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1. Introduction

Suppose that we want to solve the equation f(z) = β where f is a nonconstant entire
function and β ∈ C. We know that if f is a polynomial, this equation has a solution for all
β ∈ C. On the other hand, the equation exp z = β has no solution if β = 0. It turns out that
in some sense this is the worst that can happen, in that f(z) = β is solvable for all β from C
with a possible exception of one point.

Theorem 1 (Picard’s little theorem). If f ∈ O(C) and f(C) ⊂ U where C \ U contains at
least two points, then f is constant.

This is a dramatic strengthening of Liouville’s theorem, as Liouville’s theorem can be
thought of as the preceding theorem where the condition on U is replaced by the condition
U = D. We will actually prove an even stronger result known as Picard’s big theorem.

Definition 2. Let S and M be Riemann surfaces, and let f ∈ O(S \ {α},M) with α ∈ S.
We say β ∈ M is an omitted value of f at α, if there is an open neighbourhood U ⊂ S of α
such that f(U) 63 β.

So in order for β not to be an omitted value, there must exist a sequence {zn} ⊂ S with
zn → α such that f(zn) = β for all n.

Theorem 3 (Picard’s big theorem). If f ∈ O(S \ {α}, Ĉ) omits 3 values from Ĉ at α then f

extends to f ∈ O(S, Ĉ).

In certain sense, this theorem strengthens Riemann’s removable singularity theorem the
same way the little theorem strengthens Liouville’s theorem. Another way to formulate the
big theorem is to say that a holomorphic function can omit at most one value at its essential
singularity. We will give a proof at the end of these notes. For now, let us see how the little
theorem follows from the big theorem. It suffices to treat the case where f is not a polynomial,
since a polynomial of degree n takes every value in C exactly n times, counting multiplicities.
It turns out that we can derive a result that is much stronger than the little theorem, namely
that not only entire transcendental (i.e., non-polynomial) functions assume every value in C
with at most one exception, but each of those values are taken infinitely many times.

Corollary 4. If f ∈ O(C) is not a polynomial, then it assumes every value in C infinitely
many times with at most one exception.

Indeed, since f has an essential singularity at ∞ ∈ Ĉ, it cannot be extended to a mero-
morphic function on Ĉ. By the big theorem, at ∞ ∈ Ĉ, f can omit at most 2 values in Ĉ,
or, since ∞ is already omitted, at most 1 value in C. For all other values β in C, we have a
sequence {zn} ⊂ C with zn →∞ such that f(zn) = β for all n.

In order to prove the big theorem, we will develop in the following sections a very precise
theory on compactness properties of families of meromorphic functions.
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2. Marty’s theorem

Obviously, a proof of Picard’s big theorem requires us in one way or another to consider
holomorphic functions having values in Ĉ (otherwise known as meromorphic functions). When
working with Ĉ one has to deal with the point ∞ ∈ Ĉ from time to time, and as a result dis-
cussions become spotted with applications of special transformations such as 1/z, potentially
obscuring the clarity of the arguments and giving the false impression that ∞ was somehow
special. This can be dealt with by introducing general charts on Ĉ, but then its complexity
becomes the same as considering a general Riemann surface. So for the sake of both clarity
and generality we will be working with a general Riemann surface M instead of the Riemann
sphere Ĉ. We equip M with a (metric space) metric ρ that is compatible with its topology.
This metric induces a way to measure distances between functions: for f, g : U →M defined
on some set U ⊆ C, we define

ρU (f, g) = sup
z∈U

ρ(f(z), g(z)).

With Ω ⊆ C an open connected set, we say that the sequence {fn} of functions fn : Ω→ M
converges to f : Ω→M uniformly on Ω if ρΩ(fn, f)→ 0 as n→∞, and that {fn} converges
to f locally uniformly on Ω if for any compact K ⊂ Ω, ρK(fn, f)→ 0 as n→∞.

For each coordinate chart (U,ϕ) of M , we require the metric ρ to satisfy

ρ(z, w) = Cz|ϕ(z)− ϕ(w)|+ o(|ϕ(z)− ϕ(w)|), z, w ∈ U,
where the constant Cz > 0 depends continuously on z. Note that Cz is in general different for
different coordinate charts. If f : Ω→M is a holomorphic function, then for z ∈ Ω we have

ρ(f(z), f(z + h)) = Cf(z)|ϕ(f(z + h))− ϕ(f(z))|+ o(|ϕ(f(z + h))− ϕ(f(z))|)
= Cf(z)|(ϕ ◦ f)′(z)||h|+ o(|h|),

and therefore the following limit exists

f ](z) = lim
h→0

ρ(f(z), f(z + h))
|h|

.

