
Hamilton− Jacobi Equations

The main problem to be discussed in this paper is to solve the following:{
ut +H(Dxu, x) = 0 in Rn × (0,∞) (1)
u = g on Rn × {t = 0}. (2)

This is known as the Hamilton-Jacobi equation; physically it represents an
elegant and mathematically sophisticated reformulation of Newtonian me-
chanics (1687), and is equivalent to Lagrangian mechanics (1788) and Hamil-
tonian mechanics (1833), which are other reformulations of Newtonian me-
chanics that trade the use of vectors to solve problems for more differential
equations.

The Hamiltonian, represented by H : Rn × Rn → R, as well as the ini-
tial function g : Rn → R, are specified. The problem is to find the func-
tion u : Rn × [0,∞) → R, (known as Hamilton’s principle function) where
u = u(x, t) and Dxu = (ux1 , ....., uxn). We define p ≡ Dxu, pn+1 ≡ ut so that
now (1) becomes pn+1 +H(p, x) = 0.

We will start by considering the following nonlinear first order partial differ-
ential equation:

F (Dxu, x) = 0 in Ω,

where x = (x1, ...xn), F is a smooth function, and u=u(x) ∈ C2(Ω). Now
making use of the method of characteristics, we let x = x(s), p(s) ≡ Dxu(x(s)),
˙≡ d

ds
, and we compute derivatives:

ṗk = uxkxj(x(s))ẋj (3)

where we employ Einstein summation notation over the repeated index j =
1, ...., n (we will use this notation throughout this paper). We next differen-
tiate F (Dxu, x) with respect to xk and evaluate it at x=x(s), and get

∂F

∂pj
(p(s), x(s))uxjxk +

∂F

∂xk
(p(s), x(s)) = 0
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=⇒ ∂F

∂pj
(p(s), x(s))uxjxk = − ∂F

∂xk
(p(s), x(s)) (4)

Thus setting

ẋj(s) =
∂F

∂pj
(p(s), x(s)) (5)

and substituting this into (4), we can use (3) to see that

ṗk = − ∂F

∂xk
(p(s), x(s)) . (6) .

Putting together (5) and (6) and using more compact notation, we have{
ṗ(s) = −DxF (p(s), x(s)) (7)
ẋ(s) = DpF (p(s), x(s)) (8)

We will now make use of (7), (8) for the main problem (with p→ (p, pn+1), x→
(x, t)): Let

F ((p, pn+1) , (x , t)) = pn+1 +H(p, x) = 0,

=⇒ D(p, pn+1)F = (DpH, 1), D(x, t)F = (DxH, 0),

then by comparing with (7) and (8), we get{
ṗ(s) = −DxH(p(s), x(s)) (9)
ẋ(s) = DpH(p(s), x(s)) . (10)

This is a system of 2n first order ordinary differential equations, and it is
comprised of the characteristic equations for the Hamilton-Jacobi equations;
they are known as Hamilton’s equations.

Lagrangian:

Consider a specified smooth function, L : Rn × Rn → R, which we will
call the Lagrangian. We introduce the functional, called the action, defined
by

I[x] =

∫ t

0

L(ẋ(s), x(s)) ds

where x ∈ A ≡ {f ∈ C2([0, t];Rn) : f(0) = y, f(t) = z}. We will look for the
y ∈ A such that I[y] = min

x∈A
I[x]. (11).
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Physically, letting L = T − V ( the kinetic energy associated with a particle
minus its potential energy), then Hamilton’s principle of least action says
nature minimizes the action.

Theorem : If the function y solves (11), then y satisfies the Euler-Lagrange
equations:

d

ds
DẏL(ẏ, y)−DyL(ẏ, y) = 0 .

Proof : Let ε ∈ R, v = (v1, ...., vn) : [0, t] → Rn be a smooth function
satisfying v(0) = v(t) = 0. Then

I[y] ≤ I[y + εv]

so the right hand side has a minimum at ε = 0, so differentiating the right
hand side with respect to epsilon, we have that

I ′[y] = 0.

I[y + εv] =

∫ t

0

L(ẏ + εv̇, y + εv) ds

=⇒ I ′[y + εv] =

∫ t

0

Lẏi(ẏ + εv̇, y + εv)v̇i + Lyi(ẏ + εv̇, y + εv)vi ds

=⇒ 0 = I ′[y] =

∫ t

0

Lẏi(ẏ, y)v̇i + Lyi(ẏ, y)vi ds ,

and after integrating by parts on the left term of the integrand (and using
the fact that v vanishes at the end points), we get

0 = I ′[y] =

∫ t

0

(
− d

ds
Lẏi(ẏ, y) + Lyi(ẏ, y)

)
vi ds .

Since this is true for all smooth v which satisfy the boundary conditions, this
implies that

− d

ds
Lẏi(ẏ, y) + Lyi(ẏ, y) = 0

for all 0 ≤ s ≤ t, i = 1, ..., n. �

Note that the converse is not true; a function that satisfies the Euler-Lagrange
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equations is called a critical point of I[·], and not all critical points are min-
imizers.

