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1 Introduction

The study of asymptotics can provide insight into certain differential equations. More pre-
cisely, say, in a D.E., there’s a term involving a coefficient which is expected to be either very
small or very big, we can study solutions as we let such coefficients vanish, or blow up.In
turn, once we have such solutions in explicit form, we may be able to approximate solutions
for when the coefficients aren’t truly zero, or infinite.

This paper is split into two sections. The first treats the case of fluid flow with a per-
turbation. The P.D.E treating the non perturbed case is solved first, then the P.D.E. with
a perturbative diffusion is solved with the method of asymptotics.

The second section introduces the WKB approximation for a nonlinear equation of second
order, where the solutions are expected to be oscillatory in nature. This method can be used
to solve physics related PDE’s, some that come out in geometric optics or in quantum physics,
namely the Schrodinger equation.

2 Fluid Flow

PDE’s can be used to model fluid flow, among these we have

div(ub) = δ0 (1)

where u denotes density and b velocity

−ǫ∆uǫ + div(uǫb) = δ0 (2)

The first term in 2 denotes a diffusion term added to 1. Solving the general case of 1 can
be done by first parametrizing the curve followed by the fluid.

X(t) = b(x(t)) ; X(0) = 0 (3)

x = X(t) + yν(X(t)) (4)

In 4 x denotes the postion along the curve, ν the unit normal to the curve and y the
distance from the curve along ν. This permits us to express
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x = (x1(y, t), x2(y, t)) (5)

∂(x1, x2)

∂(t, y)
=

∣

∣

∣

∣

b1 + yν̇1 ν1

b+ yν̇2 ν2

∣

∣

∣

∣

= σ(1− κy) where σ =
∥

∥b
∥

∥ (6)

with this we can say

ν = (−b2,b1)
σ

and ν̇ = −σκτ = −κb where τ is the unit tangent and −τ = b

σ

We can let the fuild density can be expressed as a density function parametrized along
the curve multiplied by the dirac measure:

u(x) = ρ(t)δ(y) (7)

We can state that
∫

R

udx = t2 − t1 between times (or the points) t2 and t1 on the given

curve, since u denotes density

∫

R

udx =

∫

R

ρ(t)δ(y)σ(t)(1− κy)dydt =

t2
∫

t1

ρ(t)σ(t)dt = t2 − t1 (8)

from this we can infer ρ(t)σ(t) = 1 ⇒ u(x, t) = δ(y)
σ(t)

To confirm our result we can see that, for a generic function v(x,t) we can have
∫

D vb u dx =
∫

R2

Dvb
δ(y)
σ(t)

σ(t)(1− κy)dydt =
∞
∫

0

Dv(x(t)) · b(x(t))dt

=
∞
∫

0

d
dt
v(x(t))dt = −v(0)

We can let the radius of the diffused dye be O((ǫt)
1

2 ) and we can define z
.
= ǫ−

1

2y and

vǫ
.
= ǫ

1

2uǫ. We can also express b as such

b = σ(t)τ + {α(t)τ + β(t)ν}y +O(y2) (9)

Parametrization will require the usage of the chain rule. For a generic function ω we
have, in this case

ωt = ωx1

∂x1

∂t
+ ωx2

∂x2

∂t
= ωx1

σ(1− κ(y))τ 1 + ωx2
σ(1− κ(y))τ 2 (10)

ωy = ωx1

∂x1

∂y
+ ωx2

∂x2

∂y
(11)

or, equivalently

ωx1
=

ωtτ
2 − ωyσ(1− κy)τ 2

σ(1− κy)
and ωx2

=
−ωtτ

2 + ωyσ(1− κy)τ 1

σ(1− κy)
(12)

This relation is true since (τ 1ν2 − ν1τ 2) = 1 and since ν is the unit normal to the curve
and τ is the unit tangent to the curve. Using 9, we have
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b ·Duǫ = (σ(t)τ + (α(t)τ + β(t)νy +O(y2)) · (ux1
x̂1 + ux2

x̂2) (13)

τ =
∂x1

∂t
x̂1 +

∂x2

∂t
x̂2

∥

∥(∂x
1

∂t
x̂1)

2 + (∂x
2

∂t
x̂2)

2
∥

∥

=
σ(1− κy)(τ1x̂1 + τ2x̂2)

∥

∥(yσ(1− κy))2 + (τ1
2 + τ2

2)
∥

∥

= τ1x̂1 + τ2x̂2 (14)

The last equality holds since τ 21 + τ 22 = 1. It was not a priori evident, but comes out
naturally as a result of the parametrization, as 10 and 11 were used.

Similarly, we can obtain

ν = ν1x̂1 + ν2x̂2 (15)

And so, using 12, 13, 14, 15 we have

b ·Duǫ =
ut

ǫ

1− κy
+

αyuǫ
t

σ(1− κy)
+ βyuy

2 +O(y2 | Duǫ |) (16)

since vǫ = ǫ1/2uǫ and z = ǫ
−1

2 y we now have, for ǫ ≪

ut
ǫ

1− κy
≃ ǫ−1/2vt

ǫ ;
αyuǫ

t

σ(1− κy)
≃ αzǫ

1

2uǫ
t

σ(1− κzǫ
1

2 )
→ o(ǫ1/2) (17)

uy =
1

ǫ
vǫz ⇒ βyuy

ǫ = βǫ−
1

2 zvǫz ; O(y2 | Duǫ |) → O(ǫ
1

2 ) (18)

and so, substituting these previous equations into 16 we end up with

b ·Dvǫ = vt
ǫ + βzvz

ǫ +O(ǫ
1

2 ) (19)

Similarly, using 9, we have
divb = 1

σ(1−κy)
(b1tν

2 − b2tν
1) + (τ 1b2y − τ 2b1y)

or

divb =
1

σ(1− κy)
((στ 1)tν

2 − (στ 2)tν
1) + (τ 1(ατ 2 + βν2)− τ 2(ατ 1 + βν1)) +O(y) (20)

The second term in 20 can be identified as β. From the first term we can see that:

((στ 1)tν
2− (στ 2)tν

1) = στ 1t ν
2−στ 2t ν

1+ σ̇(τ 1ν2−τ 2ν1) = σ2κ(ν1ν2−ν2ν1)+ σ̇(1) = σ̇ (21)

from this we have, recalling that we can express y as zǫ
1

2

divb = (
σ̇

σ
+ β) +O(y) as (1− κy) ≃ 1 for ǫ ≪ (22)

ǫ∆uǫ = ǫ(∂yyv
ǫ + ∂ttv

ǫ) = ǫ(ǫ−1∂zzv
ǫ + ∂ttv

ǫ) = ∂zzv
ǫ + o(ǫ

1

2 ) (23)

Going back to the original differential equation, we have
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−ǫ∆uǫ + div(uǫb) = δ0 = −∂zzv
ǫ + o(ǫ

1

2 ) + vǫ∇ · b+ b∇vǫ (24)

Equation 24 can be rewritten as

−vǫzz + o(ǫ
1

2 ) + (
σ̇

σ
+ β)vǫ + vǫt + βzvǫz +O(ǫ

1

2 ) (25)

as ǫ → 0, we have vǫ → v in R
2 which lets us cleverly write, in order to solve v:

vt − vzz + (βzv)z +
σ̇

σ
v = O(ǫ1/2) in R× (0,∞) (26)

This equation can be solved analytically. Once we have solved for v with a given initial
condition, of the form v(t = 0) = ( δz

σ(0)
), we can find u:

uǫ = ǫ−
1

2vǫ = ǫ−
1

2 (v + o(1)) (27)

3 WKB Method for Non-Linear Equations

3.1 General treatment

Consider
ǫ2ẍ+ f(t, x) = 0 (28)

with ǫ > 0, f ∈ C∞(R) with an ǫ dimensionfull. Here let’s assume the solution for x to be
oscillatory in nature as ǫ → 0.

It is not uncommon for such equations to arise in physical systems. For example, say for
a potential U(x) =

∫ x

0
f(y)dy we have that the energy E = 1

2
ǫ2ẋ2+U(x) is conserved in time,

taking a derivative with respect to time leads back to a certain form of 28. Furthermore,
the WKB method is widely used to solve certain forms of the Schrodinger equation. More
precisely, regions where the total energy is larger the the potential energy are called classically
allowed regions since the kinetic energy is positive. Solutions to the Schrodinger equation in
a classically allowed region are expected to be oscillatory in nature, and so the WKB method
is a great tool, especially when potentials take a really strange shape which can make the
Schrodinger equation difficult, if not impossible to solve analytically.

Now to begin, we can treat the case where f(x, t) = f(x)

ǫ2ẍ+ f(x) = 0 (29)

Say we let y(t1, ǫ) = x(t, ǫ), let t1 =
t
ǫ
we then have

d2y

dt21
+ f(y) = 0 (30)

This gives us motivation, while considering the more general equation 28, to let

y(t1, t, ǫ) = x(t, ǫ) = where t1 =
S(t)

ǫ
(31)
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Using chain rule we can compute the following:

ẋ =
∂y

∂t1

∂t1

∂t
+

∂y

∂t
⇒ ∂

∂t
(
∂y

∂t1
(t, t1ǫ))

∂t1

∂t
ect =

∂2y

∂t21
(
∂t1

∂t
)2 +

∂2y

∂t1∂t

∂t1

∂t
+

∂y

∂t1

∂2t1

∂t2
(32)

ẍ =
∂2y

∂t21

∂2t1

∂t2
+ 2

∂2y

∂t1t

∂t1

∂t
+

∂y

∂t1
(
∂t1

∂t
)2 +

∂2y

∂t2
=

∂2y

∂t21

S̈

ǫ
+ 2

∂2y

∂t1∂t

Ṡ

ǫ
+

∂y

∂t1

∂Ṡ2

ǫ2
+

∂2y

∂t2
(33)

or

ǫ2ẍ = Ṡ2∂
2y

∂t21
+ ǫL1y + ǫ2

∂2y

∂t2
whereL1 = 2Ṡ

∂2

∂t1∂t
+ S̈

∂

∂t1
(34)

Now we can let y =
∞
∑

n=0

yn(t1, t)ǫ
n where ǫ is dimensionfull.

Ṡ2∂
2y

∂t21
+ ǫL1y + ǫ2

∂2y

∂t2
+ f(t, y0 + ǫy1 + ǫ2y2 + ...) = 0 (35)

Ṡ2 ∂
2

∂t21
(y0+y1ǫ+O)+ ǫL1(y+y1ǫ+O)+ ǫ2

∂2

∂t2
(y+y1ǫ+O)+f(t, y0)+ ǫy1fx(t, y0)+O (36)

The beauty of expanding around ǫ is that this is a term that is dimensionfull, and so by
dimensional analysis we can gather terms with the same order of ǫ:

ǫ0terms : Ṡ2 ∂
2

∂t21
y0 + f(t, y0) = 0 (37)

ǫ1terms : ǫṠ2∂
2y1

∂t21
+ ǫL1y0 + ǫy1fx(t, y0) = 0 (38)

Evidently, we can do the same for terms of higher order ǫn. Now let’s assume y0(t1, t) is
periodic in t1 by mT ;m ∈ N, with period T = T (t1) and not T (t).

Applying ∂
∂t1

to 37 we obtain

Ṡ2 ∂
3

∂t31
y0 + fx(t, y0)

∂y0

∂t1
= 0 (39)

It is useful to define

L0 = Ṡ2 ∂
2

∂t21
y0 + fx(t, y0) (40)

this allows us to state, using 38

−L0y1 = L1y0 (41)

It is useful to first find the solution to the homogenous D.E. L0ω = 0 by equating it to
39
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L0ω = 0 = Ṡ2 ∂
3

∂t31
y0 + fx(t, y0)

∂y0

∂t1
= 0 ⇒ ω1(t1, t) =

∂

∂t1
y0(t1, t) (42)

Now for the solution for 41 we know that the solution will be the sum of the homogeneous
and particular solutions, that are, by construction, both orthogonal. By assumption, both
L1y0 and ω1 are periodic. It is thus fair to state:

0 =

T
∫

0

((S̈
∂

∂t1
+ 2Ṡ

∂2

∂t1∂t
)y0)

∂y0

∂t1
dt1 =

T
∫

0

S̈(
∂y0

∂t1
)2 +

T
∫

0

Ṡ2
∂2y0

∂t1∂t

∂y0

∂t1
dt1 (43)

this in turns implies

0 =
∂

∂t
Ṡ

∫ T

0

(
∂y0

∂t1
)
2

dt1 = 0 (44)

Ṡ

∫ T

0

(
∂y0

∂t1
)
2

dt1 = c0 (45)

3.2 Example of WKB treatment

Example 1 : ǫ2ẍ + a(t)x = 0 where a(t) > 0 where we expect a T periodic solution By
inspection, we see that f(x, t) = a(t)x from this, we can use 37 to express

Ṡ2∂
2y0

∂t21
+ a(t)y0 = 0 (46)

Which leads us to the solution

y0(t1, t) = A(t)cos(

√
a

Ṡ
t1) (47)

from expected periodicity of the equation we have

√
a
T

Ṡ
= 2πn ⇒ Ṡ(t) = T

√
a

2πn
(48)

⇒ S(t) =
T

2πn

t
∫

0

√

a(τ)dτ (49)

We can set S(t) =
t
∫

0

√

a(τ)dτ ;T = 2π; n = 1 ⇒
√
a

Ṡ
= 1

In 47 we can replace
√
a

Ṡ
by 1, and t1 by S(t)ǫ−1 where S is of the form expressed in 49

y0 = A(t)cos{1
ǫ

t
∫

0

√

a(τ)dτ} (50)
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From 45 we have
ṠA2(t)

∫ 2π

0
sin2(t1)dt1 = C ⇒ √

aA2(t)π = C ⇒ A(t) = Ca
−1

4 (t)
And so, constants omitted, we have

x1(t, ǫ) = a−1/4(t)cos{1
ǫ

∫ t

0

√

a(τ)dτ} (51)

similarly, we have

x2(t, ǫ) = a−1/4(t)sin{1
ǫ

∫ t

0

√

a(τ)dτ} (52)
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