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1 Introduction

The purpose of this project is to investigate the poisson equation ∆φ = ρ on
closed manifolds (compact manifolds without boundary), where ρ is known,
and φ is unknown. A particular emphasis will be placed on Riemannian
manifolds.

We begin by introducing the basic machinery of differential geometry that
will be needed. For example, we will define smooth manifolds, Riemannian
manifolds, metric tensors, and other basic differential geometry constructs.
We will investigate how to properly generalize the Laplacian ∆ on Rn to a
Riemannian manifold. To do this we will need to define things such as the
divergence of a vector field on a manifold, the (metric induced) covariant
derivative, differential forms, the Hodge star operator, and the space of L2

functions on a manifold.
We then have the necessary machinery to prove the first of two main

results considered in this project. We prove the existence and uniqueness
of a smooth solution to the poisson equation ∆φ = ρ for smooth ρ. We do
this by using Riesz representation theorem to prove the existence of a weak
solution, and then we show that this weak solution is in fact smooth.

We will conclude by proving a Schauder estimate for elliptic operators on
complete, compact manifolds.

2 Geometric background

We begin by briefly reminding the reader of the definition of a manifold and
a smooth manifold [1].

Definition 1. A manifold M of dimension n is a topological space that is
Hausdorff, second countable, and every point of M has a neighbourhood that
is homeomorphic to an open subset of Rn.

A manifold as defined above is an adequate setting for investigating topo-
logical properties, but in order to perform analysis on a manifold, we must
introduce more (differentiable) structure.

If M is a manifold of dimension n, a coordinate chart (often just referred
to as a chart) on M is a pair (U,ϕ) where U is an open subset of M and
φ : U → Ũ is a homeomorphism from U to an open subset Ũ = ϕ(U) ⊂ Rn.
Clearly each point x ∈M is contained in at least one chart.
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If (U,ϕ), (V, ψ) are two charts such that U ∩ V 6= ∅, the composite map
ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is called the transition map from ϕ to ψ.
(V, ψ) and (U,ϕ) are said to be smoothly compatible if either U ∩ V = ∅ or
the transition map just defined is a diffeomorphism.

An atlas for M is a collection of coordinate charts whose domain covers
M . An atlas is smooth if all charts are smoothly compatible. A manifold
with a maximal smooth atlas is said to be a smooth manifold. If all of the
transition maps are merely differentiable, M is said to be a differentiable
manifold. If all transition maps are k times continuously differentiable then
M is said to be a Ck manifold.

For a given smooth manifold, there is no natural generalization of the
Laplacian on Rn (or indeed the well known Laplacian on the n-sphere) with-
out additional geometric structure on the manifold in the form a Riemannian
metric [2]. Hence we will focus on Riemannian manifolds, defined as follows:

Definition 2. A Riemannian manifold (M, g) is a smooth manifold M with
a family of varying positive definite inner products g = gx on TxM for every
x ∈M . The family g is called the Riemannian metric.

For the remainder of this text, when we say manifold we will be referring
to a Riemannian manifold, and rather than writing (M, g) we will simply
write M (unless the context warrants that the metric g be specified).

On Rn a natural choice of Riemannian metric is given by the usual inner
product from vector calculus, gx(u, v) = u · v for all u, v ∈ TxRn, for all
x ∈ Rn. Rn endowed with this metric is often called Euclidean space.

An interesting theorem of differential geometry, the Whitney embedding
theorem, states that every manifold possesses a Riemannian metric.

To do computations with a Riemannian metric, it is often necessary to
work in a local coordinate chart, and we represent gij(x) in this chart as

g =
∑
i,j

gijdx
i ⊗ dxj.

At this point I should mention that I will, as is conventional in differen-
tial geometry, utilize the Einstein summation convention, where if an index
appears more than once in the same term, then we are summing over that
index.

An interesting side note that can relate geometry with elementary analysis
familiar to many is that Riemannian manifolds are also metric spaces. If
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γ : [a, b]→M is a C1 curve on M then we define its length L(γ) by

L(γ) =

∫ b

a

||γ′(t)||dt,

where ||·|| is the norm induced by the metric, given by ||γ′(t)|| =
√
g(γ̇(t), γ̇(t)).

The Riemannian distance between points p and q on M is the infinum of the
length of all piecewise smooth curves joining p and q. (M,d) is a metric
space [3].

A very important definition when working on manifolds is the following
(recalling that a one-form is a linear function from Tx(M) → R) (see, for
example, [4] for a more complete definition):

Definition 3. A differential k-form is a tensor of rank k that is antisym-
metric under exchange of any pair of indices. It is possible to write a p-form
α in coordinates by

α = αi1···ikdx
i1 ∧ · · · ∧ dxik .

