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The unrestricted partition function p(n) counts the number of ways a positive integer n can be expressed as a
sum of positive integers < n.
For example: p(4) = 5, since 4 can be writtenas 1+1+1+1, 1+1+2, 242, 3+1, 4.

This project intends to present a proof of the following remarkable result:

Theorem: If n > 1, then

where Ag(n) = > exp (m‘s(h,k) - 2ng) and  s(hk) = kzlg (}Z - [fﬂ - ;) 2)

0<h<k

This theorem, proved by Rademacher in 1937 [6], greatly improves the asymptotic relation discovered by both
Hardy and Ramanujan in 1918 [4] and J.V.Uspensky in 1920 [7] independently, and which stated that:
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p(n) 4n\/§e as n — oo where ™3 (3)

The proof of this formula involves the circle method, a tool used many times by Hardy, Littlewood and Ramanujan
in tackling asymptotic problems of additive number theory. For example, this method provides a lot of insight for
a possible proof of Goldbach’s conjecture, which states that every integer is the sum of three primes [5]. Later on,
Erdds proved that this formula could be derived by elementary means [3]. Hardy and Ramanujan also proved the
following exact asymptotic formula:

p(n)= Y Pi(n)+0n Y (4)
k<aymn

where « is a constant, and Pj(n) is the dominant term , asymptotic to 4n1\/§eK*/ﬁ. Note that the infinite sum

> Pu(n diverges for each n. However, Rademacher’s choice of contour of integration, which also uses the circle
k=1
method, yields a formula involving a convergent series.

The following proof is taken from [2], and is divided into 6 main parts.

Proof. 1. GENERATING FUNCTION CORRESPONDING TO p(n):
We shall make use of the following lemma:

Lemma: If [z] < 1, then Y7 (p(n)a™ = [[}2; =% =: F(2).

Proof. This proof can be found in [1]. Restrict z to lie on the interval 0 < z < 1 and introduce two functions

1 | .
Fn(2) = H T and  F(z) = H T = il Fin(2) (5)
k=1 k=1

Since for 0 < x < 1, Y 2 converges absolutely, so does [[(1 — z*), and hence F(z). Also
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so that for fixed z, F,,(x) < F(z) for every m. Now,

m 1 m o0 o0 o0
Fo(z) = H T H (Z(xk)"> =14 me(k)xk = absolutely convergent since each Z(xk)” is.
k=1 k=1 \n=1 k=1 n=1

where p,, (k) is the number of solutions of the equation k = ki + 2ks + ... + mk,,, ie: the number of partitions
of k into parts not exceeding m. Since we have p, (k) < p(k), with p,, (k) = p(k) if m > k, it holds that
limy, 00 Pm (k) = p(k). Split F,,(x) into two parts:

>0
Fo(@) =14 pm(k)a" =Y pm(k)z"+ > pmlk)a® = > p(k)a* < Fu(z) < F(z) (7)
k=1 k=0 k=m+1 k=0
Therefore Y -, p(k)z* converges. Also
Y k)t <Y plk)a* < F(x) (8)
k=0 k=0

so for each fixed z, Y p(k)z* converges uniformly in m. Taking lim,, . oo:

F(z)= lim Fp(z)= lim Y pp(k)a® =" lim py(k)z*=> p(k)2* (9)
This proves the lemma for 0 < x < 1. Take the analytic continuation to the unit disk |z| < 1. O

F(z) is absolutely convergent on |z| < 1. Dividing on both sides of the above by 2! yields the Laurent series
: Fo) 1 .
expansion of —zFr, valid for 0 < [z| < 1:
F(z) _ <~ plk)a*

pn+l - pn+l (10)
k=0
This expansion has a simple pole at = 0. Therefore, by Cauchy Residue Theorem,:
Resz:o W = p(n) = Tm [% xn+1 dl' (11)

% being any contour in 0 < |z| < 1 enclosing 0.
We now move from the z-plane to the 7-plane by performing the following change of variables: z = 277,
The punctured disk is mapped to the infinite strip 0 < Re(z) < 1 in the 7-plane, and in particular, the circle
v :[0,1] — D*(0) given by v(a) = e~27% is mapped to the straight line joining i to i + 1. Integrating along
~ in this plane gives:
1 F e?ﬂiT
p(n) = He)

_% . 627Ti7"ﬂ (12)

. RADEMACHER’S PATH:

We now wish to replace the path of integration v by a path that lies close to the singularities of F(x). Since
1 -2k =0 for & = 2™/ where (h,k) =1 with 0 < h < k, we see that we must take a path lying near all
roots of unity. But before defining it, two definitions are in order:

e Farey fractions: Def: The Farey fractions of order n are defined as the set of reduced fractions in the close
interval [0, 1] with denominators < n, listed in increasing order of magnitude. For example:
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e Ford circles: Def: The Ford circle €' (h, k), where (h, k) = 1 with 0 < h < k, is a circle of radius 515, with
center located at % + ﬁ .