Connecting the Hamiltonian with the Lagrangian :

Suppose that for all x, p ∈ Rn we can uniquely solve for a smooth function
ẋ = ẋ(p, x) the equation p = DẋL(ẋ, x), then for a particilular Lagrangian
L, with q ≡ ẋ(x, p),the associated Hamiltonian is

H(p, x) ≡ p · q(p, x)− L(q(p, x), x).

Theorem : The functions x and p satisfy Hamilton’s equations ((9) and (10))
and H(p(s), x(s)) is constant in s.

Proof :
∂xiH = pk · ∂xiqk − ∂qkL ∂xiqk − ∂xiL

and using that p = DqL, we have that

∂xiH = −∂xiL = −ds∂ẋiL = −ṗi .

∂piH = qi + pk∂piqk − ∂qkL ∂piqk
and for the same reasoning, we thus have

∂piH = qi = ẋi.

Finally, we have

dsH(p(s), x(s)) = ṗi∂piH + ẋi∂xiH

= −∂xiH ∂piH + ∂piH∂xiH = 0 . �

This is not the only connection between the Hamiltonian and the Lagrangian;
they are acutally dual convex functions. Basically, if we postulate that the
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mapping q 7→ L(q) is convex (for all t ∈ [0, 1] and q1, q2 ∈ Rn,

L(q2− t[q2− q1]) ≤ L(q2)− t[L(q2)−L(q1)]), and that lim
q→∞

L(q)
|q| =∞, we can

use the Legendre transform and write H(p) = max
q∈Rn

[pq − L(q)] for p ∈ Rn;

note that the maximum necessarily exists due to the postulates. Now it
turns out that H satisfies the postulates we laid out on L, and that L is the
Legendre transform of H; in othe words, like Kelvin transform, the Legendre
transform is an involution.
Suppose for a minute that the equation is differentiable, then if we want to
find q∗ that maximizes it, we can differentiate and set to zero:

dH(q∗i )

dqi
= p− ∂qiL(q∗i ) = 0 =⇒ p = ∂qiL(q∗i )

Now we just need to invert this last for q∗ = q∗(p), and then we would have
our Hamiltonian.

Proof of Duality : Let t ∈ [0, 1]. Then

H(p2−t(p2−p1)) = sup
q

[(p2−t(p2−p1))q−L(q)] = sup
q

((tp1+(1−t)p2)q−L(q))

≤ t sup
q

(p1q − L(q)) + (1− t) sup
q

(p2q − L(q))

= tH(p1) + (1− t)H(p2) = H(p2)− t[H(p2)−H(p1)]

and so H(p) is convex.

Now pick a λ > 0, and let q = λ p
|p| , then

H(p) = sup
q∈Rn

[pq − L(q)] ≥ λ|p| − L
(
λ
p

|p|

)
≥ λ|p| − sup

B(0,λ)

L

and since λ was arbitrary,

=⇒ lim
|p|→∞

H(p)

|p|
=∞.
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Now getting back to the ”involutionism”, it is clear that

H(p) ≥ pq − L(q) =⇒ L(q) ≥ pq −H(p)

=⇒ L(q) ≥ sup
p

(pq −H(p)) = H∗(q)

where the ∗ indicates the Legendre transform of the function. Now we also
have that

H∗(q) = sup
p

[pq − sup
r

(pr − L(r))]

and using that sup(−x) = − inf(x), we get

H∗(q) = sup
p

inf
r

[p(q − r) + L(r)] .

Now L(q) is convex, so by the supporting hyperplanes theorem, there exists
an s ∈ Rn such that L(r) ≥ L(q) + s(r − q) for all r ∈ Rn (if L
is differentiable at q, then letting s = ∇L(q) gives the more common condi-
tion for convexity: that the function lies above all its tangents) . So letting
p = s, we have that

H∗(q) = H∗(q) = sup
p

inf
r

[p(q − r) + L(r)] ≥ inf
r

[s(q − r) + L(r)] ,

and since s(q − r) + L(r) ≥ L(q), letting r = q, we get

H∗(q) ≥ L(q)

and so finally we see that H∗(q) = L(q). �

Now going back to the original problem, the Hamilton-Jacobi equation, we
have already seen the deep connection between the Euler-Lagrange equations,
Hamilton’s ODEs, and the action, we can make an ansantz guess that there
is also a connection between the action and the Hamilton-Jacobi equation.

Claim:

u(x, t) = inf
{∫ t

0

L(ẇ(s)) ds+ g(y) : w ∈ C1, w(0) = y, w(t) = x
}
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solves the Hamilton-Jacobi equation. For simplification purposes it will be
assumed that g : Rn → R is Lipschitz continuous.