3 L2 spaces of functions

At this point we have the necessary machinery in place to develop the nec-
essary analysis on our Riemannian manifold. To avoid some problems later
on, in this section we will assume that M is oriented and connected (recall
that, roughly speaking, orientable in the manifold setting means that one
can choose a “clockwise” orientation for every loop on the manifold. For
a surface embedded in Rn this amounts to being able to make a consistent
choice of unit normal).

We wish to construct a Hilbert space of real values functions on M. To do
this we seek an n form α(x) such that 〈f, g〉 := 〈f, g〉M :=

∫
M
f(x)g(x)α(x)

defines a positive definite inner product space (recalling that n forms are
the objects that transform correctly to give an integral on a manifold). An
α requiring this property is called a volume form. The following choice of
volume form is derived in [2]:

Definition 4. The volume form of a Riemannian metric is the form dvol,
given in local coordinates by

dvol =
√

det gdx1 ∧ · · · ∧ dxn,
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where (∂x1 , . . . , ∂xn) is a positively oriented basis of TxM . The volume of
(M, g) is defined to be

vol(M) =

∫
M

dvol(x).

Definition 5. We define the Hilbert space L2(M, g) to be the completion of
C∞0 (M) with respect to the inner product 〈f, g〉 =

∫
M
f(x)g(x) dvol.

We can now set L2Λ1T ∗(M, g) to be the completion of C∞0 T
∗M with

respect to the global inner product

〈ω, η〉 =

∫
M

g(ω, η) dvol(x).

In a similar fashion, g induces an inner product g on each product TxM ⊗
· · ·⊗TxM , and so on each ΛkT ∗xM , and so a global inner product is given by

〈α, β〉 =

∫
M

g(α, β) dvol, α, β ∈ C∞0 ΛkT ∗M.

The completion is denoted L2ΛkT ∗M.

4 The Laplacian defined for functions on a

manifold

We now have at our disposal the geometric constructs necessary to define
the Laplacian for functions on a manifold. When defining such an operator,
we obviously want the Laplacian to agree with (up to a sign) the Laplacian
δij∂i∂j on Rn (here δ is the Kronecker delta). Unlike Rn however, we do not,
in general, have globally defined coordinates and so we need a coordinate
free expression in our generalization. Recall from vector calculus in Rn that
the Laplacian may be written as

∆f = δi
j∂i∂jf = (div ◦∇)f.

The operator div ◦∇ generalizes naturally to Riemannian manifolds. Be-
cause we have a Riemannian metric, we have, via the Levi-Civita connection
[4], a corvariant derivative operator ∇. Acting on functions in local coordi-
nates, one can think of this as the directional derivative.
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To define div, we observe that, using integration by parts, for f ∈ C∞0 (Rn),
gives the identitiy:

−
∫
Rn

(∂iX
i)f =

∫
Rn

(∂if)X i

for functions X i. So in Rn the divergence ∂iX
i of a vector field X = X i∂i

can be characterized by

〈− divX, f〉 = 〈X,∇f〉, (1)

where the inner product above is the usual dot product in Rn. In other
words, in Rn, − div is the adjoint to ∇. It is therefore natural to try and use
equation 1 to try and define div since we already have a generalization ∇f
and an inner product on Riemannian manifolds.

We now determine the form of such an operator in local coordinates
(x1, . . . , xn). Let f ∈ C∞0 (U), where U is a coordinate chart image in Rn,
and X be a vector field X = X i∂i ∈ TM . Then

〈X,∇f〉 =

∫
M

〈X,∇f〉 dvol =

∫
U

〈X i∂i, g
jk∂jf∂j〉 dvol

=

∫
U

X i(∂kf)gjkgij
√

det gdx1 . . . dxn

=

∫
U

X i(∂if)
√

det gdx1 . . . dxn

= −
∫
U

1√
det g

f · ∂i(X i
√

det g)
√

det gdx1 . . . dxn

=

〈
f,− 1√

det g
∂i(X

i
√

det g)

〉
So the div of X will satisfy

divX =
1√

det g
∂i(X

i
√

det g).