Note that €'(h, k) is tangent to the real axis at the point z = 2.

The following lemma is given without proof (the proof isn’t hard, but it is lenghty):

Lemma: Ford circles of consecutive Farey fractions are tangent to each other. If % < % < Z—; are consecutive
in Fy, the points of tangency are given by:
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ar(h, k) = kR + k) R+ k2

So for example, the five Ford circles associated to the Farey fractions F3 = {%, %, %, %, %} are tangent to each

other, as illustrated on Figure 1.
With these facts at hand, it is now possible to define Rademacher’s path P(N) in the following way:

Def: Consider the Ford circles of the Farey series Fy. If hl < k < k—z are consecutive in Fl, the points of
tangency of € (h1, k1), €(h, k) and € (he, ko) divide € (h, k) into two arcs, an upper arc and a lower arc. P(N)
is the union of the upper arcs so obtained.

See Figure 1 for an illustration of P(3).

Figure 1:

For the moment we keep N fixed, and will let it go to 400 only near the end of the proof. We may then rewrite

the path of integration as:
i+1 N
[T S
( P(N) =1 v(h,k) bk YV (hk)

0<h<k, (h,k)=1

where v(h, k) is the upper arc of the Ford circle €(h, k). This allows us to work on each arc separately.

. CHANGING VARIABLES:

The following change of variables maps the Ford circles €' (h, k) onto the circle K of radius 1/2 with center

z=1/2:
h h i



The points of tangency ai(h, k) and as(h, k) of € (h, k) with the neighbouring circles €' (hy, k1) and € (hz, k2)
are mapped to the points z1(h, k) and z3(h, k) on K given by:

k2 kky k2 kko
h, k ; d h,k —1 17
ahb = tiere ™ 20h=are i (a7)
This is illustrated on Figure 2.
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Figure 2:
The partition function is now written as:
1 F(e2ﬂ'rr)
p(n) = 5 / TITN dr (18)
2mi ; S(hk) €

i 2minh #2(h.k) 2nmz 2mith 27z
- - F T2 ) a 19
S (-5 [, oo ) Pl (50 -5)) e
Note that on K, Re(z) >0

In order to perform the estimates in part 5 of the proof, the following facts are useful:

Theorem: If z is on the chord joining z;(h, k) and z2(h, k), we have |z| < ‘fk, and the length of that chord
is < 2v/2k/N.

Proof. We have:

i ) (20
N ey ER ey NV
Similarly |z9| = \/m If z is on the chord joining 21 (h, k) and z3(h, k), |2| < max(]z1],|22|). Using:
k+ki\? K+ & 1 2 2k
(Jrl)g TR = < < fgl — |z1|<L (21)
2 2 VE2+E T k+ki T N+17 N N
And similarly |zo| < Y25, giving |2| < Y2k
As for the length of the chord, it is < |zl| + |22] < %
O

4. DEDEKIND’S FUNCTIONAL EQUATION EXPRESSED IN TERMS OF F"



The Dedekind eta function is of central importance in many applications of elliptic modular functions to number
theory. It was introduced by Dedekind in 1877 and is defined in the half-plane H = {7 : Im(7) > 0} by the
equation:

77(7-) — emi-r/lQ H(l _ elenT) (22)
n=1

The functional equation satisfied by n(7) is given in the following theorem, given without proof:

Theorem: If < i Z > € I', T being the modular group, and ¢ > 0 we have

0 <::ig) = oxp {m’ (al;d +5(—d, c))} “iler +dn(r) where s(h,k) — kz_‘j]’; (’Z _ W] _ ;)

In terms of F', this functional equation can be restated as:

Theorem: Let F(t) = Hzozl ﬁ and

2mih 2wz , 2miH 27
a:—exp< k _k2> x—exp( k _z> (23)
where Re(z) >0, k> 0, (h,k) =1 and hH = —1 mod k. Then
1
B , 2\2 T mz ,
F(x) = exp (mis(h, k)) (k) exp (—122 12k2) F(z") (24)

