
Definition 1. Let f ∈ C∞(C,C). For z = x + iy ∈ C, write f(x, y) = u(x, y) + iv(x, y),
for u, v ∈ C∞(C,R). Then the pushforward of f at z is the linear map f∗ between TzC and
Tf(z)C given in the natural coordinates by the matrix(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

Note that since C is given by one chart, we identify all of the tangent spaces with R2,
so we only care about the matrix.

Example 1. Let f : C→ C : z 7→ iz. Then

f∗ = [i]R =

(
0 −1
1 0

)
,

where [α]R denotes the real matrix corresponding to multiplication by α in the real
coordinates, for each α ∈ C.

We have just described the pushforward of multiplication by i as a real matrix using
the real coordinates on C. We will see that this matrix is all that we need in order to
do complex analysis, and hence we call it the complex structure of C, and denote it by J .
Note that J is simply counter-clockwise rotation by π

2 .

Definition 2. Recall that f as above is holomorphic if it satisfies the Cauchy-Riemann
equations:

∂u
∂x = ∂v

∂y

∂u
∂y = − ∂v

∂x

Note that these equations are equivalent to Jf∗ = f∗J . We will take this commutation
relation as the definition of f being holomorphic.

Example 2. For α ∈ C, let f : C → C : z 7→ αz. Then f∗ = [α]R is simply rotation by
argα and dilation by |α|, and both actions commute with the rotation of J so that f is
holomorphic.

Example 3. For n ∈ N, let f : C→ C : z 7→ zn. Then f∗(z) = [nzn−1]R is again multipli-
cation by a complex number (varying this time on the base point z), so is holomorphic.

Example 4. Let f : C→ C : z 7→ z̄. Then f∗ is a flip along the real axis, which does not
commute with the rotation J , and hence is not holomorphic.

Definition 3. For M a manifold, J ∈ Γ(End(TM)) is a complex structure for M if
J2 = − Id and it satisfies some more technical condition. We will see some examples which
may give intuition on this. We say that (M,J) is a complex manifold.
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Definition 4. Let (M,J) and (N,K) be complex manifolds. A function f : M → N is
holomorphic if f∗J = Kf∗.

Example 5. For J the standard complex structure on C, −J is also a complex structure
corresponding to multiplication by −i. Clearly a function is holomorphic with respect to
−J if and only if it is holomorphic with respect to J .

Example 6. Complex structures on R4.

Three different complex structures on R4 are:

I =


· −1 · ·
1 · · ·
· · · −1
· · 1 ·

 , J =


· · · −1
· · −1 ·
· 1 · ·
1 · · ·

 ,K =


· · 1 ·
· · · −1
−1 · · ·
· 1 · ·

 .

These are generated by decomposing R4 into R2⊕R2, and then putting complex structures
on each R2 to agree with eachother’s orientation. For example, the matrix

J̃ =


· −1 · ·
1 · · ·
· · · 1
· · −1 ·


satisfies J̃2 = − Id, but the rotation defined does not agree with the natural orientation of
R4, and it is not a complex structure. There are also similar “almost” complex structures
Ĩ and K̃ defined analogously.

Example 7. (Infinitesimal) Isometries on (R4, < ·, · >).

The isometries on Euclidean 4-space is the group of Euclidean motions, R4 o O4(R),
where the R4 part are the translations, and O4 are the rotations. We call the corresponding
Lie algebra R4⊕so4(R) the infinitesimal isometries of Euclidean 4-space. We have already
described six different rotations: I, J,K, Ĩ, J̃ , K̃. It is easy to see that the Lie algebra ele-
ments in so4(R) generating these are linearly independent. Since so4(R) is six dimensional,
these generate all of them. Infinitesimal isometries are holomorphic if the maps that they
generate are holomorphic. The translations are clearly holomorphic with respect to any
complex structure, since they act trivially on the tangent space. It turns out that Ĩ , J̃ , and
K̃ commute with all of the complex structures, but that I, J, and K do not commute with
eachother. In conclusion, for a fixed complex structure, all of the infinitesimal isometries
are holomorphic, except for a two dimensional subspace corresponding to the other two
complex structures. This contrasts with the following theorem in the compact case:

Theorem 1. (Lichnerowitz)On a compact Kähler manifold, every infinitesimal isometry
is holomorphic.
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Note that a Kähler manifold is complex manifold with a metric that behaves similarly
to the way that the standard inner product < ·, · > behaves on Cn. We have seen that
this theorem is false when relaxing the compactness condition. I have done some research
looking into relaxing the Kähler condition. Interestingly, the known counterexamples come
from an interplay between multiple complex structures analogous to what I’ve described
for R4.
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