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The unrestricted partition function p(n) counts the number of ways a positive integer n can be expressed as a
sum of positive integers ≤ n.
For example: p(4) = 5, since 4 can be written as 1 + 1 + 1 + 1, 1 + 1 + 2, 2 + 2, 3 + 1, 4.

This project intends to present a proof of the following remarkable result:

Theorem: If n ≥ 1, then

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k
d

dn

 sinh
(
π
k

√
2
3

(
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24

))√
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24
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where Ak(n) =
∑

0≤h<k

exp
(
πis(h, k)− 2πin

h

k

)
and s(h, k) =

k−1∑
r=1

r

k

(
hr

k
−
[
hr

k

]
− 1

2

)
(2)

This theorem, proved by Rademacher in 1937 [6], greatly improves the asymptotic relation discovered by both
Hardy and Ramanujan in 1918 [4] and J.V.Uspensky in 1920 [7] independently, and which stated that:

p(n) ∼ 1
4n
√

3
eK
√
n as n→∞ where K = π

√
2
3

(3)

The proof of this formula involves the circle method, a tool used many times by Hardy, Littlewood and Ramanujan
in tackling asymptotic problems of additive number theory. For example, this method provides a lot of insight for
a possible proof of Goldbach’s conjecture, which states that every integer is the sum of three primes [5]. Later on,
Erdős proved that this formula could be derived by elementary means [3]. Hardy and Ramanujan also proved the
following exact asymptotic formula:

p(n) =
∑

k<α
√
n

Pk(n) + O(n−1/4) (4)

where α is a constant, and P1(n) is the dominant term , asymptotic to 1
4n
√

3
eK
√
n. Note that the infinite sum∑+∞

k=1 Pk(n) diverges for each n. However, Rademacher’s choice of contour of integration, which also uses the circle
method, yields a formula involving a convergent series.

The following proof is taken from [2], and is divided into 6 main parts.

Proof. 1. Generating function corresponding to p(n):

We shall make use of the following lemma:

Lemma: If |x| < 1, then
∑∞
n=0 p(n)xn =

∏∞
k=1

1
1−xk =: F (x).

Proof. This proof can be found in [1]. Restrict x to lie on the interval 0 ≤ x < 1 and introduce two functions

Fm(x) =
m∏
k=1

1
1− xk

and F (x) =
∞∏
k=1

1
1− xk

= lim
m→∞

Fm(x) (5)

Since for 0 ≤ x < 1,
∑
xk converges absolutely, so does

∏
(1− xk), and hence F (x). Also

Fm+1(x) =
m+1∏
k=1

1
1− xk

=
1

1− xm+1

m∏
k=1

1
1− xk

=
1

1− xm+1
Fm(x) ≥ Fm(x) (6)
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so that for fixed x, Fm(x) ≤ F (x) for every m. Now,

Fm(x) =
m∏
k=1

1
1− xk

=
m∏
k=1

( ∞∑
n=1

(xk)n
)

= 1 +
∞∑
k=1

pm(k)xk =⇒ absolutely convergent since each
∞∑
n=1

(xk)n is.

where pm(k) is the number of solutions of the equation k = k1 + 2k2 + . . .+mkm, ie: the number of partitions
of k into parts not exceeding m. Since we have pm(k) ≤ p(k), with pm(k) = p(k) if m ≥ k, it holds that
limm→∞ pm(k) = p(k). Split Fm(x) into two parts:

Fm(x) = 1 +
∞∑
k=1

pm(k)xk =
m∑
k=0

pm(k)xk +

>0︷ ︸︸ ︷
∞∑

k=m+1

pm(k)xk =⇒
m∑
k=0

p(k)xk ≤ Fm(x) ≤ F (x) (7)

Therefore
∑∞
k=0 p(k)xk converges. Also

∞∑
k=0

pm(k)xk ≤
∞∑
k=0

p(k)xk ≤ F (x) (8)

so for each fixed x,
∑
pm(k)xk converges uniformly in m. Taking limm→∞:

F (x) = lim
m→∞

Fm(x) = lim
m→∞

∞∑
k=0

pm(k)xk =
∞∑
k=0

lim
m→∞

pm(k)xk =
∞∑
k=0

p(k)xk (9)

This proves the lemma for 0 ≤ x < 1. Take the analytic continuation to the unit disk |x| < 1.

