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1 Introduction

This paper will go about the proof of the Sobolev embedding theorem. We
will make use the following definitions.

Definition D (Rn) = C∞c (Rn)

Definition S (Rn) =
{
f ∈ C∞c (Rn) : sup |xβ∂αf | <∞, ∀ multi-indices α, β

}
Definition φj → 0 in S (Rn) if for all multi-indices α and β we have xβ∂αφj → 0
uniformly on Rn.

Definition S∗ (Rn) is the set of sequentially continuous linear functionals
on the space S (Rn).

2 The Bessel Potential

Definition For s ∈ R, we define the Bessel potential of order s to be the
(sequentially) continuous bijective linear operator J s : S (Rn)→ S (Rn) by

J su = F−1
(
1 + | · |2

)s/2Fu
Notice for s, t ∈ R,

J s+t = J sJ t, (J s)−1 = J −s, J 0 = I

In addition, from Plancherel’s theorem we have

(J su, v)L2(Rn) = (u,J sv)L2(Rn)
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for all u, v ∈ S (Rn), which motivates a natural extension of J s : S∗ (Rn)→
S∗ (Rn) defined by

〈J su, φ〉 = 〈u,J sφ〉 , ∀φ ∈ S (Rn)

Definition For any s ∈ R, we define the Sobolev space of order s on Rn,
denoted Hs (Rn), by

Hs (Rn) =
{
u ∈ S∗ (Rn) : J su ∈ L2 (Rn)

}
Remark For w ∈ S∗ (Rn), we write w ∈ A when ∃ g ∈ A such that

〈w, φ〉 = (g, φ)L2(Rn) , ∀φ ∈ S (Rn)

Hs (Rn) can be equipped with the inner product

(u, v)Hs(Rn) = (J su,J sv)L2(Rn)

and the induced norm

‖u‖Hs(Rn) = ‖J su‖L2(Rn)

It is then immediate that Hs (Rn) is a seperable Hilbert space.

Lemma 2.1 D (Rn) is dense in Hs (Rn).

Proof More precisely, we will show that for a fixed u ∈ Hs (Rn) and ε > 0, ∃ v ∈ D (Rn)
such that ‖u−v‖Hs(Rn) < ε. Choose χ ∈ D (Rn) such that χ(x) = 1 for x ≤ 1
and χ(x) = 0 for x ≥ 2. For δ > 0, define χδ ∈ D (Rn) by χδ(x) = χ(δx).
Then for ψ ∈ S (Rn) we have χδψ ∈ D (Rn) and χδψ → ψ in S (Rn) as
δ → 0⇒ J sχδψ → J sψ in S (Rn) as δ → 0⇒ J sχδψ → J sψ in L2 (Rn) as
δ → 0.

Since S (Rn) in dense in L2 (Rn), ∃ g ∈ S (Rn) such that ‖J su−g‖L2(Rn) ≤ ε/2
and u = J −sg ∈ S (Rn). Let ψ = J −sg and choose δ sufficiently small such
that ‖J sχδψ − g‖L2(Rn) ≤ ε/2. Then we choose v = χδψ ⇒ ‖u− v‖L2(Rn) ≤
‖u− g‖L2(Rn) + ‖g − J sχδψ‖L2(Rn) ≤ ε.

This immediately implies

Corollary 2.2 S (Rn) is dense in Hs (Rn).
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We can also show the following.

Lemma 2.3 If s ≤ t then H t(Rn) ⊆ Hs (Rn) and ‖u‖Hs(Rn) ≤ ‖u‖Ht(Rn).

Proof If u ∈ H t(Rn) then ∃ g ∈ L2 (Rn) such that

〈J tu, φ〉 = (g, φ)L2(Rn),∀φ ∈ S (Rn)

This implies
〈J su, φ〉 = (J s−tg, φ)L2(Rn)

and of course

‖u‖Ht(Rn) = ‖g‖L2(Rn) ≥ ‖J s−tg‖L2(Rn) = ‖u‖Hs(Rn)

We can generalize Sobolev spaces to closed sets F ⊆ Rn.

Definition For any closed set F ⊆ Rn, the associated Sobolev space of order
s, denoted Hs

F , is defined by

Hs
F = {u ∈ Hs (Rn) : suppu ⊆ F}

Lemma 2.4 Hs
F is a closed subspace of Hs (Rn).

Proof Suppose a sequence (ui)
∞
i=1 in Hs

F converges to u ∈ Hs (Rn). If
φ ∈ D(F c) then let φ̃ denote the extension of φ to D (Rn) by zero. Then we
have

〈u|F c , φ〉 = 〈u, φ̃〉 = 〈u−ui, φ̃〉+ 〈ui, φ̃〉 = 〈u−ui, φ̃〉 = (J su−J sui, φ̃)L2(Rn)

and by the Cauchy-Schwarz inequality

| 〈u|F c , φ〉 | ≤ ‖J
su− J sui‖L2(Rn) ‖φ̃‖L2(Rn) = ‖u− ui‖Hs(Rn)‖φ̃‖L2(Rn)

thus we have

〈u|F c , φ〉 = 0,∀φ ∈ D(F c)⇒ suppu ⊆ F

Since Hs
F is a closed subspace of Hs (Rn), it is therefore a Hilbert space when

equipped with the restriction of the inner product of Hs (Rn).
We can now prove the Sobolev imbedding theorem, which states that if

s is a sufficiently large positive number then the elements of Hs (Rn) are
equivalent to Hőlder continuous functions.
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Theorem 2.5 Suppose 0 < µ < 1. If u ∈ Hn/2+µ(Rn), then u has an ae
Hőlder-continuous representative in L2 (Rn). In fact,

|h(x)| ≤ C‖u‖Hn/2+µ(Rn)

and
|h(x)− h(y)| ≤ C ′‖u‖Hn/2+µ(Rn)|x− y|µ

for x, y ∈ Rn, where h is the L2 (Rn) representative of u.

