Hamilton — Jacobi Equations

The main problem to be discussed in this paper is to solve the following:

{ ut + H(Dyu,z) =0 in R" x (0, 00) (1)
u=g on R" x {t =0}. (2)

This is known as the Hamilton-Jacobi equation; physically it represents an
elegant and mathematically sophisticated reformulation of Newtonian me-
chanics (1687), and is equivalent to Lagrangian mechanics (1788) and Hamil-
tonian mechanics (1833), which are other reformulations of Newtonian me-
chanics that trade the use of vectors to solve problems for more differential
equations.

The Hamiltonian, represented by H : R" x R" — R, as well as the ini-
tial function g : R® — R, are specified. The problem is to find the func-
tion w : R™ x [0,00) — R, (known as Hamilton’s principle function) where
u=u(x,t) and Dyu = (Ug,,....., Uy, ). We define p = D,u, ppi1 = uy so that
now (1) becomes p,4+1 + H(p,z) = 0.

We will start by considering the following nonlinear first order partial differ-

ential equation:
F(D,u,xz) =0 in £,

where z = (z1,...z,), F is a smooth function, and u=u(x) € C?(Q). Now
making use of the method of characteristics, we let z = x(s), p(s) = Dyu(z(s)),
"= 4 and we compute derivatives:

P" = Uy, (2(s))37 (3)

where we employ Einstein summation notation over the repeated index j =

1,....,n (we will use this notation throughout this paper). We next differen-
tiate F'(D,u, z) with respect to x; and evaluate it at x=x(s), and get

oF oF

b)) 1+ G (pls).(5) =0



— a—w(p(s),x(s))uxjxk = - 8_xk(p(8)’x(s>> (4)

Thus setting

and substituting this into (4), we can use (3) to see that

w  OF
p ——a—m(p(S),x(S))' (6) -

Putting together (5) and (6) and using more compact notation, we have

(#= 2P ) )
#(s) = DypF(p(s), z(s)) (8)
We will now make use of (7), (8) for the main problem (with p — (p, pn+1), = —
(x,t)): Let
F((p, pn+1) ) (I‘,t)) = Pn+1 + H(pa .Z') = 07
— D(p,an)F = (DpH, 1), D(m’t)F = (DxH, O),

then by comparing with (7) and (8), we get

{ p(s) = =D, H(p(s), x(s)) (9)
(s) = DypH (p(s), x(s)) - (10)

This is a system of 2n first order ordinary differential equations, and it is
comprised of the characteristic equations for the Hamilton-Jacobi equations;
they are known as Hamilton’s equations.

Lagrangian:
Consider a specified smooth function, £ : R® x R® — R, which we will

call the Lagrangian. We introduce the functional, called the action, defined
by

where z € A = {f € C*([0,];R") : f(0) =y, f(t) = z}. We will look for the
y € A such that I[y| = Hlé;l I[z]. (11).



Physically, letting £ =T — V' ( the kinetic energy associated with a particle
minus its potential energy), then Hamilton’s principle of least action says
nature minimizes the action.

Theorem : If the function y solves (11), then y satisfies the Euler-Lagrange
equations:

d . .

25 DLW y) = DyL(y,y) = 0.

Proof : Let ¢ € R, v = (v1,....,v,) : [0,f] — R™ be a smooth function
satisfying v(0) = v(¢) = 0. Then

Iy] < Iy + ev]

so the right hand side has a minimum at € = 0, so differentiating the right
hand side with respect to epsilon, we have that

I'ly] =0.
t
I[y—i—ev]:/ L(y+ eb,y + ev) ds
0
t
= I'[y—l—ev]:/ Ly, (y+ev,y+ev)t, + Ly, (y+ ev,y + ev)v; ds
0

t
= 0=1'[y] =/ Ly (9, y)0s + Ly, (9, y)vids,
0

and after integrating by parts on the left term of the integrand (and using
the fact that v vanishes at the end points), we get

0= 1= [ (= S L00) + Lal.0) s,

Since this is true for all smooth v which satisfy the boundary conditions, this
implies that

d ) .
_Eﬁyi (ya y) + Eyi (ya y) =0

forall 0 <s<t,i=1,...,n. O
Note that the converse is not true; a function that satisfies the Euler-Lagrange
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equations is called a critical point of I[-], and not all critical points are min-
imizers.

