣
using the discrete product rule δ1(pq) = (E1p)δ1q + (δ1p)q, we get

=

∣∣∣∣∣∣
n∑
j=1

{E1(λaj + hλbj)δ1(Ejv) + δ1(λaj + hλbj)Ejv

+ E1

(
1

n
− 2λaj +

h2λ

n
c

)
δ1v + δ1

(
1

n
− 2λaj +

h2λ

n
c

)
v

+ E1(λaj − hλbj)δ1(E−1
j v) + δ1(λaj − hλbj)E−1

j v
}

+ kδ1d(x, t)
∣∣∣
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≤
n∑
j=1

{
|E1(λaj + hλbj)| ||δ1(Ejv)||+

∣∣∣∣E1

(
1

n
− 2λaj +

h2λ

n
c

)∣∣∣∣ ||δ1v||+ |E1(λaj − hλbj)| ||δ1(E−1
j v)||

+|δ1[(λaj + hλbj)| ||Ejv||+
∣∣∣∣δ1

(
1

n
− 2λaj +

h2λ

n
c

)∣∣∣∣ ||v||+ |δ1(λaj − hλbj)| ||E−1
j v||

}
+k|δ1d(x, t)|

We can ignore the space shifting operators in the norms since we are working on all of
Rn. Under the same assumptions (30) and (31), we can get rid of some absolute values
to get

≤
n∑
j=1

{∣∣∣∣∣∣∣∣λaj + hλ|bj |+
1

n
− 2λaj +

h2λ|c|
n

+ λaj − hλ|bj |
∣∣∣∣∣∣∣∣ ||δ1v||∣∣∣∣∣∣∣∣λδ1(aj) + hλ|δ1(bj)|+

1

n
− 2λδ1(aj) +

h2λ|δ1(c)|
n

+ λδ1(aj)− hλ|δ1(bj)|
∣∣∣∣∣∣∣∣ } ||v||+k||δ1d||

= (1 + k||c||) ||δ1v||+ (1 + k||c||) ||v||+ k||δ1d||

so we get the estimate

||δ1v(t+ k)|| ≤ (1 + k||c||) ||δ1v||+ (1 + k||c||) ||v||+ k||δ1d||

and as we did previously, we can use this estimate recursively to get a bound on δ1v for
any time t. The same thing can be done to bound δαj v ∀j = 1, ..., n and |α| = 1, 2, 3. We
can then take (27) and bound all the terms that relate to space shifting to get a bound on
δ0v, and then do the same thing we just did to get bounds on δ0δ

α
j ∀j = 1, ..., n and |α| =

1, 2. Now, since everything is bounded, we can use the exact same procedure we used
in section 2.2.2 to show that v converges to a solution of the PDE, thus proving existence.

It is interesting to note that this discrete construction of the solution to the parabolic
PDE explicitly exhibits properties of the solution that we would expect. First, the
discrete maximum principle is also valid for the limit of the vq, and so the maximum
principle applies to our constructed solution of the PDE. The maximum principle also

implies uniqueness of the solution, as usual. Second, since we keep λ =
k

h2
constant

as we shrink the grid size, the grid cells will get thinner and thinner with respect to
time. The region of dependence of a point then tends to all of Rn as h, k → 0, so the
information for a parabolic equation travels with infinite speed.

4 Elliptic PDE

We use the same ideas for the elliptic case. We will restrict ourselves to the Laplace
equation in n dimensions, but the same technique could be used for any elliptic operator

13



satisfying the maximum principle. We want to solve the problem

4u = f in Ω ⊂ Rn (33)

u = g on δΩ .

This problem differs from the previous one because it is not a initial value problem. Such
boundary value problem cannot be solved by evolving the initial condition in time, and
so we need another approach. Also, since we are now working on a closed domain, we
need to change our grid.

For a given grid size h = 2−q, q ∈ N, we define the neighbors N(~x) of a point
~x = (x1, ..., xn) ∈ Σ to be the set

{(x1 + β1h, ..., xn + βnh) | |βi| ≤ 1,

n∑
i=1

|βi| = 1}

We then define the grid to be

ΣΩ
q := {~x ∈ Σq ∩ Ω | all the neighbors of ~x lie inside Ω}.

and we will define the boundary of the grid Γq to be the points in (Σq ∩Ω)∩ (ΣΩ
q )c. Such

a grid structure is represented in figure 2.

Figure 2: Grid for a certain grid size. The set ΣΩ
q (black dots) consists of all the points

of a regular grid whose neighbours all lie inside of Ω (blue curve). The boundary (red
crosses) of the grid is the set of points in the grid that are inside Ω but have neighbors
outside Ω.

We can discretize equation (33) using central differences. Once again, we make this
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choice for stability purposes. Doing so gives us the discrete scheme

n∑
i=1

1

h2
(Ei − 2 + E−1

i )v = f (34)

for points in ΣΩ
q . For points in Γq , the values needed in the scheme can be defined

as the value of g at this point, given that g is continuous and defined everywhere in
Ω. If g in only defined on δΩ, then take the value at the point of the boundary that
is closest to the point we need to evaluate. Here, any reasonable definition of “closest”
will work, as long as everything is coherent when we send the grid size to zero, and we
assume that δΩ is smooth enough so that such a definition is possible. Doing so gives
a non-homogeneous linear system with as many equations as there are unknowns, with
the RHS composed of terms in g and f only, which are known. We need some properties
of this scheme before proving existence of its solution v.