Proof If u ∈ S (Rn)⇒ ∃ g ∈ S (Rn) such that ∀φ ∈ S (Rn) we have

〈J n/2+µu, φ〉 = (g, φ)L2(Rn) ⇒ 〈u, φ〉 = (J −n/2−µg, φ)L2(Rn)

Let h = J −n/2−µg ∈ S (Rn). Now by the Fourier inversion formula

|h(x)| =
∣∣∣∣∫

Rn
ĥ(ξ)e2πiξ·xdξ

∣∣∣∣ ≤ ∫
Rn
|ĥ(ξ)|dξ

and then by the Cauchy-Schwarz inequality and Plancherel’s theorem

|h(x)| ≤
∫
Rn

(1 + |ξ|2)
−n

2 −µ
2 |(1 + |ξ|2)

n
2 +µ

2 ĥ(ξ)|dξ

≤
∥∥∥∥(1 + | · |2

)−n
2 −µ
2

∥∥∥∥
L2(Rn)

·
∥∥∥∥(1 + | · |2

) n2 +µ

2 ĥ(·)
∥∥∥∥
L2(Rn)

= C‖J
n
2
+µh‖L2(Rn) = C‖u‖

H
n
2 +µ(Rn)

Now take u ∈ H
n
2
+µ(Rn). From Lemma 2.1 we know ∃ a sequence (ui) in

D (Rn) such that ui → u in H
n
2
+µ(Rn). Now

|hj(x)− hk(x)| ≤ C‖uj − uk‖H n
2 +µ(Rn)

which implies (hj) is a uniformly Cauchy sequence of D (Rn) functions. Thus

H(x) = lim
j→∞

hj(x)

is a continuous function and hj → H uniformly. In fact, H is uniformly
continuous since

|H(x)−H(y)| ≤ |H(x)− hj(x)|+ |hj(x)− hj(y)|+ |H(y)− hj(y)|
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and each hj is uniformly continuous. Also, because hj → H uniformly and
each hj ∈ L2 (Rn), we have H ∈ L2 (Rn).

For φ ∈ S (Rn) we have

(hj, φ)L2(Rn) → (h, φ)L2(Rn) and (hj, φ)L2(Rn) → (H,φ)L2(Rn)

⇒ (h, φ)L2(Rn) = (H,φ)L2(Rn) ⇒ h = H for ae x ∈ Rn

Thus for ae x

|h(x)| = |H(x)| = lim
j→∞
|hj(x)| ≤ C lim

j→∞
‖uj‖H n

2 +µ(Rn) = C‖u‖
H
n
2 +µ(Rn)

and the first inequality is proved.
Similarly, for u ∈ H n

2
+µ(Rn), define δth(x) = h(x + t) − h(x). Then by

the Fourier inversion formula we have

|δth(x)| ≤
∫
Rn
|e2πit·ξ−1||ĥ(ξ)|dξ =

∫
Rn
|e2πit·ξ−1|(1+|ξ|2)

−n
2 −µ
2 |(1+|ξ|2)

n
2 +µ

2 ĥ(ξ)|dξ

and by the Cauchy-Schwarz inequality

|δth(x)| ≤Mµ(t)‖u‖
H
n
2 +µ(Rn)

where

(Mµ(t))2 =

∫
Rn
|e2πit·ξ − 1|2(1 + |ξ|2)−

n
2
−µdξ

Note |e2πit·ξ−1|2 = 2(1−cos(2πt·ξ)) and so ∃ constant D such that for 0 < |ξ · t| ≤ 1
we have |e2πit·ξ − 1| < D|ξ · t|, which implies

(Mµ(t))2 ≤
∫
|ξ|<1/|t|

|e2πit·ξ − 1|2(1 + |ξ|2)−
n
2
−µdξ +

∫
|ξ|≥1/|t|

|e2πit·ξ − 1|2(1 + |ξ|2)−
n
2
−µdξ

≤ D

∫
|ξ|<1/|t|

|ξ · t|2(1 + |ξ|2)−
n
2
−µdξ + 4

∫
|ξ|≥1/|t|

(1 + |ξ|2)−
n
2
−µdξ

≤ D|t|2
∫
|ξ|<1/|t|

|ξ|2(1 + |ξ|2)−
n
2
−µdξ + 4

∫
|ξ|≥1/|t|

(1 + |ξ|2)−
n
2
−µdξ

≤ D|t|2
∫
|ξ|<1/|t|

|ξ|2(|ξ|2)−
n
2
−µdξ + 4

∫
|ξ|≥1/|t|

(|ξ|2)−
n
2
−µdξ

= D|t|2
∫ 1/|t|

0

ρ2ρ−n+2µρndρ+ 4

∫ ∞
1/|t|

ρ−n−2µρndρ in radial coordinates

= D|t|2|t|2µ−2 + 4|t|2µ ≤ E|t|2µ where E is a constant
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Thus we have

|δth(x)| ≤ C ′|t|µ‖u‖
H
n
2 +µ(Rn) ∀x, t ∈ Rn

which proves the second inequality.
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