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1 Introduction

Hodge theory, named after W. V. D. Hodge, is originally formulated for the de
Rham complex. Practically ,it can be used to study Riemannian and Kahler
manifold and algebraic geometry of complex projective varieties . It is related
to the study of nonlinear PDEs. Also, the famous Hodge Conjecture is among
one of the Clay Mathematics Institute’s Millennium Prize Problems.
In this note,we will introduce the basics of Hodge theory. M will always denote
compact oriented Reimannian manifold of dimension n.we will define the notion
of Lapalace-Beltrami operator,which is the generalization of the classical ∆ on
differential forms.We will prove the Hodge decomposition theorem,which says
that this equationδhas a solution w in the smooth p-forms on M if and only
if the p-form α is orthogonal(w.r.t some inner product on epm to the space of
harmonic p-forms.From it, we will show that there exists a unique harmonic
form in each de Rham cohomology class.

2 Laplace-Beltrami Operator

First , we will define the operator ∗ . Let V be an n dimensional inner product
space , we will extend the inner product on V to all of Λ(V ), which is the space
of all differential forms on V . The inner product is defined such that , the inner
product of elements which are homogeneous of different degrees equals to zero,
and for same degree

< w1 ∧ · · · ∧ wp, v1 ∧ · · · ∧ vp >= det < wi, vj > .

and extending binearly to all of Λp(V ), the space of differential forms of homo-
geneous degree p , hence extending to Λ(V ). For {e1, · · · , en} an orthonormal
basis of V , we have {ei1 ∧· · ·∧eir ; i1 ≤ · · · ir} is an orthonormal basis for Λ(V ).
Note that since Λn(V ) is one-dimensional, Λn(V )−{0} has two component. We
define orientation on V to be a choice of component of Λn(V )− {0}. For V an
oriented inner product space , there is a linear transformation :

∗ : Λ(V )→ Λ(V ),
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called star which is defined as follows :

∗(1) = ±e1 ∧ · · · ∧ en, ∗(e1 ∧ · · · ∧ en) = ±1.

∗(e1 ∧ · · · ∧ ep) = ±ep+1 ∧ · · · ∧ en,

where one takes + if e1 ∧ · · · wedgeen lies in the component of Λn(V ) − {0}
determined by the orientation and − otherwise.
Now we observe that

∗Λp(V )→ Λn−p(V ).

And on Λp(V ),

∗∗ = (−1)p(n−1).

Also, one can easily verify for any v, w ∈ Λp(V ),

< v,w >= ∗(w ∧ ∗v) = ∗(v ∧ ∗w).

We also define an operator δ from p- form to p− 1- form by

δ = (−1)n(p+1)+1 ∗ d ∗ .

On 0-form, we define it to be the zero linear functional. The Laplace-Beltrami
∆ is defined as

∆ = δd+ dδ,

which is linear on space of smooth p-froms, Ep(M). In particular for p = 0, on

E0(M) = C∞(M) , ∆ =
∑i=n

i=1 (−1) ∂2

∂x2
i
. Also, one can check that

∗∆ = ∆ ∗ .

We define the inner product on Ep(M) of smooth p-forms on M by:

< α, β >=

∫
M

α ∧ ∗β

where α, β ∈ Ep(M). and denote norm w.r.t this inner product as ‖ ‖. It is
an exercise to show that this is in fact a well defined inner product. We can
extend the inner product on

∑p=n
p=0 E

p(M) by requiring that different Ep(M) to
be orthogonal analogous to what we do on Λp(V ).

Lemma 1 δ is the adjoint of d on
∑p=n

p=0 E
p(M), that is < dα, β >=< α, δβ >
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proof :
It is enough to prove the case where α is a p − 1 form and β is a p form and
extend by linearity and orthogonality to all

∑p=n
p=0 E

p(M).

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β = dα ∧ ∗β − α ∧ ∗δβ.

Now we integrate over M and use Stoke’s theorem ,we can obtain

0 =

∫
M

(dα ∧ ∗β − α ∧ ∗δβ) =< dα, β > − < α, δβ >

Hence our result.

Corollary 2 ∆ is self adjoint , that is < ∆α, β >=< α,∆β > where α, β ∈
Ep(M)

Proposition 3 ∆α = 0 if and only if dα = 0 and δα = 0

proof
Clearly ∆α = 0 if dα = 0 and δα = 0 by definition.
On the other hand,

< ∆α, α >=< (dδ + δd)α, α >=< δα, δα > + < dα, dα > .

So if ∆α = 0 , dα and δα must be zero

Corollary 4 The only harmonic functions on a compact , connected ,oriented
,Riemannian manifold are the constant functions

3 The Hodge Theorem and its Consequences

We use ∆∗ to denote the adjoint of ∆ which is just ∆ itself . We use this notation
for symbolical convenience. We are interested in finding necessary and sufficient
condition for existence of solution to ∆ω = α as remarked in the introduction.
To proceed , we first try to find its weak solution. Note that

< ∆ω, ϕ >=< α,ϕ > for allϕ ∈ Ep(M)

from it,
< ω,∆∗ϕ >=< α,ϕ > for allϕ ∈ Ep(M)

We can see that ω determines a bounded linear fucntional l on Ep(M) :

l(β) =< ω, β > .

Here,
l(∆∗) =< α,ϕ > for allϕ ∈ Ep(M)

Definition 5 We denote Hp = {ω ∈ Ep(M) : ∆ω = 0}. The elements in Hp

are called harmonic p-forms.
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We notice that the ordniary solution of ∆ω = α determines a weak solution l,
we also have the converse that each weak solution l of ∆ω = α is represented
by a smooth form ω such that l(β) =< ω, β > holds. Now ,

< ∆ω, β >=< ω,∆∗ >= l(∆∗β) =< α, β >

for all β ∈ Ep(M), which shows ∆ω = α holds. To summarize

Theorem 6 Let α ∈ Ep(M) and let l be the weak solution of ∆ω = α. Then
there exist ω ∈ Ep(M) such that l(β) =< ω, β > for every β ∈ Ep(M). Also ,
∆ω = α.

Theorem 7 For any sequence {αn} of smooth p-forms on M such that ‖an‖ ≤
c and |∆an| ≤ c for all n and for some c > 0. Then a subsequence of {an} is a
Cauchy sequence in Ep(M).

We will not prove these two theorems. The proofs are very technical. The
outline is to employ the Fourier series. And one need some result in Soblev
space and functional analysis , (e.g Soblev lemma,Rellich lemma and Peter-
Paul-Inequality ) . Also ,we need to reduce the problem to the periodic case
and show the operator is elliptic.

Theorem 8 For each interger p with 0 ≤ p ≤ n, Hp is finite dimensional ,
with the following orthogonal direct su decomposition:

Ep(M) = ∆Ep ⊕Hp = dδ(Ep)⊕ δd(Ep)⊕Hp = d(Ep−1)⊕ δ(Ep+1)⊕Hp.

Consequently , we have from the decomposition , the equation ∆ω = α has a
solution ω ∈ Ep(M) if and only if the p-form α is orthogonal to the space of
harmonic p-forms, hp.

proof
First, we can show that Hp is finite dimensional. Since if not, there exist an
infinite orthonormal sequence , by previous theorem, this orthonormal sequence
contain a Cauchy subsequence , which contradicts the orthonormality.
It is also enough to prove the first = for the identity, the rest follows from
previous computations. For any α ∈ Ep(M), we can write uniquely:

α = β +

l∑
i=1

< α,ωi > ωi.

where β ∈ (Hp)⊥. Now Ep(M) = (Hp)⊥ ⊕ Hp, we will show that (Hp)⊥ =
∆(Ep) . We have ∆(Ep) ⊂ (Hp)⊥. For ω ∈ Ep and α ∈ Hp,

< ∆ω, α >=< ω,∆ >= 0.

On the other hand, we want to show (Hp)⊥ ⊂ ∆(Ep). To do this, we first prove
the fact that there is a constant c such that

|β| ≤ |∆β| ,∀β ∈ (Hp)⊥.
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If this were not true, we would have a sequence βj ∈ (Hp)⊥ with |βj | = 1
and |∆βj | → 0., then by previous theorem, there is a subsequence of βj , wlog
suppose it’s {βj} itself, is Cauhcy . limj→∞ < βj ,
psi > exist for every ψ ∈ Ep. We define the linear functional on Ep

l(ψ) = lim
j→∞

< βj , ψ >

Note that l is bounded and l(∆ϕ) = limj→∞ < βj ,∆ϕ >=< ∆βj , ϕ >= 0. So l
is the weak solution of ∆β = 0. By previous theorem, there exists β ∈ Ep(M)
such that l(ψ) =< β,ψ >. And βj → β. Because |βj | = 1 and βj ∈ (Hp)⊥ ⇒
|β| = 1, β ∈ (Hp)⊥. But by previous theorem, ∆β = 0 and β ∈ Hp which is a
contradiction.
Now , we can use this to prove (Hp)⊥ ⊂ ∆Ep. Let α ∈ (Hp)⊥ , we redefine our
l to be

l(∆ϕ) =< α,ϕ >,∀ϕ ∈ Ep.

It is easy to check l is a well defined bounded linear functional on ∆(Ep). Let
ϕ ∈ Ep(M) and ψ = ϕ−H(ϕ), here H(ϕ) is the harmonic part of ϕ. We obtain

|l(∆ϕ)| = |l(∆ψ)| = | < α,ψ >≤ |α| | |ψ| ≤ c |α| |∆ψ| = c |α| |∆ϕ|

By Hahn Banach theorem, l extends to a bounded linear functional on Ep(M).
l is a weak solution of ∆ω = α. Hence we get the inclusion. (Hp)⊥ = ∆(E⊥)
completes our proof of Hodge’s decomposition theorem.

Remark 9 (Hahn Banach) Let p be a finite convex functional defined on a
linear space L , and let L0 be the subspace of L. Suppose that f0 is a linear
functional on L0 satisfying the condition f0(x) ≤ p(x) on L0. Then f0 can be
extended to a linear functional L satisfying f(x) ≤ p(x) on the whole space L.

Definition 10 We can also define Green’s operator , G : Ep(M) → (Hp)⊥ by
setting G(α) equal to the unique solution of ∆ω = α−H(α) ∈ (Hp)⊥. One can
check that G is a bounded self adjoint operator which takes bounded sequences
into sequences with Cauchy subsequences. Also, G commutes with d, δ, and ∆.
We have in fact a stronger result:

Proposition 11 For any linear operator which T such that T∆ = ∆T .

proof
We let T : Ep(M) → Eq(M) be our linear operator such that T∆ = ∆T .
Denote π(Hp)⊥ to be the projection map on to (Hp)⊥. By definition ,G =

(∆|(Hp)⊥)−1 ◦ π(Hp)⊥ . From hodge decomposition theorem along with identity

T∆ = ∆T , we have T (Hp) ⊂ Hq and T ((Hp)⊥) ⊂ (Hq)⊥. We can now get

T ◦ π(Hp)⊥ = π(Hp)⊥ ◦ T ⇒

T ◦ (∆|(Hp)⊥) = (∆|(Hp)⊥) ◦ T
and finally,

T ◦ (∆|(Hp)⊥)−1 = (∆|(Hp)⊥)−1 ◦ T.
This would imply directly that G commutes with T .
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Definition 12 A sequence of vector spaces and maps (Vi, di), where di : Vi →
Vi+1, is called a complex if di+1 ◦ di = 0. Consider the complex

dp−2−−−→ Ωp−1(M)
dp−1−−−→ Ωp(M)

dp−→ Ωp+1(M)
dp+1−−−→

and define Hp
dR(M) = Ker(di)

Im(di−1)

Theorem 13 Each de Rham cohomology class on a compact oriented Rieman-
nian manifold M contains a unique harmonic representative.

proof
For any p-form on M , we have

α = dδGα+ δdGα+Hα = dδGα+ δGdα+Hα

by commutativity of Green’s operator. if α is a closed form ,

α = dδGα+Hα.

Here Hα is a harmonic p-form in the same deRham cohomology class as α. If
two harmonic forms α1 and α2 differ by an exact form dβ , then

0 = dβ + (α1 − α2).

Note that < dβ, α1 − α2 >=< β, δα1 − δα2 >=< β, 0 >= 0. We have that
dβ = 0 and α1 = α2. Hence ,we showed that there is a unique harmonic form
in each de Rham cohomology class.

Remark 14 Recall that a closed form α is a differential form whose exterior
derivative dα is zero. A exact form α is a differential form such that there exist
a form β , dβ = α
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