Note that when |z| is small, we have

2mih 272\ oninsk 2mH 2w\
x:exp( Z —k2>~e ih/ ' =exp T~ ~ 0 (25)
So that the behaviour of F near the singularity e>**/* is given by:
1
_ exp (i N e (S ) Pl
F(z) = exp (is(h, k) (k) exp (122 1%2) F(z') (26)
~1
Proof. First notice the following relation:
) © 1 e‘n’i‘r/12 eTriT/l?
F(e*™7) = — = — - — = (27)
kl;[]_ 1 — e2mkit emiT/12 Hk:l(l _ eZTrkz'r) n(T)
Therefore:
0 (D)~ e i (S s(—dy0) ) | iler F () (28)
Nerta) = P 126 ’ 4 mr
1 1 d
e = (aTH)) exp [m’ <(1142rc + s(—d, c))} —i(er +d) (29)
n ct+d
— Flexp(@nir) = F(exp(2mi- T2 exp (S (7 - 2D (30)
xp (2miT)) = xp | 27i pr—— Xp | 5t 7 1 d
d
-exp | i atd + s(—d,c) —i(er +d) (31)
12¢
Choosing a =H, ¢c=k, d=—h, b= —%, and 7= %, then 7 = ng and
2wih  2mz 2miH 27 1 T mZ
F - — =F - — 2 ( - — is(h, k ) 2
(eXp( Kk >) (eXp( k kz>)226Xp ok ~ 125 TR (32)
Replacing z by z/k yields the result. O



We now have:

p(n) = Z%
h,k

)
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Rewriting F'(z') = 1+ (F(a’") — 1), we can split the integral into two parts:

. _s —2minh . #2(hk) 2nwz\ 1 T TZ ,
p(n) = sz Zexp ( p > exp (mis(h, k))/ exp ( 12 ) 2Zexp (— - 12k:2) 1+ (F(z")—1))d=

Ik 21 (h,k) 12z
s —2minh . z2(hk) 2nmz\ 1 T Tz
= hz];zk‘ 2 exp ( p ) exp (mis(h, k)) /Zl(h)k) exp ( 12 ) 2Zexp (@ - 12k2) dz
=: I
s —2minh . #2(h.k) 2nmz\ 1 T Tz
Jr;lk 2exp < ’ > exp (mis(h, k)) /Zl(h’k) exp <1€2) 22exp (E - Tkg) (F(z') —1)dz
= 12

. ESTIMATES FOR I; AND I5:

oWe first estimate I3, and start by moving the path of integration from the arc of K joining 21 to z3 to the
chord joining z; and z3. The integrand can then be bounded as follows:

2nmz\ )9 7r TZ 2miH 27
P ( = > 2P (12;; 12k2) [F <eXp < PR ! (33)
_ 2nmz\ )9 0 TZ > 2miHm 2rm
= exp< 12 )z exp (12z 12k2) an_:op(m)exp< 3 exp . 1 (34)
<1 drop
~ = —
< 2nm Re(z) 121/ TR (1)_71'Re(z) i (m) 2miHm _2mm (35)
S exp | ——5—— | |2 exp | 5 Re(- T2%2 m:1p m) |exp - exp | ———
=1 <exp(—2mmRe(1/z))
2nm 1/2 m 1 1
< exp T2 |z|*/“exp —Re(f) z:lp( m)exp —ZWmRe(;) (36)
<p(24m—1) -
0 P m— —_—
~ =~ 1
< exp (2nm)|2|"/? Z p(m) exp (2% —1/24) Re(;) (37)
m=1
< exp(2nm) |22 > p(24m — Dexp (—2m (m — 1/24)) (38)
m=1
= cfz|Y/? (39)

where ¢ is a constant that does not depend on z nor N. Since |z| < v/2k/N on the chord, and the length of
the chord is < 2\/§k/N, we have:
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eWe now estimate I7: here, instead of only integrating over the arc of K joining z; to z, we integrate over the
whole circle K. Going clockwise around the circle:

Zz(h k?) Zl h k) 0 Zl(h,k}) Zl(h k?)
?4 / / +/ =:Js +/ +J1 — / j{ —J1 — Jo (42)
22 (h,k) 21 (h,k) 22 (h,k) (h,k)

e Estimating J;:
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21(h7k) 2nmz 1 T mZ k 2
= || < /O exp< 12 )z2exp (E — 12k2) dz < mwzi(h,k)-Cy (N) (43)
1 3
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Therefore

exp (mis(h, k)) I1

h,k )
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and by the above:
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. GETTING

5 —2minh —2minh
g ik2exp< i >exp (mis(h, k) I + E ikgexp< i
k

hk Rk
N 2minh 2nmz T

L _5 - . 1
E ik~ Zexp ( . ) exp (mis(h, k)) }{(exp ( 12 ) zZexp (122
k=10<h<k
N 2minh T 27z

5 - 1
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k K 12z k2

k=10<h<k

THE FINAL ANSWER USING BESSEL FUNCTIONS:

1

24

) exp (mis(h, k)) I

dz + O(N )

12k2>

51) ) &=+ o)

We start by letting N, the number of circles used to construct Rademacher’s path, go to 4+o0o. Defining

Ag(n) = Zogh<k exp (m’s(h, k) — 27rin%):
al 2minh s
= 1 k3 — is(h, k 3 —
p(n) yhm Z Z ik™2exp ( ) exp (mis(h, k)) 7{( 22exp <122
k=10<h<k
= 5 1 s 21z 1
= zEk“?Ak(n)%(z?exp (122 TR (n 24)) dz
We then perform two successive changes of variables: First let w = % so that dz =

circle to the infinite line Re(z) =

Secondly, let t =

1:
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. _s 5 Tw 27 1 1
B _Zkz::lk 2Ak(n)/1_m- v 28Xp(12 1@("_24)
5 or w = 12t to get:
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3 +oo L +ooi 2
TN 2 _5 1 12 _5 ™
= on () o Mg [ e (1 g (0
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Noting that if ¢ > 0 and Re(v) > 0:
v ct+oot
b= E [ g
2mi c—001

2z
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)dw
w

(n ;4)) dz + O(N—})

—#dw. This maps the

(45)
_u;) dw (46)
(47)
(48)
f) dt (49)
(50)

1
t) dt (51)
(52)



1
where I, (z) = i7" J,(iz), we have that if we let £ = (”—2 (n— i)) °

3 too I +oot 2
TN 2 5 1 12 5 s 1 1
=2 (—) 34 / 3 t——(n—=)>)at
pn) =2m (33 kz A5 e P\ e T2
2 3
3 +oo il _ 1 Ed i
2 5 1 ( p) (7’L )) 13 Fo0t
= 27‘1’(1)2 Zk_fAk(n)- 7 = .24 / =3 texp [t —
12 w2 1\)\2 274 T ooi
k=1 (= (n—35)) 12
3 too 3,3 2\3 o tooi 2
62k £ 12 .
= o (2) kA (2)./ tilexp<t—z>dt
12 Pt - (n— 1 )4 210 Jx ooi 4t
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But Bessel functions of half-order can be reduced to elementary functions:

sinh z

Ll SO A P
62 \"" T 21 )

2z d
I = 53
) = 2 4 () (53)
We rewrite everything in terms of n:
N U B L Y I R N S 1 AN )
2~ \6kz \" 2 TEV3\" T T\
d dn d k2 T |2 k% d
— = —+— = 3z—-— = 3—4/= 55
P dz dn “72 dn k 3( 24)772dn (55)
Also:
2z d sinh z
I = - —
3/2() T dz < z )
2 sinh ( £ g(n—i)
AN - P N O - S P - (A I Fa FVILT
32\ 3 \" T 2a)) T oNT RV3 " 2a) k3 24 ) 72 dn : 20 1
k 3(” 24)
1,41 i 1 1.9 1 sinh (& Z(n_i)
B 1 14371'22 1\2k k 32 d E\ 3 24
I TG k35 \" " 24) 2 7 otdn 1
24
1 41 41 1 2 3 sinh (= Z(n,L)
0 22.21.22.3.32 T k* -k i 4i £\ 3 24
N 3% .33 .93 B Y n L
24
3 3 1 3 1\* d Slnh(% %(niﬁ))
= 24~34 _— k2- n— — R
2 24 ) dn L
24
So that:
21
p(n) = ; ZAk k™ s (2)
(24(n—31))" &



2931 (n724)4 k=1 i 24 " n i
2.9 .33 (n— L)% &2 goa [smn (52— )
S s W o 2T 1
24)% k=1 n— 5
s 2 1
1 & d [ sinh (E §(n 24))
= ZAk(n)\/E—
T 2k 1 dn 77/—2*14

as required.
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