We call f ] : Ω→ R+ the metric derivative of f . It is clear that f ] has the local expression

f ](z) = Cf(z)|(ϕ ◦ f)′(z)|, (1)

which in particular shows that f ] is a continuous function.

Example 5. For the Riemann sphere Ĉ, an example of ρ satisfying the above assumptions
is the cordial distance between α, β ∈ Ĉ considered as points on S2 ⊂ R3. Another is the
geodesic distance between two points α, β ∈ S2 with respect to the round metric on S2.

The following is a generalization of the Weierstrass convergence theorem.

Theorem 6. Let {fn} ⊂ O(Ω,M) be a sequence that converges locally uniformly on Ω to a
function f : Ω→M . Then f ∈ O(Ω,M), and {f ]n} converges locally uniformly.

Proof. We first prove that f is continuous. From the triangle inequality for ρ, we have

ρ(f(z), f(w)) ≤ ρ(f(z), fn(z)) + ρ(fn(z), fn(w)) + ρ(fn(w), f(w)),

for z, w ∈ Ω and n ∈ N. For any compact set K ⊂ Ω, one can choose n so large that ρK(fn, f)
is arbitrarily small, and then since fn is continuous we conclude that f is continuous.

By continuity of f , for any z ∈ Ω there is an open neighbourhood U ⊂ Ω such that f(U)
is entirely in a single coordinate chart of M . Then for any open disk D ⊂ U centred at z
such that D ⊂ U , the sets fn(D) will eventually be in the same coordinate chart, so that
ρD(fn, f)→ 0 implies ‖ϕ ◦ fn − ϕ ◦ f‖D → 0, where ϕ is the coordinate map. Consequently,



NORMAL FAMILIES 3

we have ϕ ◦ f ∈ O(D), and since D is an open disk centred at an arbitrary point z ∈ Ω,
we get f ∈ O(Ω,M). At the same time, the uniform convergence of ϕ ◦ fn to ϕ ◦ f on D

implies locally uniform convergence of (ϕ ◦ fn)′, which by (1) means that f ]n converges locally
uniformly on Ω. �

We recall here a version of the Arzelà-Ascoli theorem.

Theorem 7 (Arzelà-Ascoli). Assume that M is a compact Riemann surface. Let fn : Ω→M
be a sequence that is equicontinuous on compact subsets of Ω. Then there is a subsequence of
{fn} that converges locally uniformly.

In complex analysis, a very important notion is that of relative compactness in the topology
associated to locally uniform convergence, so important that it has a name.

Definition 8. A family F ⊂ O(Ω,M) is called normal if every sequence in F has a subsequence
that converges locally uniformly on Ω.

Theorem 9 (Marty). Assume that M is a compact Riemann surface. Then F ⊂ O(Ω,M) is
normal if and only if sup

f∈F
‖f ]‖K <∞ for any compact set K ⊂ Ω.

Proof. Firstly, if there is a compact set K ⊂ Ω such that sup
f∈F
‖f ]‖K = ∞, then there is a

sequence {fn} ⊂ F with ‖f ]n‖K → ∞ as n → ∞. Then by Theorem 6 a subsequence of {fn}
cannot converge, meaning that the family F cannot be normal.

As for the other direction, let f ∈ F. Also let K ⊂ Ω be a compact set, let α, β ∈ K, and
let h be such that β = α+nh for some large integer n. Then from the triangle inequality and
the definition of f ], we have

ρ(f(α), f(β)) ≤
n−1∑
j=0

ρ(f(α+ jh), f(α+ (j + 1)h))

=
n−1∑
j=0

(
f ](α+ jh)|h|+ o(|h|)

)

=
n−1∑
j=0

f ](α+ jh)|h|+ o(1),

and by sending n→∞ and taking into account that f ] is continuous, we infer

ρ(f(α), f(β)) ≤
∫

[αβ]
f ](z)|dz| ≤ ‖f ]‖K |β − α|.

