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1 Introduction

This paper will go about the proof of the Sobolev embedding theorem. We
will make use the following definitions.

Definition D (R") = C(R"™)
Definition S(R") = {f € C*(R"): sup|z°0f| < oo,V multi-indices o, 5}

Definition ¢; — 0 in S (R") if for all multi-indices v and 3 we have 2°9%¢; — 0
uniformly on R".

Definition S* (R") is the set of sequentially continuous linear functionals
on the space S (R").

2 The Bessel Potential

Definition For s € R, we define the Bessel potential of order s to be the
(sequentially) continuous bijective linear operator J°: S (R") — S (R") by

s/2

Jiu=F" (1+|-|2) Fu
Notice for s,t € R,

T = J5 T, (js)—l — g g0 =1
In addition, from Plancherel’s theorem we have

(jsua U)LQ(R") - (U, jSU)LQ(Rn)
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for all u,v € & (R™), which motivates a natural extension of J°: §* (R") —
S* (R™) defined by

(Tu,¢) = (u, T°¢), VoeS(R")

Definition For any s € R, we define the Sobolev space of order s on R"™,
denoted H*® (R™), by

H*(R") ={ueS (R"): Jue L (R")}
Remark For w € §* (R"), we write w € A when 3¢ € A such that
(w0, 6) = (9, 8) oy » V6 € S (RY)

H? (R™) can be equipped with the inner product

(u, U)HS(R") = (J*u, jSU)LQ(lR”)

and the induced norm

|l sy = (| T *ul| 2(rmy

It is then immediate that H* (R™) is a seperable Hilbert space.
Lemma 2.1 D (R") is dense in H* (R™).

Proof More precisely, we will show that for a fixed u € H* (R") ande > 0, Jv € D (R")
such that ||u—v||gs®n) < €. Choose x € D (R") such that x(z) =1 forz <1
and x(z) = 0 for z > 2. For 6 > 0, define x5 € D (R™) by xs(z) = x(dz).
Then for ¢ € S(R™) we have x50 € D(R") and xs5¢ — ¢ in S (R") as
§ = 0= T — T inS(R") as § — 0= Txsp — TP in L? (R") as
o —0.
Since S (R") in dense in L? (R™), 3 g € S (R™) such that || T u—g|| 2@ < €/2
and u = J°g € S(R™). Let ©» = J g and choose § sufficiently small such
that | 7°xs¢ — gl 2@n) < €/2. Then we choose v = x5 = ||u — v||2@n) <
lu = gll2@n) + 19 — Txs¥ll2ny <€

This immediately implies

Corollary 2.2 S (R") is dense in H® (R").



We can also show the following.

Lemma 2.3 If s <t then H'(R™) C H*(R") and ||ul

ey < ||l e wny -
Proof If u € HY(R™) then 3¢ € L? (R") such that
<jtu7 ¢> - <g7 ¢>L2(R")7v¢ € S (Rn)

This implies
<j8,u/’ ¢> = (jSitga ¢)L2(R”)

and of course

lullgeeny = llgllr2@ny = ||~78_t9||L2(R") = ullzs@ B
We can generalize Sobolev spaces to closed sets F' C R"™.

Definition For any closed set F' C R", the associated Sobolev space of order
s, denoted H}, is defined by

H; ={ue€ H*(R") : suppu C F}
Lemma 2.4 Hj, is a closed subspace of H® (R™).

Proof Suppose a sequence (u;)2; in Hj converges to u € H*(R"). If
¢ € D(F°) then let ¢ denote the extension of ¢ to D (R") by zero. Then we
have

(Ulpe . ) = (u,8) = (u—us, @)+ (us, @) = (u—1u,¢) = (T*u— T us, @) r2(zn)
and by the Cauchy-Schwarz inequality
| (lpe 0) | < T*u = Tuill 2y 19l p2ny = 1w — il

thus we have

o) ||| L2 )y

(u

Since Hj. is a closed subspace of H*® (R™), it is therefore a Hilbert space when
equipped with the restriction of the inner product of H*® (R").