Connecting the Hamiltonian with the Lagrangian :

Suppose that for all z, p € R™ we can uniquely solve for a smooth function
& = &(p,x) the equation p = D;L(&,x), then for a particilular Lagrangian
L, with ¢ = @(x, p),the associated Hamiltonian is

H(p,x) =p-q(p,x) — L(q(p, x), v).

Theorem : The functions = and p satisfy Hamilton’s equations ((9) and (10))
and H (p(s),z(s)) is constant in s.

Proof :

and using that p = D L, we have that
Op, H=—0,,L=—d;0;,L = —p;.

and for the same reasoning, we thus have
Op,H =q; = ;.
Finally, we have
dsH(p(s),z(s)) = piOp, H + %04, H
= =0, HOp,H+ 0, HO,,H=0. 01

This is not the only connection between the Hamiltonian and the Lagrangian;
they are acutally dual convex functions. Basically, if we postulate that the
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mapping ¢ — L(q) is convex (for all ¢ € [0,1] and ¢, g2 € R™,
L(q2 —tlga — ¢1]) < L(g2) —t[L(q2) — L(q1)]), and that qlggj % = 00, we can

use the Legendre transform and write H(p) = max [pg — L(q)] for p € R™
geR™

note that the maximum necessarily exists due to the postulates. Now it
turns out that H satisfies the postulates we laid out on £, and that £ is the
Legendre transform of H; in othe words, like Kelvin transform, the Legendre
transform is an involution.

Suppose for a minute that the equation is differentiable, then if we want to
find ¢* that maximizes it, we can differentiate and set to zero:

dH(q;)
dg;

=p—0,L(q;) =0 = p=04,L(q;)

Now we just need to invert this last for ¢* = ¢*(p), and then we would have
our Hamiltonian.

Proof of Duality : Let ¢ € [0,1]. Then

H(pa—t(p2—p1)) = Sgp[(pz—t(pz—pl))q—ﬁ@] = Stqlp((tp1+(1—t)pz)q—£(Q))

< tsgp(plq —L(g))+(1-1) Sl;p(pzq — L(q))

= tH(p1) + (1 — t)H(p2) = H(ps) — t[H(p2) — H(p1)]

and so H(p) is convex.

Now pick a A > 0, and let ¢ = )\%, then

p
H(p) = ;euRg[pq — L(q)] > Ap| — E(Aa)

> Ap| — sup £

B(0,\)
and since A\ was arbitrary,
. H
= lim ﬁ
[pl=oe [P



Now getting back to the ”involutionism”, it is clear that
H(p) = pg — L(q) = L(q) = pq — H(p)
= L(q) = sup(pq — H(p)) = H"(q)
p

where the * indicates the Legendre transform of the function. Now we also
have that

H*(g) = sup[pg — sup(pr — L(r))]
P T
and using that sup(—z) = —inf(x), we get

H"(q) = supinf[p(q —r) + L(r)].

p

Now L(q) is convex, so by the supporting hyperplanes theorem, there exists
an s € R" such that £(r) > L(q) + s(r — q) for all r € R™ (if £

is differentiable at ¢, then letting s = V.L(q) gives the more common condi-
tion for convexity: that the function lies above all its tangents) . So letting
p = s, we have that

H*(q) = H*(q) = supinflp(q — ) + L(r)] > inf[s(q —7) + L(r)],

p

and since s(q — r) + L(r) > L(q), letting r = ¢, we get
H*(q) > L(q)

and so finally we see that H*(q) = L(¢q). O

Now going back to the original problem, the Hamilton-Jacobi equation, we
have already seen the deep connection between the Euler-Lagrange equations,
Hamilton’s ODEs, and the action, we can make an ansantz guess that there
is also a connection between the action and the Hamilton-Jacobi equation.