Hence F is equicontinuous on compact subsets, and an application of the Arzelà-Ascoli theorem
finishes the proof. �

We end this section with a general version of Vitali’s theorem, which will not used here,
but is interesting in its own right.

Theorem 10 (Vitali). If {fn} ⊂ O(Ω,M) is normal, and converges pointwise on a set that
has an accumulation point in Ω, then {fn} converges locally uniformly on Ω.

Proof. Suppose the opposite. Then there are two subsequences {gm} and {hm} of {fn}, a
sequence of points {zm} ⊂ K from a compact set K ⊂ Ω, and a number δ > 0, such that
ρ(gm(zm), hm(zm)) ≥ δ for all m. The sequences {gm} and {hm} are both normal, so up to
subsequences they converge respectively to functions g ∈ O(Ω,M) and h ∈ O(Ω,M). Without
loss of generality, we may assume zm → z ∈ K, so that ρ(g(z), h(z)) ≥ δ.
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On the other hand, {fn} converges pointwise on a set that has an accumulation point in
Ω, forcing g = h on that set. Then the identity theorem concludes that g = h on Ω. �

3. Zalcman’s lemma

The following remarkable result gives a precise characterization of loss of normality.

Lemma 11 (Zalcman). Suppose that F ⊂ O(Ω,M) is not normal. Then there exist
• zn ∈ Ω, with zn → z ∈ Ω,
• εn > 0, with εn → 0, and
• fn ∈ F such that the sequence of functions ζ 7→ fn(zn+εnζ) converges locally uniformly

on C to a nonconstant function g ∈ O(C,M) with ‖g]‖C ≤ g](0) = 1.

Proof. By Marty’s theorem, there exist a sequence of points wn in a compact set K ⊂ Ω, and
a sequence of functions fn ∈ F such that f ]n(wn) → ∞. Without loss of generality we may
assume that D ⊂ Ω, wn → 0, and f ]n(wn) > 0. Let zn ∈ D and consider the disk centred at
zn of radius 1− |zn|. We blow up this disk D1−|zn|(zn) so that it becomes a disk of radius Rn
with Rn →∞ as n→∞. More precisely, we define

hn(ζ) = fn(zn + εnζ), ζ ∈ DRn , where εn =
1− |zn|
Rn

.

Note that zn and Rn are assumed to satisfy zn ∈ D and Rn →∞; otherwise they are arbitrary.
This freedom will be used shortly. Fix some large R > 0, and for all n large enough so that
Rn > R, let us look at the normality of the sequence of functions hn. We have

h]n(ζ) = εnf
]
n(zn + εnζ), ζ ∈ DRn ,

since
ρ(hn(ζ), hn(ζ + h)) = ρ(fn(zn + εnζ), fn(zn + εnζ + εnh))

= f ]n(zn + εnζ) · εn|h|+ o(εn|h|).

Trying to bound h]n(ζ) from above for ζ ∈ DR, we get

εnf
]
n(zn + εnζ) = (1− |zn|)f ]n(zn + εnζ)/Rn

≤ (1− |zn + εnζ|+ εn|ζ|)f ]n(zn + εnζ)/Rn

≤ (1− |zn + εnζ|)f ]n(zn + εnζ)/Rn + (R/Rn)εnf ]n(zn + εnζ),

where we have used the definition of εn in the first line, the triangle inequality in the second,
and |ζ| < R in the third. Since R/Rn < 1, we can write this as

(1−R/Rn)h]n(ζ) ≤ (1− |zn + εnζ|)f ]n(zn + εnζ)/Rn

≤ max
|z|≤1

(1− |z|)f ]n(z)/Rn.

We have 1−R/Rn → 1 as n→∞, therefore by choosing Rn so that the right hand side of the
preceding inequality stays bounded, we can ensure the boundedness of h]n on DR uniformly
in n. In particular, the choice

Rn = max
|z|≤1

f ]n(z)(1− |z|),

is convenient, as this implies

h]n(ζ) ≤ 1
1−R/Rn

→ 1 as n→∞.
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We have Rn →∞ because f ]n is unbounded near 0. Moreover, we have

h]n(0) = εnf
]
n(zn) =

(1− |zn|)f ]n(zn)
Rn

=
f ]n(zn)(1− |zn|)

max
|z|≤1

f ]n(z)(1− |z|)

So if we could choose zn ∈ D to be a maximum of z 7→ f ]n(z)(1− |z|), that is,

f ]n(zn)(1− |zn|) = Rn,

then we would have h]n(0) = 1 for all sufficiently large n. But since z 7→ f ]n(z)(1 − |z|) is
continuous, is positive at z = wn and vanishes for |z| = 1, it achieves its maximum in D.