We can now prove the Sobolev imbedding theorem, which states that if
s is a sufficiently large positive number then the elements of H® (R") are
equivalent to Holder continuous functions.

pe @) =0,Vo € D(F) = suppu C F |}
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Theorem 2.5 Suppose 0 < p < 1. If u € H"?*TH(R"), then u has an ae
Hélder-continuous representative in L? (R™). In fact,

|h(z)] < C|’“HH"/2+H(R”)

and
() = h(y)| < C'llull sz m Iz — yl*
for z,y € R™, where h is the L? (R™) representative of u.

Proof If u € S (R") = 3g € S (R") such that V¢ € S (R") we have

<jn/2+,uu’ ¢> = (gv ¢)L2(R") = <U, ¢> = (j_n/2_ugv ¢)L2(R")
Let h = J/?7#g € S (R"). Now by the Fourier inversion formula

()| =

[ iemera < [ e
n Rn
and then by the Cauchy-Schwarz inequality and Plancherel’s theorem

—G-u Gtu

)l < [ @l ) Bl

n

27K
§H(1+1-|2) :

Fe

(1+1]-1%) = h()

|
= C||T = r2g@n) = Cllull 54

L2(R™)

(R™)

Now take u € H2*#(R"). From Lemma 2.1 we know 3 a sequence (u;) in
D (R") such that u; — u in H27#(R"). Now

|h](93') _ hk(;)j)| S C”U] — UkHH%'H‘(R”)

which implies (h;) is a uniformly Cauchy sequence of D (R™) functions. Thus

H(z) = lim hy(a)

J]—00

is a continuous function and h; — H uniformly. In fact, H is uniformly
continuous since

|H(z) = H(y)| < [H(x) = hy(2)] + [h;(x) = hi(y)] + [H(y) = h;(y)]



and each h; is uniformly continuous. Also, because h; — H uniformly and
each h; € L? (R"), we have H € L* (R").
For ¢ € S (R™) we have
(hjs @) r2®ny = (hy @) L2mny and (hy, @) re@ny — (H, @) r2(n)
= (h,®)r2wny = (H, ¢)r2(mny = h = H for ae z € R"

Thus for ae z
|h(z)] = |H(z)| = i ()] < leggo 5]l g+ ey = Cllull 340 gy

and the first inequality is proved.
-2 9 F+u A
|[(L41€]7) 7= h(£)dE
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Similarly, for u € H2*#(R"), define 6;h(x) = h(x +t) — h(x). Then by

the Fourier inversion formula we have

[ lh@)lde = | e tE-1](1+[€P)

|00 ()] <
R7 R™
and by the Cauchy-Schwarz inequality
[0ch ()] < My () l|wll g5+ gn)

e — 121+ [¢]*) TR g

where
(M, (t)* =
R”
Note [e2™¢—1|2 = 2(1—cos(27t-£)) and so 3 constant D such that for 0 < [€-¢] < 1
we have "¢ — 1| < DI¢ - |, which implies
[e*E = 1P(1  Jg ) 7B

(M, (1))* < / €2TE 12(1 4 [¢]2) 5 hdg + /
[€1<1/[t] |€1>1/|t]
<D € H2(1 4 [€2) 5 e + 4 / (14 [€2) 5 Hde
|€]<1/[t] |€]>1/]¢]
< D|t|? EI2(1 + |€]2) "2 HdE + 4 1+ €%~ 27Hdg
1t /md/'tu( P) /|521/|t|( €P)

[e.o]

<DRP [ lePqeRy e [ (i) i
l€1<1/1t] 1€1=1/1t]
p "2 p"dp in radial coordinates

1t
— D|t|2/ p2p—n+2upndp+4/
0 1/]¢]
= D[t]|t|* 2 + 4)t|* < E[t|* where E is a constant
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Thus we have

6h(@)] < Clelull ygonggey V.t ERT

R™)

which proves the second inequality. |
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