This expression is independent of choice of coordinates and so we define
the Laplacian on functions to be ∆ := − div ◦∇. This definition of the Lapla-
cian is sometimes called the Laplace-Beltrami operator. In local coordinates:

∆f = − 1√
det g

∂j(g
ij
√

det g∂if)

= −gij∂j∂if + (lower order).
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It is clear that in Rn this reduces to −δij∂j∂if , the usual Laplacian.
By writing (1) in terms of differential forms, we gain another useful char-

acterization of the Laplacian. For a one form α, we have

g(α(X), df) = g(X,∇F )

for any vector f and any function f . Let δ : Λ1T ∗M → C∞(M) be defined
by δ(ω) = − div(α−1(ω)) where α is the bundle isomorphism TM → T ∗M .
Then δ is characterized by

〈δω, f〉 = 〈ω, df〉

Now as a second, coordinate free definition of ∆, we write ∆ = δd, where
d is the exterior derivative. We may also write this in terms of the Hodge
star operator, a pointwise isometry ∗ = ∗x : ΛkT ∗xM → Λn−kT ∗xM . Choosing
a positively oriented orthonormal basis {θ1, . . . , θn} of T ∗xM , we define ∗ by
its action on basis elements θi1 ∧ . . . ∧ θik of λkxT

∗M , given by

∗(θi1 ∧ . . . θik) = θj1 ∧ . . . ∧ θjn−k

where θi1 ∧ . . . ∧ θik ∧ θj1 ∧ . . . ∧ θjn−k = dvol(x).
By somewhat lengthy but straightforward calculations it can be shown

that [2]
∆f = δdf = − ∗ d ∗ df.

This operator is known as the Hodge Laplacian. It agrees with the
Laplace-Beltrami operator on functions, but differs in general on differen-
tial forms.

5 The Poisson equation on a manifold

We are now ready to consider the equation ∆φ = ρ, where ρ is given and φ
is to be found, defined on a closed (compact without boundary) Riemannian
manifold.

We recall, see for example [6], that on a closed manifold we may integrate
according to the following rule:∫

M

u∆v − v∆u =

∫
M

v∆u.
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Hence setting u = 1, v = φ we get∫
M

∆φ = 0.

So we conclude that a necessary criterion to solve our problem is that∫
M

ρ = 0.

Throughout this section we will work towards proving the following theorem,
following the steps of [5]:

Theorem 1. On a closed Riemannian manifold M , if ρ is a smooth function
of integral 0 then there is a smooth solution of the equation ∆φ = ρ, unique
up to the addition of a constant.

A C∞ function φ satisfies ∆φ = ρ if and only if for all test functions we
have

〈∇f,∇φ〉 = 〈f, ρ〉.
Define the following norm on the space of smooth function of integral zero
C∞0 by

||f ||2H =

∫
M

|∇f |2.

There is an associated inner product with this norm [7] (to see this note
that this norm is in fact equivalent to the usual norm given to the Sobolev
space H1), so C∞0 is a pre-Hilbert space, and we denote its completion by H.
By the Reisz representation theorem of functional analysis, for any bounded
linear map α : H → R there is a unique a ∈ H such that α(f) = 〈a, f〉H for
all f ∈ H. Then αρ(f) = 〈ρ, f〉 is a linear map from C∞0 to R.

Suppose for the moment that this extends to a bounded map on H. Then
by the representation theorem there exists φ ∈ H such that

〈∇φ,∇f〉 = 〈ρ, f〉,

for all f . Then φ is known as a weak solution to the poisson equation. Thus
we can prove the theorem by proving the following two assertions:

1. αp extends to a bounded linear map on H.

2. A weak solution f ∈ H is actually smooth.

7



We observe that the first assertion follows from the Poincare inequality
for Riemannian manifolds (for a proof of this inequality see [8]), namely that∫

M

|φ|2 ≤ C2

∫
M

|∇φ|2

for all φ of integral zero.
We now seek to prove the smoothness of a weak solution. Suppose that

φ ∈ H is a weak solution. Let {φi} be a Cauchy sequence of smooth functions
of integral 0 and for any ψ we have

〈φi, ψ〉H → αρ(ψ),

as i → ∞. Appealing once more to Poincare’s inequality, the sequence is
Cauchy in L2 and so has a limit φ in L2. We need to show that φ is smooth.
Smoothness is a local property, so we will restrict our analysis to a single
chart, and so we prove it for a bounded open set Ω ⊂ Rn:

Theorem 2. Let Ω be a bounded open set in Rn and ρ be a smooth function
on Ω. Suppose φ is an L2 function on Ω with the property that for any smooth
function χ of compact support in Ω,∫

Ω

∆χφ =

∫
Ω

χρ.

Then φ is smooth and satisfies the equation ∆φ = ρ.

Proof. We first reduce to the case where ρ vanishes everywhere. Smoothness
is local, so it suffices to prove the claim that φ is smooth over an arbitrary
set Ω′ ⊂ Ω. Now we choose ρ′ equal to ρ on a neighbourhood of the closure
of Ω′ and of compact support in Ω. Then if we find a smooth solution φ′ of
∆φ′ = ρ′ over Ω then ψ = φ − φ′ will be a weak solution of ∆ψ = 0 on Ω′.
Then if we show that ψ is smooth so will be φ. But we can find a solution
using the Newtonian potential; if τ has compact support in Ω and equal to
1 on Ω′ then K ∗ (τρ) satisfies ∆φ′ = ρ over Ω′.

So we have reduced the problem to the case ρ = 0. We suppose that φ is
a weak solution of ∆φ = 0 on Ω and seek to prove that φ is smooth in the
interior domian Ω′. Fix a smooth function β on R with β(r) constant for
small r and vanishing for r ≥ ε, with the property that

|Sn−1|
∫ ∞

0

rn−1β(r)dr = 1.
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Now let B(z) = β(|z|) on Rn. B as defined is smooth and has integral 1 over
Rn. If ψ is a smooth harmonic function on a neighbourhood of the closed
ε-ball centered at the origin then (using mean value property and switching
to polar coordinates):∫

Rn
B(−z)ψ(z) =

∫ ∞
0

∫
Sn−1

rn−1β(r)ψ(r, θ)dθdr = ψ(0).

But this integral is just the convolution B ∗ ψ at 0. Hence by translation
invariance we have shown that for any smooth ψ on Rn with ∆ψ supported
in a compact set J ⊂ Rn that B ∗ψ−ψ vanishes outside the ε neighbourhood
of J . In particular, if φ is smooth on Ω then B ∗φ = φ in Ω′. We also known
(elementary analysis) that for any L2 function φ that B ∗φ is smooth. Hence
proving the smoothness of φ in Ω′ is equivalent to establishing that B ∗φ = φ
in Ω′.

To do this it is sufficient to show that for any test function χ in Ω′ that

〈χ, φ−B ∗ φ〉L2 = 0,

where we have the L2 inner product

〈f, g〉L2 =

∫
fg.

Let h = K ∗ (χ−B ∗χ) = K ∗χ−B ∗K ∗χ. K ∗χ is smooth on Rn and since
K is the Newtonian kernel we have that ∆(K ∗ χ) = χ. This impies that
∆(K ∗ χ) vanishes outside the support of χ and by what we showed above
B ∗ K ∗ χ = K ∗ χ outside the ε-neighbourhood of the support of χ. So h
is of compact support contained in Ω and h can be used as a test function
in the hypothesis that ∆φ = 0 in the weak sense, i.e. 〈∆h, φ〉 = 0. But
∆h = ∆(K ∗ (χ−B ∗ χ)) = χ−B ∗ χ, hence

〈χ−B ∗ χ, φ〉 = 0

and applying the identity proved above yields

〈χ, φ−B ∗ φ〉 = 0

as was to be shown.

Hence we have shown that

1. αp extends to a bounded linear map on H.

2. A weak solution f ∈ H is actually smooth.

and so have in fact proven theorem 1.
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6 A Schauder estimate on complete closed

manifolds

To conclude this project we will go over a proof of a Schauder estimate for
elliptic operators on closed manifolds. In fact, the analysis to follow is valid
not only for closed manifolds but more generally for any compact manifold.
The proof to follow is based on the proof given in [9].

Let M be a compact Riemannian manifold of dimension n. We now
generalize various definitions to the case of a compact Riemannian manifold:

Definition 6. The Ck norm corresponding to the metric g of M is given by

|u|Ck(M) = |u|0,M +
k∑
l=1

sup
x∈M
||∇lu(x)||g,

where | · |0,M is the supremum norm on M and ||∇lu||g is the norm induced
by g of the tensor ∇lu.

Recall that Riemannian manifolds are metric spaces, with the distance
d(x, y) between two points x, y ∈ M defined in the geometric background
section. We define the Hölder semi-norm for functions [u]α,M of exponent α
as

[u]α,M := sup
x,y∈M

|u(x)− u(y)|
(d(x, y)α)

, u ∈ C0(M).

We now define a Hölder semi-norm for tensors. This is a little bit more
complicated however since we cannot write, (for a tensor T and points
x, y, x 6= y) T (x) − T (y). To generalize the Hölder semi-norm to tensors,
we make use of parallel transport, i.e. let τ(x,y) : TxM → TyM be the iso-
morphism of tangent spaces along the geodesic connecting x to y. We now
define the Hölder semi-norm for a tensor T as

[T ]α,M := sup
x,y∈M

||T (x)− τ ∗(x,y)(T (y))||g
(d(x, y)α)

.

We define the kth order Hölder coefficient as

[u]k,α,M := [∇ku]α,M

and the Ck,α Hölder norm of u ∈ Ck(M) as

|u|Ck,α(M) := |u|Ck(M) + [u]k,α,M .
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We call the space Ck,α(M) the space of Ck functions on M with finite Ck,α

norm.
We now consider the case where Ω ⊆ M is a domain. We can then

consider the Hölder norms on Ω by taking all suprema in the definitions
above to be over Ω and not M . In a sufficiently small domain Ω there exist
so called Riemannian normal coordinates in which gij(x) = δij and gij,k = 0
at a point x in the center of the coordinate chart. By continuity, for any
a ∈ R there exists a number r(x) such that if Ω is a domain containing x of
diameter less than r(x) then

|gij − δij|0 + |gij,k|0 ≤ a, in Ω.

Furthermore, M is compact so there is a minimal diameter rg. We will call
rg the radius of uniformity of the metric g.

Proposition 1. Let Ω be any domain of diameter less than rg. Then there
exists a constant C (depending only on n) such that

1

C
|u|δk,α,Ω ≤ |u|Ck,α(Ω) ≤ C|u|δk,α,Ω,

for any u ∈ Ck,α(M). | · |δk,α,Ω refers to the Ck,α with respect to the norm on
Ω induced by the Euclidean metric when Ω is viewed as a subset of Rn.

Proof. Choosing Riemannian normal coordinates, we may estimate the supre-
mum norm in a straightforward fashion by expression the covariant deriva-
tives in terms of ordinary derivatives and the connection coefficients. Note
that the Hölder coefficient bounds involve parallel transport, which can be
expressed as the solution of an ODE with initial conditions. Recall that the
ODE is given by

∇γ̇(t)γ̇(t) = 0.

Hence we can bound the parallel transport in terms of the initial conditions,
giving estimates on the Hölder coefficient.

We now suppose that L is an elliptic operator L = aij∇i∇j + bi∇i + c
where a symmetric and positive definite tensor, b is a C0,α vector field on M
and c ∈ C0,α(M), and that L satisfies the conditions

||a||C0,α(M) + ||b||C0,α(M) + ||c||C0,α(M) ≤ Λ,

λ||ξ||2 ≤ aij(x)ξiξj ≤ Λ||ξ||2, for all x ∈M, ξ ∈ Rn.
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Consider the following problem:

Lu = f in M,

if M is closed and

Lu = f in M

u = g on ∂M

if M is open.
We can now prove the following Schauder estimate:

Theorem 3. Let L be as above. Then there exists a constant C depending
on M,λ,Λ such that

|u|C2,α(M) ≤ C(|Lu|C0,α + |u|0,M),

valid for all u ∈ C2,α(M).

Proof. Let (Ui, φi) be a covering of M by a finite number (possible because
our manifold is compact) of normal coordinate charts with diameter less than
rg.

|u|C2(M) ≤
∑
i

|u|C2(Ui)

≤ C
∑
i

|u ◦ φ−1
i |δC2(φi(Ui))

≤ C
∑
i

|u ◦ φ−1
i |δk,α,φi(Ui)

≤ C
∑
i

(|φ∗iL(u ◦ φ−1
i )|δ0,α,φi(U) + |u ◦ φ−1

i |0,φi(Ui)),

φ∗iL denoting the operator L written in local coordinates. Applying the
metric bounds

|u|C2(M) ≤ C
∑
i

(|Lu|C0,α(Ui) + |u|0,Ui)

≤ C(|Lu|C0,α(M) + |u|0,M).
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We now estimate the Hölder coefficient in the two possible cases: if x and
y are points in M with d(x, y)〈rg and d(x, y) ≥ rg. In case one consider a
normal coordinate neighbourhood (Ω, φ) containing x and y. Then

||∇2u(x)− τ ∗(x,y)∇2u(y)||g

(d(x, y)α)
≤ [∇2u]gα,Ω

≤ C[φ∗(∇2u)]δα,φ(Ω) using metric bounds

≤ C(|φ∗L(u ◦ φ)|δ0,α,φ(Ω) + |u ◦ φ|0,φ(Ω))

≤ C(|Lu|C0,α(M) + |u|0,M).

In the case d(x, y) ≥ rg

||∇2u(x)− τ ∗(x,y)∇2u(y)||g

(d(x, y))α
≤ C|∇2u|0,Mrαg

≤ C|u|Ck(M)

≤ C(|Lu|C0,α(M) + |u|0,M)

Now taking the sup of the quotient above and combining this with the
ordinary derivative estimates yields the result.
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