Sobolev Space Through the Bessel Potential

Mario Palasciano

December 14, 2011

1 Introduction

This paper will go about the proof of the *Sobolev embedding theorem*. We will make use the following definitions.

Definition $\mathcal{D}\left(\mathbb{R}^{n}\right)=C_{c}^{\infty}(\mathbb{R}^{n})$

 $\textbf{Definition} \ \mathcal{S}\left(\mathbb{R}^{n}\right) = \left\{f \in C_{c}^{\infty}(\mathbb{R}^{n}) \colon \sup\left|x^{\beta}\partial^{\alpha}f\right| < \infty, \forall \ \text{multi-indices} \ \alpha, \beta\right\}$

Definition $\phi_j \to 0$ in $\mathcal{S}(\mathbb{R}^n)$ if for all multi-indices α and β we have $x^{\beta} \partial^{\alpha} \phi_j \to 0$ uniformly on \mathbb{R}^n .

Definition $\mathcal{S}^*(\mathbb{R}^n)$ is the set of sequentially continuous linear functionals on the space $\mathcal{S}(\mathbb{R}^n)$.

2 The Bessel Potential

Definition For $s \in \mathbb{R}$, we define the *Bessel potential of order s* to be the (sequentially) continuous bijective linear operator $\mathcal{J}^s \colon \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ by

$$\mathcal{J}^s u = \mathcal{F}^{-1} \left(1 + |\cdot|^2 \right)^{s/2} \mathcal{F} u$$

Notice for $s, t \in \mathbb{R}$,

$$\mathcal{J}^{s+t} = \mathcal{J}^s \mathcal{J}^t, \quad (\mathcal{J}^s)^{-1} = \mathcal{J}^{-s}, \quad \mathcal{J}^0 = I$$

In addition, from Plancherel's theorem we have

$$(\mathcal{J}^s u, v)_{L^2(\mathbb{R}^n)} = (u, \mathcal{J}^s v)_{L^2(\mathbb{R}^n)}$$

for all $u, v \in \mathcal{S}(\mathbb{R}^n)$, which motivates a natural extension of $\mathcal{J}^s \colon \mathcal{S}^*(\mathbb{R}^n) \to \mathcal{S}^*(\mathbb{R}^n)$ defined by

$$\langle \mathcal{J}^s u, \phi \rangle = \langle u, \mathcal{J}^s \phi \rangle, \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n)$$

Definition For any $s \in \mathbb{R}$, we define the Sobolev space of order s on \mathbb{R}^n , denoted $H^s(\mathbb{R}^n)$, by

$$H^{s}\left(\mathbb{R}^{n}\right) = \left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right) : \mathcal{J}^{s}u \in L^{2}\left(\mathbb{R}^{n}\right)\right\}$$

Remark For $w \in \mathcal{S}^*(\mathbb{R}^n)$, we write $w \in A$ when $\exists q \in A$ such that

$$\langle w, \phi \rangle = (g, \phi)_{L^2(\mathbb{R}^n)}, \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n)$$

 $H^{s}(\mathbb{R}^{n})$ can be equipped with the inner product

$$(u,v)_{H^s(\mathbb{R}^n)} = (\mathcal{J}^s u, \mathcal{J}^s v)_{L^2(\mathbb{R}^n)}$$

and the induced norm

$$||u||_{H^s(\mathbb{R}^n)} = ||\mathcal{J}^s u||_{L^2(\mathbb{R}^n)}$$

It is then immediate that $H^{s}(\mathbb{R}^{n})$ is a seperable Hilbert space.

Lemma 2.1 $\mathcal{D}(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$.

Proof More precisely, we will show that for a fixed $u \in H^s(\mathbb{R}^n)$ and $\varepsilon > 0$, $\exists v \in \mathcal{D}(\mathbb{R}^n)$ such that $\|u-v\|_{H^s(\mathbb{R}^n)} < \varepsilon$. Choose $\chi \in \mathcal{D}(\mathbb{R}^n)$ such that $\chi(x) = 1$ for $x \leq 1$ and $\chi(x) = 0$ for $x \geq 2$. For $\delta > 0$, define $\chi_{\delta} \in \mathcal{D}(\mathbb{R}^n)$ by $\chi_{\delta}(x) = \chi(\delta x)$. Then for $\psi \in \mathcal{S}(\mathbb{R}^n)$ we have $\chi_{\delta}\psi \in \mathcal{D}(\mathbb{R}^n)$ and $\chi_{\delta}\psi \to \psi$ in $\mathcal{S}(\mathbb{R}^n)$ as $\delta \to 0 \Rightarrow \mathcal{J}^s \chi_{\delta}\psi \to \mathcal{J}^s\psi$ in $\mathcal{S}(\mathbb{R}^n)$ as $\delta \to 0$.

Since $\mathcal{S}(\mathbb{R}^n)$ in dense in $L^2(\mathbb{R}^n)$, $\exists g \in \mathcal{S}(\mathbb{R}^n)$ such that $\|\mathcal{J}^s u - g\|_{L^2(\mathbb{R}^n)} \leq \varepsilon/2$ and $u = \mathcal{J}^{-s}g \in \mathcal{S}(\mathbb{R}^n)$. Let $\psi = \mathcal{J}^{-s}g$ and choose δ sufficiently small such that $\|\mathcal{J}^s \chi_{\delta} \psi - g\|_{L^2(\mathbb{R}^n)} \leq \varepsilon/2$. Then we choose $v = \chi_{\delta} \psi \Rightarrow \|u - v\|_{L^2(\mathbb{R}^n)} \leq \|u - g\|_{L^2(\mathbb{R}^n)} + \|g - \mathcal{J}^s \chi_{\delta} \psi\|_{L^2(\mathbb{R}^n)} \leq \varepsilon$.

This immediately implies

Corollary 2.2 $\mathcal{S}(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$.

We can also show the following.

Lemma 2.3 If $s \leq t$ then $H^t(\mathbb{R}^n) \subseteq H^s(\mathbb{R}^n)$ and $||u||_{H^s(\mathbb{R}^n)} \leq ||u||_{H^t(\mathbb{R}^n)}$.

Proof If $u \in H^t(\mathbb{R}^n)$ then $\exists g \in L^2(\mathbb{R}^n)$ such that

$$\langle \mathcal{J}^t u, \phi \rangle = (g, \phi)_{L^2(\mathbb{R}^n)}, \forall \phi \in \mathcal{S}(\mathbb{R}^n)$$

This implies

$$\langle \mathcal{J}^s u, \phi \rangle = (\mathcal{J}^{s-t} g, \phi)_{L^2(\mathbb{R}^n)}$$

and of course

$$||u||_{H^t(\mathbb{R}^n)} = ||g||_{L^2(\mathbb{R}^n)} \ge ||\mathcal{J}^{s-t}g||_{L^2(\mathbb{R}^n)} = ||u||_{H^s(\mathbb{R}^n)}$$

We can generalize Sobolev spaces to closed sets $F \subseteq \mathbb{R}^n$.

Definition For any closed set $F \subseteq \mathbb{R}^n$, the associated Sobolev space of order s, denoted H_F^s , is defined by

$$H_F^s = \{ u \in H^s(\mathbb{R}^n) : \operatorname{supp} u \subseteq F \}$$

Lemma 2.4 H_F^s is a closed subspace of $H^s(\mathbb{R}^n)$.

Proof Suppose a sequence $(u_i)_{i=1}^{\infty}$ in H_F^s converges to $u \in H^s(\mathbb{R}^n)$. If $\phi \in \mathcal{D}(F^c)$ then let $\tilde{\phi}$ denote the extension of ϕ to $\mathcal{D}(\mathbb{R}^n)$ by zero. Then we have

$$\langle u|_{F^c}, \phi \rangle = \langle u, \tilde{\phi} \rangle = \langle u - u_i, \tilde{\phi} \rangle + \langle u_i, \tilde{\phi} \rangle = \langle u - u_i, \tilde{\phi} \rangle = (\mathcal{J}^s u - \mathcal{J}^s u_i, \tilde{\phi})_{L^2(\mathbb{R}^n)}$$

and by the Cauchy-Schwarz inequality

$$|\langle u|_{F^c}, \phi \rangle| \le ||\mathcal{J}^s u - \mathcal{J}^s u_i||_{L^2(\mathbb{R}^n)} ||\tilde{\phi}||_{L^2(\mathbb{R}^n)} = ||u - u_i||_{H^s(\mathbb{R}^n)} ||\tilde{\phi}||_{L^2(\mathbb{R}^n)}$$

thus we have

$$\langle u|_{F^c}, \phi \rangle = 0, \forall \phi \in \mathcal{D}(F^c) \Rightarrow \text{supp} u \subseteq F$$

Since H_F^s is a closed subspace of $H^s(\mathbb{R}^n)$, it is therefore a Hilbert space when equipped with the restriction of the inner product of $H^s(\mathbb{R}^n)$.

We can now prove the Sobolev imbedding theorem, which states that if s is a sufficiently large positive number then the elements of $H^s(\mathbb{R}^n)$ are equivalent to Hölder continuous functions.

Theorem 2.5 Suppose $0 < \mu < 1$. If $u \in H^{n/2+\mu}(\mathbb{R}^n)$, then u has an ae Hölder-continuous representative in $L^2(\mathbb{R}^n)$. In fact,

$$|h(x)| \le C||u||_{H^{n/2+\mu}(\mathbb{R}^n)}$$

and

$$|h(x) - h(y)| \le C' ||u||_{H^{n/2 + \mu}(\mathbb{R}^n)} |x - y|^{\mu}$$

for $x, y \in \mathbb{R}^n$, where h is the $L^2(\mathbb{R}^n)$ representative of u.

Proof If $u \in \mathcal{S}(\mathbb{R}^n) \Rightarrow \exists g \in \mathcal{S}(\mathbb{R}^n)$ such that $\forall \phi \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\langle \mathcal{J}^{n/2+\mu}u, \phi \rangle = (g, \phi)_{L^2(\mathbb{R}^n)} \Rightarrow \langle u, \phi \rangle = (\mathcal{J}^{-n/2-\mu}g, \phi)_{L^2(\mathbb{R}^n)}$$

Let $h = \mathcal{J}^{-n/2-\mu}g \in \mathcal{S}(\mathbb{R}^n)$. Now by the Fourier inversion formula

$$|h(x)| = \left| \int_{\mathbb{R}^n} \hat{h}(\xi) e^{2\pi i \xi \cdot x} d\xi \right| \le \int_{\mathbb{R}^n} |\hat{h}(\xi)| d\xi$$

and then by the Cauchy-Schwarz inequality and Plancherel's theorem

$$|h(x)| \leq \int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{\frac{-\frac{n}{2}-\mu}{2}} |(1+|\xi|^{2})^{\frac{\frac{n}{2}+\mu}{2}} \hat{h}(\xi)| d\xi$$

$$\leq \left\| (1+|\cdot|^{2})^{\frac{-\frac{n}{2}-\mu}{2}} \right\|_{L^{2}(\mathbb{R}^{n})} \cdot \left\| (1+|\cdot|^{2})^{\frac{\frac{n}{2}+\mu}{2}} \hat{h}(\cdot) \right\|_{L^{2}(\mathbb{R}^{n})}$$

$$= C \|\mathcal{J}^{\frac{n}{2}+\mu} h\|_{L^{2}(\mathbb{R}^{n})} = C \|u\|_{H^{\frac{n}{2}+\mu}(\mathbb{R}^{n})}$$

Now take $u \in H^{\frac{n}{2}+\mu}(\mathbb{R}^n)$. From Lemma 2.1 we know \exists a sequence (u_i) in $\mathcal{D}(\mathbb{R}^n)$ such that $u_i \to u$ in $H^{\frac{n}{2}+\mu}(\mathbb{R}^n)$. Now

$$|h_j(x) - h_k(x)| \le C||u_j - u_k||_{H^{\frac{n}{2} + \mu}(\mathbb{R}^n)}$$

which implies (h_j) is a uniformly Cauchy sequence of $\mathcal{D}(\mathbb{R}^n)$ functions. Thus

$$H(x) = \lim_{j \to \infty} h_j(x)$$

is a continuous function and $h_j \to H$ uniformly. In fact, H is uniformly continuous since

$$|H(x) - H(y)| \le |H(x) - h_j(x)| + |h_j(x) - h_j(y)| + |H(y) - h_j(y)|$$

and each h_j is uniformly continuous. Also, because $h_j \to H$ uniformly and each $h_j \in L^2(\mathbb{R}^n)$, we have $H \in L^2(\mathbb{R}^n)$.

For $\phi \in \mathcal{S}(\mathbb{R}^n)$ we have

$$(h_j, \phi)_{L^2(\mathbb{R}^n)} \to (h, \phi)_{L^2(\mathbb{R}^n)}$$
 and $(h_j, \phi)_{L^2(\mathbb{R}^n)} \to (H, \phi)_{L^2(\mathbb{R}^n)}$
 $\Rightarrow (h, \phi)_{L^2(\mathbb{R}^n)} = (H, \phi)_{L^2(\mathbb{R}^n)} \Rightarrow h = H$ for ae $x \in \mathbb{R}^n$

Thus for ae x

$$|h(x)| = |H(x)| = \lim_{j \to \infty} |h_j(x)| \le C \lim_{j \to \infty} ||u_j||_{H^{\frac{n}{2} + \mu}(\mathbb{R}^n)} = C ||u||_{H^{\frac{n}{2} + \mu}(\mathbb{R}^n)}$$

and the first inequality is proved.

Similarly, for $u \in H^{\frac{n}{2}+\mu}(\mathbb{R}^n)$, define $\delta_t h(x) = h(x+t) - h(x)$. Then by the Fourier inversion formula we have

$$|\delta_t h(x)| \le \int_{\mathbb{R}^n} |e^{2\pi i t \cdot \xi} - 1| |\hat{h}(\xi)| d\xi = \int_{\mathbb{R}^n} |e^{2\pi i t \cdot \xi} - 1| (1 + |\xi|^2)^{\frac{-\frac{n}{2} - \mu}{2}} |(1 + |\xi|^2)^{\frac{\frac{n}{2} + \mu}{2}} \hat{h}(\xi)| d\xi$$

and by the Cauchy-Schwarz inequality

$$|\delta_t h(x)| \le M_\mu(t) ||u||_{H^{\frac{n}{2} + \mu}(\mathbb{R}^n)}$$

where

$$(M_{\mu}(t))^{2} = \int_{\mathbb{R}^{n}} |e^{2\pi i t \cdot \xi} - 1|^{2} (1 + |\xi|^{2})^{-\frac{n}{2} - \mu} d\xi$$

Note $|e^{2\pi it\cdot\xi}-1|^2=2(1-\cos(2\pi t\cdot\xi))$ and so \exists constant D such that for $0<|\xi\cdot t|\leq 1$ we have $|e^{2\pi it\cdot\xi}-1|< D|\xi\cdot t|$, which implies

$$(M_{\mu}(t))^{2} \leq \int_{|\xi|<1/|t|} |e^{2\pi it \cdot \xi} - 1|^{2} (1 + |\xi|^{2})^{-\frac{n}{2} - \mu} d\xi + \int_{|\xi| \geq 1/|t|} |e^{2\pi it \cdot \xi} - 1|^{2} (1 + |\xi|^{2})^{-\frac{n}{2} - \mu} d\xi$$

$$\leq D \int_{|\xi|<1/|t|} |\xi \cdot t|^{2} (1 + |\xi|^{2})^{-\frac{n}{2} - \mu} d\xi + 4 \int_{|\xi| \geq 1/|t|} (1 + |\xi|^{2})^{-\frac{n}{2} - \mu} d\xi$$

$$\leq D|t|^{2} \int_{|\xi|<1/|t|} |\xi|^{2} (1 + |\xi|^{2})^{-\frac{n}{2} - \mu} d\xi + 4 \int_{|\xi| \geq 1/|t|} (1 + |\xi|^{2})^{-\frac{n}{2} - \mu} d\xi$$

$$\leq D|t|^{2} \int_{|\xi|<1/|t|} |\xi|^{2} (|\xi|^{2})^{-\frac{n}{2} - \mu} d\xi + 4 \int_{|\xi| \geq 1/|t|} (|\xi|^{2})^{-\frac{n}{2} - \mu} d\xi$$

$$= D|t|^{2} \int_{0}^{1/|t|} \rho^{2} \rho^{-n+2\mu} \rho^{n} d\rho + 4 \int_{1/|t|}^{\infty} \rho^{-n-2\mu} \rho^{n} d\rho \quad \text{in radial coordinates}$$

$$= D|t|^{2} |t|^{2\mu-2} + 4|t|^{2\mu} \leq E|t|^{2\mu} \quad \text{where E is a constant}$$

Thus we have

$$|\delta_t h(x)| \le C' |t|^{\mu} ||u||_{H^{\frac{n}{2} + \mu}(\mathbb{R}^n)} \quad \forall x, t \in \mathbb{R}^n$$

which proves the second inequality.

References

[1] McLean, William. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge: Cambridge University Press, 2000.