Definition 1. Let $f \in C^{\infty}(\mathbb{C}, \mathbb{C})$. For $z = x + iy \in \mathbb{C}$, write f(x, y) = u(x, y) + iv(x, y), for $u, v \in C^{\infty}(\mathbb{C}, \mathbb{R})$. Then the pushforward of f at z is the linear map f_* between $T_z\mathbb{C}$ and $T_{f(z)}\mathbb{C}$ given in the natural coordinates by the matrix

$$\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}.$$

Note that since \mathbb{C} is given by one chart, we identify all of the tangent spaces with \mathbb{R}^2 , so we only care about the matrix.

Example 1. Let $f : \mathbb{C} \to \mathbb{C} : z \mapsto iz$. Then

$$f_* = [i]_{\mathbb{R}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

where $[\alpha]_{\mathbb{R}}$ denotes the real matrix corresponding to multiplication by α in the real coordinates, for each $\alpha \in \mathbb{C}$.

We have just described the pushforward of multiplication by i as a real matrix using the real coordinates on \mathbb{C} . We will see that this matrix is all that we need in order to do complex analysis, and hence we call it the *complex structure* of \mathbb{C} , and denote it by J. Note that J is simply counter-clockwise rotation by $\frac{\pi}{2}$.

Definition 2. Recall that f as above is holomorphic if it satisfies the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Note that these equations are equivalent to $Jf_* = f_*J$. We will take this commutation relation as the definition of f being holomorphic.

Example 2. For $\alpha \in \mathbb{C}$, let $f : \mathbb{C} \to \mathbb{C} : z \mapsto \alpha z$. Then $f_* = [\alpha]_{\mathbb{R}}$ is simply rotation by arg α and dilation by $|\alpha|$, and both actions commute with the rotation of J so that f is holomorphic.

Example 3. For $n \in \mathbb{N}$, let $f : \mathbb{C} \to \mathbb{C} : z \mapsto z^n$. Then $f_*(z) = [nz^{n-1}]_{\mathbb{R}}$ is again multiplication by a complex number (varying this time on the base point z), so is holomorphic.

Example 4. Let $f : \mathbb{C} \to \mathbb{C} : z \mapsto \overline{z}$. Then f_* is a flip along the real axis, which does not commute with the rotation J, and hence is not holomorphic.

Definition 3. For M a manifold, $J \in \Gamma(\text{End}(TM))$ is a complex structure for M if $J^2 = -\text{Id}$ and it satisfies some more technical condition. We will see some examples which may give intuition on this. We say that (M, J) is a complex manifold.

Definition 4. Let (M, J) and (N, K) be complex manifolds. A function $f : M \to N$ is holomorphic if $f_*J = Kf_*$.

Example 5. For J the standard complex structure on \mathbb{C} , -J is also a complex structure corresponding to multiplication by -i. Clearly a function is holomorphic with respect to -J if and only if it is holomorphic with respect to J.

Example 6. Complex structures on \mathbb{R}^4 .

Three different complex structures on \mathbb{R}^4 are:

$$I = \begin{pmatrix} \cdot & -1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & \cdot & 1 & \cdot \end{pmatrix}, J = \begin{pmatrix} \cdot & \cdot & -1 & \cdot \\ \cdot & -1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \end{pmatrix}, K = \begin{pmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \end{pmatrix}.$$

These are generated by decomposing \mathbb{R}^4 into $\mathbb{R}^2 \oplus \mathbb{R}^2$, and then putting complex structures on each \mathbb{R}^2 to agree with eachother's orientation. For example, the matrix

$$\tilde{J} = \begin{pmatrix} \cdot & -1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & -1 & \cdot \end{pmatrix}$$

satisfies $\tilde{J}^2 = -$ Id, but the rotation defined does not agree with the natural orientation of \mathbb{R}^4 , and it is not a complex structure. There are also similar "almost" complex structures \tilde{I} and \tilde{K} defined analogously.

Example 7. (Infinitesimal) Isometries on $(\mathbb{R}^4, < \cdot, \cdot >)$.

The isometries on Euclidean 4-space is the group of Euclidean motions, $\mathbb{R}^4 \rtimes O_4(\mathbb{R})$, where the \mathbb{R}^4 part are the translations, and O^4 are the rotations. We call the corresponding Lie algebra $\mathbb{R}^4 \oplus \mathfrak{so}_4(\mathbb{R})$ the *infinitesimal isometries* of Euclidean 4-space. We have already described six different rotations: $I, J, K, \tilde{I}, \tilde{J}, \tilde{K}$. It is easy to see that the Lie algebra elements in $\mathfrak{so}_4(\mathbb{R})$ generating these are linearly independent. Since $\mathfrak{so}_4(\mathbb{R})$ is six dimensional, these generate all of them. Infinitesimal isometries are *holomorphic* if the maps that they generate are holomorphic. The translations are clearly holomorphic with respect to any complex structure, since they act trivially on the tangent space. It turns out that \tilde{I}, \tilde{J} , and \tilde{K} commute with all of the complex structures, but that I, J, and K do not commute with eachother. In conclusion, for a fixed complex structure, all of the infinitesimal isometries are holomorphic, except for a two dimensional subspace corresponding to the other two complex structures. This contrasts with the following theorem in the compact case:

Theorem 1. (Lichnerowitz)On a compact Kähler manifold, every infinitesimal isometry is holomorphic.

Note that a Kähler manifold is complex manifold with a metric that behaves similarly to the way that the standard inner product $\langle \cdot, \cdot \rangle$ behaves on \mathbb{C}^n . We have seen that this theorem is false when relaxing the compactness condition. I have done some research looking into relaxing the Kähler condition. Interestingly, the known counterexamples come from an interplay between multiple complex structures analogous to what I've described for \mathbb{R}^4 .