F (x) is absolutely convergent on |x| < 1. Dividing on both sides of the above by xn+1 yields the Laurent series
expansion of F (x)

xn+1 , valid for 0 < |x| < 1:
F (x)
xn+1

=
∞∑
k=0

p(k)xk

xn+1
(10)

This expansion has a simple pole at x = 0. Therefore, by Cauchy Residue Theorem,:

Resx=0
F (x)
xn+1

= p(n) =
1

2πi

∫
C

F (x)
xn+1

dx (11)

C being any contour in 0 < |x| < 1 enclosing 0.

We now move from the x-plane to the τ -plane by performing the following change of variables: x = e2πiτ .
The punctured disk is mapped to the infinite strip 0 < Re(x) < 1 in the τ -plane, and in particular, the circle
γ : [0, 1] → D×(0) given by γ(a) = e−2π+ia is mapped to the straight line joining i to i+ 1. Integrating along
γ in this plane gives:

p(n) =
1

2πi

∫
γ

F (e2πiτ )
e2πiτn

dτ (12)

2. Rademacher’s path:

We now wish to replace the path of integration γ by a path that lies close to the singularities of F (x). Since
1 − xk = 0 for x = e2πih/k, where (h, k) = 1 with 0 ≤ h < k, we see that we must take a path lying near all
roots of unity. But before defining it, two definitions are in order:

• Farey fractions: Def: The Farey fractions of order n are defined as the set of reduced fractions in the close
interval [0, 1] with denominators ≤ n, listed in increasing order of magnitude. For example:

F1 :
0
1
,

1
1

F2 :
0
1
,

1
2
,

1
1

F3 :
0
1
,

1
3
,

1
2
,

2
3
,

1
1

. . . (13)
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• Ford circles: Def: The Ford circle C (h, k), where (h, k) = 1 with 0 ≤ h < k, is a circle of radius 1
2k2 , with

center located at h
k + i

2k2 .
Note that C (h, k) is tangent to the real axis at the point x = h

k .

The following lemma is given without proof (the proof isn’t hard, but it is lenghty):

Lemma: Ford circles of consecutive Farey fractions are tangent to each other. If h1
k1
< h

k <
h2
k2

are consecutive
in FN , the points of tangency are given by:

α1(h, k) =
h

k
− k1

k(k2 + k2
1)

+
i

k2 + k2
1

and α2(h, k) =
h

k
− k2

k(k2 + k2
2)

+
i

k2 + k2
2

(14)

So for example, the five Ford circles associated to the Farey fractions F3 = { 0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1} are tangent to each

other, as illustrated on Figure 1.

With these facts at hand, it is now possible to define Rademacher’s path P (N) in the following way:

Def: Consider the Ford circles of the Farey series FN . If h1
k1

< h
k < h2

k2
are consecutive in FN , the points of

tangency of C (h1, k1), C (h, k) and C (h2, k2) divide C (h, k) into two arcs, an upper arc and a lower arc. P (N)
is the union of the upper arcs so obtained.
See Figure 1 for an illustration of P (3).

Figure 1:

For the moment we keep N fixed, and will let it go to +∞ only near the end of the proof. We may then rewrite
the path of integration as:∫ i+1

i

=
∫
P (N)

=
N∑
k=1

∑
0≤h<k, (h,k)=1

∫
γ(h,k)

=:
∑
h,k

∫
γ(h,k)

(15)

where γ(h, k) is the upper arc of the Ford circle C (h, k). This allows us to work on each arc separately.

3. Changing variables:

The following change of variables maps the Ford circles C (h, k) onto the circle K of radius 1/2 with center
z = 1/2:

z = −ik2

(
τ − h

k

)
↔ τ =

h

k
+
iz

k2
(16)
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The points of tangency α1(h, k) and α2(h, k) of C (h, k) with the neighbouring circles C (h1, k1) and C (h2, k2)
are mapped to the points z1(h, k) and z2(h, k) on K given by:

z1(h, k) =
k2

k1 + k2
1

+ i
kk1

k2 + k2
1

and z2(h, k) =
k2

k1 + k2
2

− i kk2

k2 + k2
2

(17)

This is illustrated on Figure 2.

Figure 2:

The partition function is now written as:

p(n) =
1

2πi

∑
h,k

∫
γ(h,k)

F (e2πiτ )
e2πiτn

dτ (18)

=
∑
h,k

i

k2
exp

(
−2πinh

k

)∫ z2(h,k)

z1(h,k)

exp
(

2nπz
k2

)
F

(
exp

(
2πih
k
− 2πz

k2

))
dz (19)

Note that on K, Re(z) > 0.

In order to perform the estimates in part 5 of the proof, the following facts are useful:

Theorem: If z is on the chord joining z1(h, k) and z2(h, k), we have |z| <
√

2k
N , and the length of that chord

is < 2
√

2k/N .

Proof. We have:

|z1|2 =
k4 + k2k2

1

(k2 + k2
1)2

=
k2

k2 + k2
1

=⇒ |z1| =
k√

k2 + k2
1

(20)

Similarly |z2| = k√
k2+k2

2

. If z is on the chord joining z1(h, k) and z2(h, k), |z| ≤ max(|z1|, |z2|). Using:

(
k + k1

2

)2

≤ k2 + k2
1

2
⇐⇒ 1√

k2 + k2
1

≤ 2
k + k1

≤
√

2
N + 1

≤
√

2
N

⇐⇒ |z1| <
√

2k
N

(21)

And similarly |z2| <
√

2k
N , giving |z| <

√
2k
N .

As for the length of the chord, it is ≤ |z1|+ |z2| < 2
√

2k
N .

4. Dedekind’s functional equation expressed in terms of F :
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The Dedekind eta function is of central importance in many applications of elliptic modular functions to number
theory. It was introduced by Dedekind in 1877 and is defined in the half-plane H = {τ : Im(τ) > 0} by the
equation:

η(τ) = eπiτ/12
∞∏
n=1

(1− e2πinτ ) (22)

The functional equation satisfied by η(τ) is given in the following theorem, given without proof:

Theorem: If
(
a b
c d

)
∈ Γ, Γ being the modular group, and c > 0 we have

η

(
aτ + b

cτ + d

)
= exp

[
πi

(
a+ d

12c
+ s(−d, c)

)]√
−i(cτ + d)η(τ) where s(h, k) =

k−1∑
r=1

r

k

(
hr

k
−
[
hr

k

]
− 1

2

)
In terms of F , this functional equation can be restated as:

Theorem: Let F (t) =
∏∞
k=1

1
1−tk and

x = exp
(

2πih
k
− 2πz

k2

)
x′ = exp

(
2πiH
k
− 2π

z

)
(23)

where Re(z) > 0, k > 0, (h, k) = 1 and hH = −1 mod k. Then

F (x) = exp (πis(h, k))
( z
k

) 1
2

exp
( π

12z
− πz

12k2

)
F (x′) (24)

Note that when |z| is small, we have

x = exp
(

2πih
k
− 2πz

k2

)
≈ e2πih/k x′ = exp

(
2πiH
k
− 2π

z

)
≈ 0 (25)

So that the behaviour of F near the singularity e2πih/k is given by:

F (x) = exp (πis(h, k))
( z
k

) 1
2

exp
( π

12z
− πz

12k2

)
F (x′)︸ ︷︷ ︸
≈1

(26)

Proof. First notice the following relation:

F (e2πiτ ) =
∞∏
k=1

1
1− e2πkiτ

=
eπiτ/12

eπiτ/12
∏∞
k=1(1− e2πkiτ )

=
eπiτ/12

η(τ)
(27)

Therefore:

η

(
aτ + b

cτ + d

)
= exp

[
πi

(
a+ d

12c
+ s(−d, c)

)]√
−i(cτ + d)η(τ) (28)

=⇒ 1
η(τ)

=
1

η
(
aτ+b
cτ+d

)exp
[
πi

(
a+ d

12c
+ s(−d, c)

)]√
−i(cτ + d) (29)

=⇒ F (exp (2πiτ)) = F

(
exp

(
2πi · aτ + b

cτ + d

))
exp

(
π

12
i

(
τ − aτ + b

cτ + d

))
(30)

·exp
[
πi

(
a+ d

12c
+ s(−d, c)

)]√
−i(cτ + d) (31)

Choosing a = H, c = k, d = −h, b = −hH+1
k , and τ = iz+h

k , then τ =
i
z+H

k and

F

(
exp

(
2πih
k
− 2πz

k

))
= F

(
exp

(
2πiH
k
− 2π
kz

))
z

1
2 exp

( π

12kz
− πz

12k
+ πis(h, k)

)
(32)

Replacing z by z/k yields the result.
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We now have:

p(n) =
∑
h,k

i

k2
exp

(
−2πinh

k

)∫ z2(h,k)

z1(h,k)

exp
(

2nπz
k2

)
F

exp
(

2πih
k
− 2πz

k2

)
︸ ︷︷ ︸

=x

 dz

=
∑
h,k

i

k2
exp

(
−2πinh

k

)∫ z2(h,k)

z1(h,k)

exp
(

2nπz
k2

)
exp (πis(h, k))

( z
k

) 1
2

exp
( π

12z
− πz

12k2

)
F (x′)dz

=
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∫ z2(h,k)

z1(h,k)

exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
F (x′)dz

Rewriting F (x′) = 1 + (F (x′)− 1), we can split the integral into two parts:

p(n) =
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∫ z2(h,k)

z1(h,k)

exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
(1 + (F (x′)− 1)) dz

=
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∫ z2(h,k)

z1(h,k)

exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
dz︸ ︷︷ ︸

=: I1

+
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∫ z2(h,k)

z1(h,k)

exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
(F (x′)− 1) dz︸ ︷︷ ︸

=: I2

5. Estimates for I1 and I2:

•We first estimate I2, and start by moving the path of integration from the arc of K joining z1 to z2 to the
chord joining z1 and z2. The integrand can then be bounded as follows:

∣∣∣∣exp
(

2nπz
k2

)
z1/2exp

( π

12z
− πz

12k2

)[
F

(
exp

(
2πiH
k
− 2π

z

))
− 1
]∣∣∣∣ (33)

=

∣∣∣∣∣exp
(

2nπz
k2

)
z1/2exp

( π

12z
− πz

12k2

)[ ∞∑
m=0

p(m)exp
(

2πiHm
k

)
exp

(
−2πm

z

)
− 1

]∣∣∣∣∣ (34)

≤ exp

2nπ

≤1︷ ︸︸ ︷
Re(z)
k2

 |z|1/2exp

 π

12
Re(

1
z

)

drop︷ ︸︸ ︷
−πRe(z)

12k2


∞∑
m=1

p(m)
∣∣∣∣exp

(
2πiHm

k

)∣∣∣∣︸ ︷︷ ︸
=1

∣∣∣∣exp
(
−2πm

z

)∣∣∣∣︸ ︷︷ ︸
≤exp(−2πmRe(1/z))

(35)

≤ exp
(

2nπ
k2

)
|z|1/2exp

(
π

12
Re(

1
z

)
) ∞∑
m=1

p(m)exp
(
−2πmRe(

1
z

)
)

(36)

< exp (2nπ) |z|1/2
∞∑
m=1

<p(24m−1)︷ ︸︸ ︷
p(m) exp

−2π (m− 1/24)

≥1︷ ︸︸ ︷
Re(

1
z

)

 (37)

< exp (2nπ) |z|1/2
∞∑
m=1

p(24m− 1)exp (−2π (m− 1/24)) (38)

:= c|z|1/2 (39)

where c is a constant that does not depend on z nor N . Since |z| <
√

2k/N on the chord, and the length of
the chord is < 2

√
2k/N , we have:
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|I2| ≤
∫ z2(h,k)

z1(h,k)

∣∣∣∣exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
(F (x′)− 1)

∣∣∣∣ dz <
2
√

2k
N
· c

(√
2k
N

) 1
2

:= C

(
k

N

) 3
2

(40)

=⇒

∣∣∣∣∣∣
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k)) I2

∣∣∣∣∣∣ <

N∑
k=1

∑
0≤h<k

Ck−
5
2

(
k

N

) 3
2

= O(N−
1
2 ) (41)

•We now estimate I1: here, instead of only integrating over the arc of K joining z1 to z2, we integrate over the
whole circle K. Going clockwise around the circle:∮

K

=
∫ z2(h,k)

0

+
∫ z1(h,k)

z2(h,k)

+
∫ 0

z1(h,k)

=: J2 +
∫ z1(h,k)

z2(h,k)

+J1 =⇒
∫ z1(h,k)

z2(h,k)

=
∮
K

−J1 − J2 (42)

• Estimating J1:

∣∣∣∣exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)∣∣∣∣ = exp

2nπ

≤1︷ ︸︸ ︷
Re(z)
k2


 |z|︸︷︷︸
≤
√

2k
N


1
2

exp

 π

12
Re
(

1
z

)
︸ ︷︷ ︸

=1

− π

12k2
Re(z)︸ ︷︷ ︸

drop


≤

exp (2nπ) · 2 1
4 · k 1

2 · exp
(
π
12

)
N

1
2

:= C1

(
k

N

) 1
2

=⇒ |J1| ≤
∫ z1(h,k)

0

∣∣∣∣exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)∣∣∣∣ dz ≤ πz1(h, k) · C1

(
k

N

) 1
2

(43)

< π
√

2
k

N
· C1

(
k

N

) 1
2

=: C̃1

(
k

N

) 3
2

(44)

• Similarly: |J2| ≤ C̃2

(
k
N

) 3
2 .

Therefore ∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k)) I1

=
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∫ z2(h,k)

z1(h,k)

exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
dz

=
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

(∮
K

exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
dz − J1 − J2

)

=
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∮
K

exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
dz

−
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k)) · J1 −

∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k)) · J2

and by the above:∣∣∣∣∣∣
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k)) · J1 +

∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k)) · J2

∣∣∣∣∣∣
≤

N∑
k=1

∑
0≤h<k

k−
5
2 · |J1|+

N∑
k=1

∑
0≤h<k

k−
5
2 · |J2|

<

N∑
k=1

∑
0≤h<k

k−
5
2 · C̃1

(
k

N

) 3
2

+
N∑
k=1

∑
0≤h<k

k−
5
2 · C̃2

(
k

N

) 3
2

= O(N−
1
2 )
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Thus:

p(n) =
∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k)) I1 +

∑
h,k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k)) I2

=
N∑
k=1

∑
0≤h<k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∮
K

exp
(

2nπz
k2

)
z

1
2 exp

( π

12z
− πz

12k2

)
dz + O(N−

1
2 )

=
N∑
k=1

∑
0≤h<k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∮
K

z
1
2 exp

(
π

12z
− 2πz

k2

(
n− 1

24

))
dz + O(N−

1
2 )

6. Getting the final answer using Bessel functions:

We start by letting N , the number of circles used to construct Rademacher’s path, go to +∞. Defining
Ak(n) =

∑
0≤h<k exp

(
πis(h, k)− 2πinhk

)
:

p(n) = lim
N→+∞

 N∑
k=1

∑
0≤h<k

ik−
5
2 exp

(
−2πinh

k

)
exp (πis(h, k))

∮
K

z
1
2 exp

(
π

12z
− 2πz

k2

(
n− 1

24

))
dz + O(N−

1
2 )


= i

+∞∑
k=1

k−
5
2Ak(n)

∮
K

z
1
2 exp

(
π

12z
− 2πz

k2

(
n− 1

24

))
dz

We then perform two successive changes of variables: First let w = 1
z so that dz = − 1

w2 dw. This maps the
circle to the infinite line Re(z) = 1:

p(n) = i

+∞∑
k=1

k−
5
2Ak(n)

∮
K

z
1
2 exp

(
π

12z
− 2πz

k2

(
n− 1

24

))
dz (45)

= i

+∞∑
k=1

k−
5
2Ak(n)

∫ 1+∞i

1−∞i

(
1
w

) 1
2

exp
(
πw

12
− 2π
k2

(
n− 1

24

)
1
w

)(
− 1
w2

)
dw (46)

= −i
+∞∑
k=1

k−
5
2Ak(n)

∫ 1+∞i

1−∞i
w−

5
2 exp

(
πw

12
− 2π
k2

(
n− 1

24

)
1
w

)
dw (47)

Secondly, let t = πw
12 or w = 12t

π to get:

p(n) = −i
+∞∑
k=1

k−
5
2Ak(n)

∫ 1+∞i

1−∞i
w−

5
2 exp

(
πw

12
− 2π
k2

(
n− 1

24

)
1
w

)
dw (48)

= −i
+∞∑
k=1

k−
5
2Ak(n)

∫ π
12+∞i

π
12−∞i

(
12t
π

)− 5
2

exp
(
t− 2π

k2

(
n− 1

24

)
π

12t

)(
12
π

)
dt (49)

= −i
( π

12

) 3
2

+∞∑
k=1

k−
5
2Ak(n)

∫ π
12+∞i

π
12−∞i

t−
5
2 exp

(
t− π2

6k2

(
n− 1

24

)
1
t

)
dt (50)

= 2π
( π

12

) 3
2

+∞∑
k=1

k−
5
2Ak(n)

1
2πi

∫ π
12+∞i

π
12−∞i

t−
5
2 exp

(
t− π2

6k2

(
n− 1

24

)
1
t

)
dt (51)

Noting that if c > 0 and Re(ν) > 0:

Iν(z) =
(z/2)ν

2πi

∫ c+∞i

c−∞i
t−ν−1et+(z2/4t)dt (52)
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where Iν(z) = i−νJν(iz), we have that if we let z
2 =

(
π2

6k2

(
n− 1

24

)) 1
2
, then:

p(n) = 2π
( π

12

) 3
2

+∞∑
k=1

k−
5
2Ak(n)

1
2πi

∫ π
12+∞i

π
12−∞i

t−
5
2 exp

(
t− π2

6k2

(
n− 1

24

)
1
t

)
dt

= 2π
( π

12

) 3
2

+∞∑
k=1

k−
5
2Ak(n) · 1(

π2

6k2

(
n− 1

24

)) 3
4
·

(
π2

6k2

(
n− 1

24

)) 3
4

2πi

∫ π
12+∞i

π
12−∞i

t−
3
2−1exp

(
t− π2

6k2

(
n− 1

24

)
1
t

)
dt

= 2π
( π

12

) 3
2

+∞∑
k=1

k−
5
2Ak(n) · 6

3
4 k

3
2

π
3
2
(
n− 1

24

) 3
4
·
(
z
2

) 3
2

2πi

∫ π
12+∞i

π
12−∞i

t−
3
2−1exp

(
t− z2

4t

)
dt︸ ︷︷ ︸

=I3/2(z)

=
2π(

24
(
n− 1

24

)) 3
4

+∞∑
k=1

Ak(n)k−1I3/2(z)

But Bessel functions of half-order can be reduced to elementary functions:

I3/2(z) =

√
2z
π

d

dz

(
sinh z
z

)
(53)

We rewrite everything in terms of n:

z

2
=
(
π2

6k2

(
n− 1

24

)) 1
2

⇐⇒ z =
π

k

√
2
3

(
n− 1

24

)
⇐⇒ n =

1
24

+
3
2

(
zk

π

) 1
2

(54)

=⇒ d

dz
=

dn

dz
· d
dn

= 3z
k2

π2
· d
dn

= 3
π

k

√
2
3

(
n− 1

24

)
k2

π2

d

dn
(55)

Also:

I3/2(z) =

√
2z
π

d

dz

(
sinh z
z

)

=⇒ I3/2(
π

k

√
2
3

(
n− 1

24

)
) =

√√√√ 2
π
· π
k

√
2
3

(
n− 1

24

)
· 3π
k

√
2
3

(
n− 1

24

)
k2

π2

d

dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))
π
k

√
2
3

(
n− 1

24

)


=
2

1
2

k
1
2

2
1
4

3
1
4

(
n− 1

24

) 1
4

· 3π
k

2
1
2

3
1
2

(
n− 1

24

) 1
2 k2

π2
· k
π

3
1
2

2
1
2

d

dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


=

2
1
2 · 2 1

4 · 2 1
2 · 3 · 3 1

2

3
1
4 · 3 1

2 · 2 1
2

· π

π2 · π
· k

2 · k
k

1
2 · k

·
(
n− 1

24

) 3
4 d

dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


= 2

3
4 · 3 3

4 · 1
π2
· k 3

2 ·
(
n− 1

24

) 3
4 d

dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


So that:

p(n) =
2π(

24
(
n− 1

24

)) 3
4

+∞∑
k=1

Ak(n)k−1I3/2(z)
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=
2π

2
9
4 3

3
4
(
n− 1

24

) 3
4

+∞∑
k=1

Ak(n)
1
k
· 2 3

4 · 3 3
4 · 1

π2
· k 3

2 ·
(
n− 1

24

) 3
4 d

dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


=

2 · 2 3
4 · 3 3

4

2
9
4 · 3 3

4
· π
π2
·

(n− 1
24 )

3
4

(n− 1
24 )

3
4

+∞∑
k=1

Ak(n) · k
3
2

k
· d
dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


=

1
π
√

2

∞∑
k=1

Ak(n)
√
k

d
dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


as required.
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