4.1 Maximum Principle

We show here that the discrete solution v has a property analog to the maximum principle
in the continuous case, that is, for f ≥ 0 we have

max
ΣΩ

q

vq = max
Γq

vq . (35)

To show this property, we only need to look at (34) to get

n∑
i=1

1

h2
(Ei − 2 + E−1

i )v(x) ≥ 0

⇒ v(x) ≤ 1

2n

n∑
i=1

(Ei + E−1
i )v(x)

⇒ v(x) ≤ 1

2n

∑
y∈N(x)

v(y) (36)

⇒ v(x) ≤ max
y∈N(x)

v(y)

And thus by using this recursively from neighbors to neighbors, we proved (35). Note
also that equation (4.2) is the discrete analog of the mean value property. This maximum
principle directly implies that the discretized system admits at most one equation. We
thus have directly that for f ≡ 0 and g ≡ 0, the unique solution is v ≡ 0. And if
f and g are not identically zero, the scheme (34) is only modified in its RHS, and so
we know that the non-homogeneous system will also have a unique solution v since the
homogeneous system has a unique solution. This proves existence and uniqueness of a
solution v to the discretized system.

15



4.2 Bounds for the Derivatives

As we did for the other cases, we will find estimates for the difference quotients of

v, but this time we use the centered differences δ̄i =
Ei − E−1

i

2h
. Once again, the max-

imum principle simplifies this task. More precisely, we want to show the following lemma

Lemma 4.2.1 For a point x such that the distance from this point and its neighbors to
Γ is greater or equal to R > 0, we have∣∣δ̄xi∣∣ ≤ n

R
max

Ω
|u|+ R

2
max

Ω
|f | ∀i .

Here f doesn’t have to be zero, but we will take g = 0. This can be done as usual by
adding the solution of the discrete harmonic function with the boundary data we want.

Proof. For convenience, we take i = 1 and ~x = 0. Still using the infinite norm || · || :=
|| · ||∞, we consider the function

w(x) :=
||u||
R2

(
n∑
i=1

x2
i

)
+ x1(R− x1)

(
n||u||
R2

+
||f ||

2

)
.

We have

n∑
i=1

1

h2
(Ei − 2 + E−1

i )w

=
||u||
R2

n∑
i=1

1

h2
((xi + h)2 − 2x2

i + (xi − h)2)

+

(
n||u||
R2

+
||f ||

2

)
1

h2
((x1 + h)(R− x1 − h)− 2x1(R− x1) + (x1 − h)(R− x1 + h))

=
||u||
R2

2n+

(
n||u||
R2

+
||f ||

2

)
(−2)

= −||f || (37)

We also have that w(0, x2, ..., xn) ≥ 0, and that w(x) ≥ ||u|| for ||x||2 ≥ 0, 0 ≤ x1 ≤ R.
Define also, for points where it is possible,

W (x) :=
1

2
(v(x1, x2, ..., xn)− v(−x1, x2, ..., xn))
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then we have∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

1

h2
(Ei − 2 + E−1

i )W

∣∣∣∣∣
∣∣∣∣∣

≤1

2

(∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

1

h2
(Ei − 2 + E−1

i )(v)

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

1

h2
(Ei − 2 + E−1

i )(v)

∣∣∣∣∣
∣∣∣∣∣
)

=||f || (38)

We also have that W (0, x2, ..., xn) = 0 and that |W (x)| ≤ ||u|| for ||x||2 ≥ R, x1 ≥ 0.
We can combine all these inequalities and look at the the solution on the half-ball
{||x||2 ≤ R, x1 > 1}. Combining (37) and (38), we have that

n∑
i=1

1

h2
(Ei − 2 + E−1

i )(w ±W ) ≤ 0

as well as w ±W ≥ 0 on the discretized bountary of the half-ball. Then by using the
maximum principle on this half-ball around ~x = 0, we get that |W | ≤ w on the half-ball,
which means ∣∣∣∣δ̄1v(0)

∣∣∣∣ =

∣∣∣∣∣∣∣∣1hW (h, 0, ..., 0)

∣∣∣∣∣∣∣∣
≤ 1

h
w(h, 0, ..., 0)

=
1

h

(
||u||
R2

h2 + h(R− h)

(
n||u||
R2

+
||f ||

2

))
=
n||u||
R

+
R

2
||f ||+ (1− n)h

||u||
R2

≤ n||u||
R

+
R

2
||f ||

which proves lemma 4.2.1 for the point ~x = 0, and the complete proof follows from
shifting the domain. �

Since δ̄i is also a solution of the discretized system, similar estimates can be obtained
for all difference quotients of v. For instance,

∣∣∣∣δ̄2
i v
∣∣∣∣ ≤ n||δ̄iv||

R
+
R

2
||f || ≤ n

R

(
n||u||
R

+
R

2
||f ||

)
+
R

2
||f || .

This means that is we know a priori that our solution u is bounded, then all the difference
quotients are bounded. All we need to do then is to send the grid size to zero and use
the exact same ideas as in section 2.2.2 to show that v converges to a solution of the
PDE, which concludes the proof for the elliptic case.
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