Claim:
u(x,t) = inf { /Otﬁ(w(s)) ds+g(y) :w e C', w(0) =y, w(t) = x}
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solves the Hamilton-Jacobi equation. For simplification purposes it will be
assumed that g : R™ — R is Lipschitz continuous.

Theorem: (Hopf-Lax forumula). If z € R™ and ¢ > 0, then

u(e, 1) = min {tﬁ(%) + g(y)}.

Proof : Let y € R", and w(s) =y + $(z — y) for 0 < s < ¢. Then we have

e < [ i) ds+ o) = 2 (2 ) + ot

— u(z,t) < inf {t/:(x;y) +g(y)}-

yER?

Now, let w € C! be such that w(0) = y, w(t) = x, then since L is convex,
we can use Jensen’s inequality and write

.c(% /Otu'}(s) ds) < %/Otﬁ(w(s))ds

and upon carrying out the integration in the argument of the left hand side,
we see that

e (S70) ot < [ L) ds + o)

Since y was arbitrary, this gives

inf {tﬁ (g) +g(y)} < /Otﬁ(w(S))ds +9(y)

yER"

taking the infimum over w, and combining the result the last inequality gives

yiEann {t/l (g) + g(y)} = u(x,t).

It is left to show that the infimum is a minimum: Set y = x, then we have

u(z,t) < tL(0) + g(x). Then since lim % = 00, there exists a constant

lg|l—00
C' > 0 such that t£(q) > 2(K + 1)q for all |q| > C where K is the Lipschitz
constant associated with g. Then if |z — y| > tC, we have

w(g) +(y) = 2(K + 1)z —y| + g(y)
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= (K +2)lz —y| + K|z —y| + g(y) > (K +2)|z — y| + g(2)

(I used that K|z —y| = 7quII)R {%}W —yl = g(z) — g(y))
x y n

> (K +2)|x —y| — tL(0) + u(x, ).

Thus letting D = max {C’, fé—g}, we have that

I‘ —
1L () + 9v) = u(x, )
provided |x — y| > tD, and so evidently the infimum is a minimum. [OJ.

Theorem : Suppose x € R”, ¢t > 0, and that u is defined by the Hopf-Lax
formula and is differentiable at (z,t). Then

w(z,t) + H(D(u)(z,t)) = 0.

Remark : For all z € R" and 0 < s < t, we have that

. r—vy
t) = t—s)L| —=
ate.t) = min {0 = 9£(F22) o)
Proof of Theorem : Let ¢ € R", h > 0. Then using the remark, we see
that "
u(z + hg,t + h) = min {hﬁ(w> + u(y, t)}
yeR” h
< hL(q) + u(z, 1)

as we see by setting y=x. Therefore we have that

u(x + hq,t —l}—lh) —u(z,t) < £(q)

Now taking h — 07, we get that
and since this is true for all ¢ € R", we get that

ug(x,t) + H(Du(z,t)) = ue(z, t) + zré%%({q - Du(z,t) — L(q)} <0
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= w(z,t) + H(Du(z,t)) <0.

Now we just need to get the same inequality reversed. Let A > 0, and take
z such that u(z,t) = tL(%2) + g(z). Let s =t — h, y = Sz + (1 — £)z; then

r—z _ Y—=2
= = 4=, and so we get

utet) = ut9) 2 0225 ) o0 - (s£( 5 42

t

:(t—s)ﬁ(xgz).

Making the substitutions for h, we find that

u(z,t) —u((1—2) + 2zt —h) Zﬁ(x—z)'

h

Now take h — 0T, and arrive at

r—Zz

- Du(a,t) + u(z, 1) > .c("”” - Z).

Finally we see that

ur(z,t) + H(Du(z, b)) = wy(x, t) + glé%;({q - Du(z,t) — L(q)}

Zut(m,t)—l—xzz -Du(x,t)—ﬁ(x;z) >0

= w(x,t) + H(Du(z,t)) >0
and so we have equality. [
So we have arrived at the climax of the paper, that u defined by the Hopf-Lax

formula solves

u + H(Dyu,z) =0 in R™ x (0, 00)
u=yg on R" x {t = 0}.
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