Theorem: (Hopf-Lax forumula). If x ∈ Rn and t > 0, then

u(x, t) = min
y∈Rn

{
tL
(
x− y
t

)
+ g(y)

}
.

Proof : Let y ∈ Rn, and w(s) ≡ y + s
t
(x− y) for 0 ≤ s ≤ t. Then we have

u(x, t) ≤
∫ t

0

L(ẇ(s)) ds+ g(y) = tL
(
x− y
t

)
+ g(y)

=⇒ u(x, t) ≤ inf
y∈Rn

{
tL
(
x− y
t

)
+ g(y)

}
.

Now, let w ∈ C1 be such that w(0) = y, w(t) = x, then since L is convex,
we can use Jensen’s inequality and write

L
(

1

t

∫ t

0

ẇ(s) ds

)
≤ 1

t

∫ t

0

L(ẇ(s)) ds

and upon carrying out the integration in the argument of the left hand side,
we see that

tL
(
x− y
t

)
+ g(y) ≤

∫ t

0

L(ẇ(s)) ds+ g(y).

Since y was arbitrary, this gives

inf
y∈Rn

{
tL
(
x− y
t

)
+ g(y)

}
≤
∫ t

0

L(ẇ(s)) ds+ g(y)

taking the infimum over w, and combining the result the last inequality gives

inf
y∈Rn

{
tL
(
x− y
t

)
+ g(y)

}
= u(x, t) .

It is left to show that the infimum is a minimum: Set y = x, then we have
u(x, t) ≤ tL(0) + g(x). Then since lim

|q|→∞

L(q)
|q| = ∞, there exists a constant

C > 0 such that tL(q) ≥ 2(K + 1)q for all |q| > C where K is the Lipschitz
constant associated with g. Then if |x− y| ≥ tC, we have

tL
(x− y

t

)
+ g(y) ≥ 2(K + 1)|x− y|+ g(y)
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= (K + 2)|x− y|+K|x− y|+ g(y) ≥ (K + 2)|x− y|+ g(x)

(I used that K|x− y| = sup
x6=y∈Rn

{
|g(x)−g(y)|
|x−y|

}
|x− y| ≥ g(x)− g(y))

≥ (K + 2)|x− y| − tL(0) + u(x, t).

Thus letting D = max
{
C, L(0)

K+2

}
, we have that

tL
(x− y

t

)
+ g(y) ≥ u(x, t)

provided |x− y| ≥ tD, and so evidently the infimum is a minimum. �.

Theorem : Suppose x ∈ Rn, t > 0, and that u is defined by the Hopf-Lax
formula and is differentiable at (x, t). Then

ut(x, t) +H(D(u)(x, t)) = 0.

Remark : For all x ∈ Rn and 0 ≤ s < t, we have that

u(x, t) = min
y∈Rn

{
(t− s)L

(
x− y
t− s

)
+ u(y, s)

}
Proof of Theorem : Let q ∈ Rn, h > 0. Then using the remark, we see
that

u(x+ hq, t+ h) = min
y∈Rn

{
hL
(
x+ hq − y

h

)
+ u(y, t)

}
≤ hL(q) + u(x, t)

as we see by setting y=x. Therefore we have that

u(x+ hq, t+ h)− u(x, t)

h
≤ L(q)

Now taking h→ 0+, we get that

q ·Du(x, t) + ut(x, t) ≤ L(q)

and since this is true for all q ∈ Rn, we get that

ut(x, t) +H(Du(x, t)) = ut(x, t) + max
q∈Rn
{q ·Du(x, t)− L(q)} ≤ 0
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=⇒ ut(x, t) +H(Du(x, t)) ≤ 0.

Now we just need to get the same inequality reversed. Let h > 0, and take
z such that u(x, t) = tL

(
x−z
t

)
+ g(z). Let s = t− h, y = s

t
x+ (1− s

t
)z; then

x−z
t

= y−z
s

, and so we get

u(x, t)− u(y, s) ≥ tL
(
x− z
t

)
+ g(z)−

(
sL
(
y − z
s

)
+ g(z)

)
= (t− s)L

(
x− z
t

)
.

Making the substitutions for h, we find that

u(x, t)− u(
(
1− h

t

)
+ h

t
z, t− h)

h
≥ L

(
x− z
t

)
.

Now take h→ 0+, and arrive at

x− z
t
·Du(x, t) + ut(x, t) ≥ L

(
x− z
t

)
.

Finally we see that

ut(x, t) +H(Du(x, t)) = ut(x, t) + max
q∈Rn
{q ·Du(x, t)− L(q)}

≥ ut(x, t) +
x− z
t
·Du(x, t)− L

(
x− z
t

)
≥ 0

=⇒ ut(x, t) +H(Du(x, t)) ≥ 0

and so we have equality. �

So we have arrived at the climax of the paper, that u defined by the Hopf-Lax
formula solves{

ut +H(Dxu, x) = 0 in Rn × (0,∞)
u = g on Rn × {t = 0}.
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