The outcome of the preceding paragraph is that for any R > 0, there is nR such that
the sequence H0 = {hn : n ≥ nR} ⊂ O(DR,M) is normal. So there is a subsequence
H1 = {h11, h12, . . .} of H0 such that h1k → g1 ∈ O(DR,M) as k → ∞. But a tail of H1 is
normal in O(D2R,M), so there is a subsequence H2 = {h21, h22, . . .} ⊂ O(D2R,M) of H1 such
that h2k → g2 ∈ O(D2R,M) as k → ∞. Continuing this process, we get a nested sequence
H1 ⊃ H2 ⊃ . . . of sequences Hm = {hm1, hm2, . . .} ⊂ O(DmR,M), with the property that
hmk → gm ∈ O(DmR,M) as k → ∞. From the nestedness, gm and gm+1 agree on DmR,
so that the sequence g1, g2, . . . defines a function g ∈ O(C,M). Then the diagonal sequence
{hkk}, which is obviously a subsequence of the original sequence {hn}, is defined eventually
on any disk DR, and converges uniformly there to g. Finally, note that we have g](0) = 1 and
‖g]‖C ≤ 1 by construction. �

4. Montel’s theorem

We have encountered a version of Montel’s theorem during the proof of the Riemann map-
ping theorem, which is usually called the thesis version of Montel’s theorem. The following
strengthened version relates to the thesis version the same way Picard’s little theorem relates
to Liouville’s theorem.

Theorem 12 (Montel). If F ⊂ O(Ω, Ĉ) omits 3 values, then F is normal.

Proof. Without loss of generality, we may assume that Ω = D, and that F omits 0, 1, and ∞.
In particular, F ⊂ O(D) and each f ∈ F admits a holomorphic n-th root for any n ∈ N. Let
us collect all 2n-th roots of elements of F and form the family

Fn = {g ∈ O(D) : g2n
= f pointwise for some f ∈ F}.

It is obvious that Fn omits 0, ∞, and the 2n-th roots of unity.
Anticipating a contradiction, suppose that F is not normal. Then Fn is not normal, because

convergence of a sequence implies convergence of the sequence composed of 2n-th power of the
elements from the original sequence. Let gn ∈ O(C, Ĉ) be the limit function from Zalcman’s
lemma applied to Fn. We have ‖g]n‖ ≤ g]n(0) = 1 and gn omits 0, ∞, and the 2n-th roots
of unity. In particular, {gn} is normal by Marty’s theorem, and passing to a subsequence,
the limit function g = lim gn ∈ O(C, Ĉ) omits 0, ∞, and the 2n-th roots of unity for all n.
Moreover, g is not constant since g](0) = 1. It follows from the open mapping theorem that
g omits ∂D, hence either g(C) ⊂ D or g(C) ⊂ C \ D. Finally, Liouville’s theorem applied to
either g or 1/g implies that g is constant, reaching a contradiction. �

Now we are ready prove Picard’s big theorem, which we rephrase here for convenience.

Theorem 13. If f ∈ O(D×) omits 2 values in C, then f extends to f ∈ O(D, Ĉ).
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Proof. With a positive sequence εn → 0, let gn(z) = f(εnz) for z ∈ D×. Then {gn} omits 3
values in Ĉ, so it is normal. Passing to a subsequence, let g = lim gn ∈ O(D×, Ĉ). So either g
is a meromorphic function on D×, or g ≡ ∞.

If g 6≡ ∞, then there is a circle ∂Dr that does not pass through any pole of g, i.e., such
that ‖g‖∂Dr < M for some M > 0. This means that ‖gn‖∂Dr < M for all large n, or in other
words, that |f(z)| < M for |z| = εnr for all large n. By the maximum principle, |f | < M on
the annulus of inner and outer radii εn+1r and εnr respectively, and this is true for all large
n, hence 0 is a removable singularity of f .

For the case g ≡ ∞, we have |f(z)| → ∞ as z → 0, so 0 is a pole of f . �


