MATH 580 ASSIGNMENT 6

DUE THURSDAY DECEMBER 1

1. Prove a local well-posedness result together with a blow-up criterion for the *n*-dimensional Burgers' equation

$$\partial_t u + u \cdot \nabla u = \Delta u,$$

- where $u : \mathbb{R}^n \times (0, T) \to \mathbb{R}^n$. 2. Show that in \mathbb{R}^3 , the wave propagators form a one parameter group of linear operators.
- Show that in ℝⁿ, the wave propagators form a one parameter group of mean operators.
 Consider the Cauchy problem for the wave equation ∂²_tu − Δu = 0 in ℝⁿ. Suppose that u : ℝⁿ × ℝ¹ → ℝ is its solution, and that the initial data vanish outside Ω ⊂ ℝⁿ. Show that u(x,t) = 0 if |t| < inf_{y∈Ω} |x − y|.
- 4. (Bonus problem) Prove that the n-dimensional Burgers' equation is globally well-posed.

1

Date: Fall 2011.