
MATH 566 LECTURE NOTES 3: THE FOUNDATIONS OF CAUCHY’S
FUNCTION THEORY

TSOGTGEREL GANTUMUR

1. Introduction

In this set of notes, we continue to explore the fundamental theorems of complex analysis.
Among others, we will prove and discuss the following result.

Theorem 1. Let Ω ⊆ C be open, and let f ∈ C(Ω). Then the followings are equivalent.
(a) f is holomorphic on Ω, i.e., f ∈ O(Ω).
(b) For all closed triangles T ⊂ Ω, the integral of f over the boundary of T is zero.
(c) f is locally integrable in Ω, i.e., for each z ∈ Ω there exist an open neighbourhood U of z

and a function F ∈ O(U) such that F ′ = f on U .

(d) For all closed disks D ⊂ Ω and for a ∈ D, it holds that f(a) =
1

2πi

∫
∂D

f(z)dz
z − a

.

(e) f is analytic on Ω, i.e., f ∈ Cω(Ω).

The implication (e) ⇒ (a) follows from the termwise differentiation theorem that has been
proven in the previous set of notes on analytic functions. The implication (a) ⇒ (b) is
Goursat’s theorem in §3, and (b) ⇒ (c) is Theorem 8 in §4. Then (a) ⇒ (d) is the argument
leading to Cauchy’s integral formula in §5 and §8, where we also use the implication (a)⇒ (c),
and (d) ⇒ (e) is the Cauchy-Taylor theorem in §9. Using all of these, (c) ⇒ (a) is proven as
Morera’s theorem in §9. Theorems having a conclusion of type (b) with triangles replaced by
more general curves are typically called Cauchy theorems, and we will prove several versions
of Cauchy theorems in §5 and §6. Statements of type (d) are called Cauchy integral formulæ;
we shall prove a couple of those in §8, after presenting the residue theorem in §7, which is a
generalization of both Cauchy theorems and Cauchy integral formulæ. Let us start by fixing
some terminology regarding curves, and clarifying the notion of integrating a complex-valued
function over curves.

2. Contour integration

Let Ω ⊆ C be an open set. A (topological) curve in Ω is simply a continuous map γ :
[a, b] → Ω, and it is called a closed curve or a loop if γ(a) = γ(b). Loops in Ω can also be
defined as continuous maps γ : S1 → Ω. The terms path, contour and arc are also used
for a curve, sometimes with slight differences in meaning. We will not make any distinction
between any of these terms. Non-self-intersecting curves are called simple, and simple closed
curves are called Jordan curves. The length of a curve γ ∈ C([a, b],Ω), the latter notation
meaning that the space of continuous functions on [a, b] taking values from Ω, is defined as

‖γ‖ = sup
P

n∑
k=1

|γ(ti)− γ(ti−1)|,

where the supremum is taken over all possible partitions P = {t0, t1, . . . , tn} of [a, b] with
a = t0 < t1 < . . . < tn = b. Finite length curves are said to be rectifiable. Integration over
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rectifiable curves is possible via the Riemann-Stieltjes integrals, but we will consider here a
smoother class of curves for which the theory of Riemann integrals suffices.

If φ : [c, d] → [a, b] is a monotone increasing surjective function, then we say the curve
γ ◦ φ : [c, d] → Ω is equivalent to the original γ : [a, b] → Ω, and call the equivalence
classes of curves under this equivalence relation oriented curves. Intuitively, given the image
|γ| = γ([a, b]) of the curve γ, an oriented curve can be recovered upon identifying the initial
and terminal points, and specifying how to traverse at self-intersection points. By abuse of
language we call the particular representation γ : [a, b]→ Ω of the underlying oriented curve
also an oriented curve. Note that one can take the interval [a, b] to be, say, [0, 1] at one’s
convenience. Now, the inverse or the opposite of γ is defined by reversing the orientation:
γ−1(t) = γ(b + a − t) for t ∈ [a, b]. If γ : [0, 1] → Ω and σ : [1, 2] → Ω are two curves with
γ(1) = σ(1), then their product or concatenation γσ : [0, 2] → Ω is defined as γσ(t) = γ(t)
for t ∈ [0, 1] and γσ(t) = σ(t) for t ∈ [1, 2]. When the order of the operations are not
important, the above operations on curves can suggestively be written in the additive notation
as −γ ≡ γ−1 and γ + σ ≡ γσ.

The curve γ : [a, b] → Ω is called differentiable if γ ∈ C1([a, b]) (with γ′(a) = γ′(b) for
loops) and γ′(t) 6= 0 for t ∈ [a, b], where the derivatives at a and b are to be understood
in the one-sided sense. The curve γ is called piecewise differentiable in Ω and written γ ∈
C1

pw([a, b],Ω) if γ is the concatenation of finitely many differentiable curves. We assume that
differentiable and piecewise differentiable curves are oriented, which amounts to saying, e.g.,
for the case of piecewise differentiable curves that we allow piecewise differentiable monotone
reparameterizations of curves.

Let α = pdx + qdy be a differential 1-form on Ω having values in some finite dimensional
vector space V , i.e., the components p and q are V -valued functions on Ω. The integral of α
over a differentiable curve γ : [a, b]→ Ω is an element of V , defined by

〈α, γ〉 =
∫
γ
α =

∫ b

a

[
p(γ(t))γ′x(t) + q(γ(t))γ′y(t)

]
dt,

where γx and γy are the x- and y-components of γ. One can verify that this definition is
invariant under differentiable monotone reparameterizations of γ. We will use the notation
〈α, γ〉 for the integral of α over γ wherever it is not too awkward, which is more in line with
the duality between the differential form and the domain of integration than the conventional
notation. For piecewise differentiable curves the integral is defined via “linearity”:

〈α, γ1 + . . .+ γn〉 = 〈α, γ1〉+ . . .+ 〈α, γn〉.
If ϕ is a V -valued 0-form on Ω, i.e., if ϕ : Ω → V , its exterior derivative is defined to be

the 1-form dϕ = ∂xϕdx+ ∂yϕdy. Note that we have implicitly assumed the existence of the
derivatives of ϕ. We recall below a version of the fundamental theorem of calculus.

Theorem 2 (Fundamental theorem of calculus). Let ϕ : Ω → V be a continuously differ-
entiable function, and let γ ∈ C1

pw([a, b],Ω) be a piecewise differentiable oriented curve in Ω.
Then we have ∫

γ
dϕ = ϕ(γ(b))− ϕ(γ(a)).

If we consider the boundary ∂γ of γ as the formal linear combination of the initial point
γ(a) with weight −1 and the terminal point γ(b) with weight +1, i.e., ∂γ = γ(b) − γ(a),
and moreover if we define the evaluation (or “integral”) of the 0-form ϕ on formal linear
combinations k1z1 + . . .+ knzn of points z1, . . . , zn ∈ Ω with weights k1, . . . , kn ∈ Z, again by
“linearity” as 〈ϕ, k1z1 + . . .+knzn〉 = k1ϕ(z1)+ . . .+knϕ(zn), then the conclusion of the above
theorem can be written compactly as 〈dϕ, γ〉 = 〈ϕ, ∂γ〉. Finite formal linear combinations
k1z1 + . . . + knzn of points z1, . . . , zn ∈ Ω with weights k1, . . . , kn ∈ Z are called 0-chains
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in Ω. The collection of all 0-chains in Ω forms a free abelian group C0(Ω), called the 0-th
chain group of Ω. Similarly, the notion of curves can be extended to 1-chains, which are finite
formal linear combinations k1γ1 + . . .+ knγn of oriented curves γ1, . . . , γn ∈ C([0, 1],Ω) with
weights k1, . . . , kn ∈ Z. The set of 1-chains forms a free abelian group C1(Ω), called the 1-st
chain group of Ω. The boundary operator ∂ can be extended to 1-chains by linearity

∂(k1γ1 + . . .+ knγn) = k1∂γ1 + . . .+ kn∂γn,

so that ∂ : C1(Ω) → C0(Ω) is now a group homomorphism. Also the integral over piecewise
differentiable 1-chains (i.e., 1-chains that can be written as linear combinations of piecewise
differentiable curves) can be defined via linearity as 〈α, k1γ1 + . . . + knγn〉 = k1〈α, γ1〉 +
. . . + kn〈α, γn〉. With the above concepts at hand, the fundamental theorem of calculus
immediately generalizes to 1-chains: If ϕ : Ω → V is continuously differentiable, then there
holds that 〈dϕ, γ〉 = 〈ϕ, ∂γ〉 for piecewise differentiable γ ∈ C1(Ω).

Let us now consider the special case V = C. In this case, making use of the algebraic
structure of C, it is convenient to express everything in terms of the elementary differential
forms dz = dx+ idy and dz̄ = dx− idy. For instance, we have

α = pdx+ qdy = p
dz + dz̄

2
+ q

dz − dz̄
2i

=
p− qi

2
dz +

p+ qi

2
dz̄ =: λdz + µdz̄,

i.e., any C-valued 1-form can be written as λdz + µdz̄ with C-valued functions λ and µ.
Conversely, any pair of functions λ and µ defines a 1-form. Among all C-valued 1-forms, we are
mainly interested in holomorphic 1-forms, which are of the form α = λdz with a holomorphic
function λ. Furthermore, for a holomorphic (or more generally a complex-valued) function λ,
we define the integral of λ over a piecewise differentiable curve (or more generally a piecewise
differentiable 1-chain) γ to be the integral 〈λdz, γ〉, and if there is no risk of confusion we
write it simply as 〈λ, γ〉.

Let ϕ be a C-valued 0-form (i.e., a garden-variety complex function). We have

dϕ = ∂xϕdx+ ∂yϕdy =
∂xϕ− i∂yϕ

2
dz +

∂xϕ+ i∂yϕ

2
dz̄ = ∂zϕdz + ∂z̄ϕdz̄ =: ∂ϕ+ ∂̄ϕ,

and if ϕ is holomorphic, then ∂z̄ϕ = 0, so that dϕ = ∂zϕdz = ∂ϕ. By applying the fundamen-
tal theorem of calculus to such functions, we get the following useful theorem. In particular,
this theorem will be used to show that if f is an integrable holomorphic function, i.e., if there
exists a holomorphic function F such that ∂zF = f throughout Ω, then the integral of f over
any closed curve in Ω is zero.

Theorem 3 (FTC for holomorphic functions). Let ϕ ∈ O(Ω) be a holomorphic function, and
suppose that ∂zϕ is continuous in Ω. Then for any piecewise differentiable γ ∈ C1(Ω) we have

〈∂zϕ, γ〉 = 〈ϕ, ∂γ〉.

Proof. We only have to show that ∂xϕ and ∂yϕ are continuous in Ω. But this is true since by
definition ∂z̄ϕ ≡ 0 and by hypothesis ∂zϕ is continuous throughout Ω. �

Remark 4. The continuity hypothesis on ∂zϕ is in fact superfluous, since it will turn out that
holomorphic functions are analytic, so in particular they are infinitely often differentiable.
However, the above form (with the continuity hypothesis) will be used to prove that fact.

3. Goursat’s theorem

For a set U ⊂ C that is not open, the notation f ∈ O(U) means that f is holomorphic in
an open neighbourhood of U . Let us denote by [z1z2] the (oriented) line segment with the
initial point z1 ∈ C and the terminal point z2 ∈ C, and by [z1z2z3] the (possibly degenerate)
triangle with vertices zk ∈ C. The boundary ∂τ of τ = [z1z2z3] is defined to be the loop
[z1z2] + [z2z3] + [z3z1]. Note that the orientation of the boundary depends on the order of the
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vertices in [z1z2z3], so for example, ∂[z1z2z3] = ∂[z2z3z1] = −∂[z2z1z3]. If the interior of τ is
on the left of ∂τ , then we say that τ is positively oriented, otherwise – negatively oriented.
The following is called Goursat’s theorem.

Theorem 5. Let τ ⊂ C be a triangle, and let f ∈ O(τ). Then 〈f, ∂τ〉 = 0.

Proof. Let us subdivide τ into 4 congruent triangles τ1, τ2, τ3, τ4 by connecting the midpoints
of the edges of τ . All lengths of the smaller triangles are measured as half the corresponding
length of the original triangle τ . Moreover we have

〈f, ∂τ〉 =
∑

1≤j≤4

〈f, ∂τj〉.

Let τm be a triangle among the 4 triangles that gives the largest contribution to the sum, and
call it τ (1), that is, τm (with some m between 1 and 4) satisfies |〈f, ∂τm〉| ≥ |〈f, ∂τj〉| for any
1 ≤ j ≤ 4. Then we have

|〈f, ∂τ〉| ≤ 4|〈f, ∂τ (1)〉|.
Now subdividing τ (1) into 4 still smaller triangles, and repeating this procedure, we get

|〈f, ∂τ〉| ≤ 4n|〈f, ∂τ (n)〉|, (1)

with any length of τ (n) being 2−n part of the corresponding length of τ . In particular, if
cn is the barycenter of τ (n), then the sequence {cn} is Cauchy, so cn → c ∈ τ . Since f is
holomorphic in a neighbourhood of τ , by definition we have

f(z) = f(c) + λ(z − c) + o(2−n), z ∈ ∂τ (n),

with some constant λ ∈ C. We calculate the integral of f over the boundary of τ (n) to be

〈f, ∂τ (n)〉 = (f(c)− λc)
∫
∂τ (n)

dz + λ

∫
∂τ (n)

zdz + o(2−n‖∂τ (n)‖) = o(4−n),

where the displayed integrals vanish because of the integrability of 1 an z, and we have taken
into account that the perimeter ‖∂τ (n)‖ = O(2−n). Substituting this into (1) establishes the
proof. �

It is possible to slightly relax the hypothesis of Goursat’s theorem, so that only holomorphy
in the interior and continuity up to the boundary are assumed. The argument is a continuity
argument that can be used to strengthen many of the theorems that follow.

Corollary 6. Let τ ⊂ C be an open triangle, and let f ∈ O(τ) ∩ C(τ). Then 〈f, ∂τ〉 = 0.

Proof. Let a, b, c be the vertices of τ , and let {an}, {bn}, {cn} be sequences of points in τ such
that an → a, bn → b, and cn → c as n → ∞. As the closure of the triangle τn = [anbncn]
is entirely in τ , Goursat’s theorem applies to τn, meaning that 〈f, ∂τn〉 = 0. By uniform
continuity, 〈f, ∂τn〉 tends to 〈f, ∂τ〉, hence 〈f, ∂τ〉 = 0. �

4. Local integrability

In what follows, by default Ω will always denote an open subset of C.

Definition 7. A continuous function f ∈ C(Ω) is called integrable on Ω if there is F ∈ O(Ω)
such that ∂zF = f on Ω. It is called locally integrable on Ω if for any z ∈ Ω there exists a
neighbourhood U of z such that f is integrable on U .

In combination with Goursat’s theorem, the theorem below implies that holomorphic func-
tions are locally integrable.

Theorem 8. Let f ∈ C(Ω) and suppose that 〈f, ∂τ〉 = 0 for any closed triangle τ ⊂ Ω. Then
f is integrable on any open disk D ⊆ Ω.
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Proof. Let c ∈ D be the centre of D, and define F (z) = 〈f, [cz]〉 for z ∈ D. We would like to
show that F ′ = f on D, or equivalently that

F (w) = F (z) + f(z)(w − z) + o(|w − z|).

From the definition of F we have F (w) − F (z) = 〈f, [zw]〉, and taking into account that
w − z = 〈1, [zw]〉, we infer

F (w)− F (z)− f(z)(w − z) = 〈f, [zw]〉 − f(z)〈1, [zw]〉.

Now f = f(z) + o|w−z|(1) on [zw], so the right hand side is of order o(|w − z|). �

In the subsequent sections, by a sequence of several theorems, we will prove that locally
integrable functions are analytic, therefore also holomorphic, cf. Theorem 31 on page 11.
Hence local integrability is equivalent to holomorphy.

As a simple application of the theorem, we get Cauchy’s theorem for disks.

Corollary 9. Let f ∈ O(Ω) and let D ⊆ Ω be an open disk. Then 〈f, γ〉 = 0 for any piecewise
differentiable loop γ ∈ C1

pw(S1, D) lying in D.

Proof. By the preceding theorem (in combination with Goursat’s theorem) there is F ∈ O(Ω)
such that F ′ = f on D. Then the fundamental theorem of calculus for holomorphic functions
(Theorem 3 on page 3) states that the integral of f over any piecewise differentiable closed
curve must be zero. �

We can slightly extend the argument in the proof of Theorem 8 to get a criterion on (global)
integrability.

Theorem 10. A continuous function f ∈ C(Ω) is integrable on Ω if and only if 〈f, γ〉 = 0
for any γ ∈ C1

pw(S1,Ω).

Proof. One direction is immediate from the fundamental theorem of calculus. For the other
direction, assume that Ω is connected (otherwise we work in connected components of Ω one
by one). Let c ∈ Ω, and for z ∈ Ω define F (z) = 〈f, γ〉 with γ a piecewise differentiable curve
connecting1 c and z. The value F (z) does not depend on the particular curve γ, since if σ is
another curve connecting c and z, then γ − σ is a piecewise differentiable loop in Ω, so that
〈f, γ〉 = 〈f, σ〉 by hypothesis. Now noting that F (w) − F (z) = 〈f, [zw]〉, the proof proceeds
in exactly the same way as in the proof of Theorem 8. �

5. Cauchy’s theorem for homotopic loops

Definition 11. Given a set F ⊂ [0, 1], curves γ0, γ1 ∈ C([0, 1],Ω) are called homotopic relative
to F , and written γ0 hF γ1, if there exists a continuous map Γ : [0, 1]× [0, 1]→ Ω such that
Γ(t, 0) = γ0(t) and Γ(t, 1) = γ1(t) for t ∈ [0, 1], and Γ(t, s) = γ0(t) for all t ∈ F and s ∈ [0, 1].

Note that γ0 hF γ1 implies in particular that γ0(t) = γ1(t) for all t ∈ F . Homotopy relative
to F is an equivalence relation in the space of curves that are “fixed” at F , and so this space
is partitioned into (relative) homotopy classes. Let us first show that when F is finite, every
such a class contains a polygonal (i.e., piecewise linear) representative.

Lemma 12. Let Ω ⊆ C be open, and let γ ∈ C([0, 1],Ω) be a curve in Ω. Then for any finite
set F ⊂ [0, 1], there is a polygonal path σ in Ω such that σ hF γ. Moreover, given an open
cover {Uj} of |γ|, the polygonal path σ can be chosen to be also covered by {Uj}.

1Any two points in a connected open planar set can be connected by a piecewise linear curve.
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Proof. We prove the lemma for the case F = {0, 1}. Since [0, 1] is compact, γ is uniformly
continuous, and the image |γ| = {γ(t) : t ∈ [0, 1]} is compact in Ω. Fix ε > 0 such that
ε < dist(|γ|,C \ Ω), and that ∪tDε(γ(t)) ⊂ ∪jUj . Moreover, for an integer n that will be
chosen shortly, let zj = γ(j/n) for j = 0, . . . , n. Let σj = [zjzj+1] be the line segment joining
zj and zj+1, and let γj = γ|[j/n,(j+1)/n]. Then by uniform continuity, for sufficiently large n
one has σj ⊂ Dε(zj) and γj ⊂ Dε(zj) for all j. Without loss of generality assuming that σj is
parameterized by the interval [j/n, (j + 1)/n], the map Γj(t, s) = (1− s)σj(t) + sγ(t) defines
a homotopy between σj and γj relative to their endpoints. This shows that γ is homotopic to
the polygonal path σ = σ1 + . . .+ σn relative to their endpoints. �

Corollary 13. Let f be locally integrable in Ω, and let γ ∈ C1
pw([0, 1],Ω) be a piecewise

differentiable curve. Then there is a polygonal path σ h{0,1} γ such that 〈f, σ〉 = 〈f, γ〉.

Proof. Let {Dj} be a finite cover of |γ| by open disks such that f is integrable on each Dj .
Choose a partition 0 = t0 < . . . < tn = 1 such that γ([tj , tj+1]) ⊂ Dj for each j. Then by the
preceding lemma there is a polygonal path σ : [0, 1]→ Ω covered by {Dj}, such that σ meets
γ at each of the points γ(tj). If we set σj = σ|[tj ,tj+1] and γj = γ|[tj ,tj+1], then since

〈f, γ〉 − 〈f, σ〉 =
∑
j

〈f, γj − σj〉,

and γj − σj is a closed curve entirely contained in Dj , on which f is integrable, by the
fundamental theorem of calculus we have 〈f, γj − σj〉 = 0. This completes the proof. �

This corollary points to the possibility of defining the integral 〈f, γ〉 of a holomorphic
function f when γ is only a continuous curve by replacing γ with a polygonal path σ h{0,1} γ.
For this definition to be meaningful it has to hold that 〈f, γ0〉 = 〈f, γ1〉 for any two piecewise
differentiable curves γ0 h{0,1} γ1. We will accomplish this by first proving a more general
statement about integration over homotopic loops.

Definition 14. Loops γ0, γ1 ∈ C(S1,Ω) are called (freely) homotopic to each other, and
written γ0 h γ1, if there exists a continuous map Γ : S1 × [0, 1]→ Ω such that Γ(t, 0) = γ0(t)
and Γ(t, 1) = γ1(t) for t ∈ S1.

Similarly to the relative homotopy case, the space of loops is partitioned into (free) homo-
topy classes. The following theorem shows that at least in the piecewise differentiable case,
the integral of a given holomorphic function over a loop depends only on the homotopy class
the loop represents. In other words, denoting by Π(Ω) the set of homotopy classes of loops in
Ω, any holomorphic function f on Ω induces a well-defined function on Π(Ω) by γ 7→ 〈f, γ〉,
where γ is a (piecewise differentiable) representative of the homotopy class [γ] ∈ Π(Ω).

Theorem 15. For f ∈ O(Ω) and for piecewise differentiable loops γ0, γ1 ∈ C1
pw(S1,Ω) with

γ0 h γ1, we have
〈f, γ0〉 = 〈f, γ1〉.

Proof. Since holomorphic functions are locally integrable by Goursat’s theorem and Theorem
8 on page 4, by the preceding corollary it suffices to prove the theorem for polygonal paths γ0

and γ1. Moreover, let us parametrize the circle S1 by the interval [0, 1], so the curves will be
maps defined on [0, 1]. Let Γ : [0, 1]2 → Ω be a homotopy between γ0 and γ1. Since [0, 1]2 is
compact, Γ is uniformly continuous, and the image |Γ| = {Γ(t, s) : (t, s) ∈ [0, 1]2} is compact
in Ω. Fix ε > 0 such that ε < dist(|Γ|,C \Ω) and that f is integrable on any disk Dε(z) with
z ∈ |Γ|. For a large integer n, let zj,k = Γ( jn ,

k
n) for j = 0, . . . , n, and k = 0, . . . , n. Let Qj,k

be the oriented polygonal loop with the vertices zj,k, zj+1,k, zj+1,k+1, and zj,k+1 in the same
order. We choose n to be so large that Qj,k ⊂ Dε(zj,k) for all j and k. Then defining the
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polygonal loop σk to be the one with the vertices z0,k, . . . , zn−1,k for k = 0, . . . , n, we claim
that 〈f, σ0〉 = 〈f, σn〉. Note that

〈f, σ0〉 − 〈f, σn〉 =
∑
j,k

〈f,Qj,k〉,

where the contribution from any edge of Qj,k that does not coincide with an edge of either
σ0 or σn is canceled due to the opposite orientations that a common edge inherits from
neighbouring polygons. Moreover, each integral 〈f,Qj,k〉 is zero because f is integrable on
Dε(zj,k) ⊂ Ω and Qj,k is a polygonal loop in Dε(zj,k). The claim is proven.

It remains to show that 〈f, γ0〉 = 〈f, σ0〉 and 〈f, γ1〉 = 〈f, σn〉. This can be done by
adjusting the grid on [0, 1] so that the vertices of γ0 and γ1 correspond to grid points, and so
making sure that σ0 = γ0 and σn = γ1. �

If a loop γ is homotopic to a constant path, i.e., γ h δ with δ : [a, b]→ Ω such that δ ≡ z
for some z ∈ Ω, then γ is said to be topologically trivial or homotopic to zero, and this fact is
written as γ h 0.

Corollary 16. If γ ∈ C1
pw(S1,Ω) is topologically trivial, then 〈f, γ〉 = 0 for any f ∈ O(Ω).

Finally, we prove the result we alluded to earlier that the integral of holomorphic functions
can be defined over a continuous curve γ by replacing γ with a polygonal path σ h{0,1} γ.

Corollary 17. For f ∈ O(Ω) and for piecewise differentiable curves γ0, γ1 ∈ C1
pw([0, 1],Ω)

with γ0 h{0,1} γ1, we have 〈f, γ0〉 = 〈f, γ1〉.

Proof. One can show that the curve γ0 − γ1 is a topologically trivial piecewise differentiable
loop, by constructing a homotopy that, e.g., first follows the homotopy between γ0 and γ1

relative to the endpoints to collapse γ0 onto γ1, and then contracts γ1 to a point. �

A somewhat trivial way to ensure that a particular closed curve in Ω is topologically trivial
is to simply require that every closed curve in Ω is topologically trivial.

Definition 18. Ω ⊆ C is called simply connected if it is connected and every closed curve in
Ω is topologically trivial.

Example 19. Convex sets are simply connected. More general simply connected sets are star-
shaped sets, which are characterized by the property that there is c ∈ Ω such that z ∈ Ω
implies [zc] ⊂ Ω.

Corollary 20. If Ω is simply connected then 〈f, γ〉 = 0 for f ∈ O(Ω) and γ ∈ C1
pw(S1,Ω).

6. Cauchy’s theorem for homologous cycles

As we have seen in §2, integrals over curves can be generalized to integrals over 1-chains.
Cauchy’s theorem has a very natural form in the language of chains. In this setting, loops
shall be replaced by more general objects called cycles, and homotopy shall be replaced by a
weaker notion of homology.

Definition 21. A chain γ ∈ C1(Ω) is called a cycle if ∂γ = 0, and the set of all cycles is
denoted by Z1(Ω). If γ ∈ Z1(Ω) can be written as γ = k1γ1 + . . . + knγn with each γj a
topologically trivial loop, then γ is called a null-homologous or homologically trivial cycle,
and written γ ∼ 0. Two cycles γ0, γ1 ∈ Z1(Ω) are said to be homologous to each other, and
written γ0 ∼ γ1, if they differ on a null-homologous cycle, i.e., if γ0 − γ1 ∼ 0.

Being the kernel of the group homomorphism ∂ : C1(Ω)→ C0(Ω), the set of cycles Z1(Ω) =
{γ ∈ C1(Ω) : ∂γ = 0} forms a subgroup of the chain group C1(Ω). Homology between cycles
is an equivalence relation, so the cycle group Z1(Ω) is decomposed into homology classes.
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We write [γ] for the homology class containing the cycle γ ∈ Z1(Ω). Since B1(Ω) = {γ ∈
Z1(Ω) : γ ∼ 0} is a subgroup of Z1(Ω), the set of homology classes forms a factor group,
called the first homology group of Ω, denoted by H1(Ω) = Z1(Ω)/B1(Ω). Moreover, while the
groups Z1(Ω) and B1(Ω) are free abelian essentially by definition, it is a nontrivial topological
fact that, e.g., when Ω has finitely many holes (i.e., when C \ Ω has finitely many connected
components), H1(Ω) is also free abelian2.

The following theorem says that the integral of a holomorphic function over a cycle is
uniquely determined by the homology class of the cycle.

Theorem 22. For f ∈ O(Ω), and for piecewise differentiable cycles γ0, γ1 ∈ Z1(Ω) with
γ0 ∼ γ1, we have

〈f, γ0〉 = 〈f, γ1〉.

Proof. It suffices to prove that 〈f, γ〉 = 0 for γ ∼ 0. By definition γ = k1γ1 + . . . + knγn
with each γj h 0, and by Lemma 12 there is a polygonal loop σj h γj for each j. Then an
application of Cauchy’s theorem for homotopic loops concludes the proof. �

Considered as cycles, homotopic loops are homologous, but homologous loops are not nec-
essarily homotopic (find an example!). So the preceding theorem is stronger than Cauchy’s
theorem for homotopic loops. However, it turns out that if the underlying domain is simply
connected, then the two theorems are equivalent.

Lemma 23. Every cycle γ ∈ Z1(Ω) can be written as

γ = k1γ1 + . . .+ knγn,

where all γj are closed oriented curves.

Proof. Since γ is in particular a 1-chain, we can write

γ = k1γ1 + . . .+ knγn,

with oriented curves γj . By replacing γj with −γj if necessary, we can assume that all kj > 0.
We apply induction on k = k1 + . . .+ kn. If k = 1, then γ = γ1 and 0 = ∂γ1 = γ1(b)− γ1(a)
by definition, hence γ1(b) = γ1(a). In other words, γ1 is a loop.

Assume the lemma for all k ≤ K − 1, and suppose that k1 + . . .+ kn = K. If ∂γ1 = 0, then

γ − k1γ1 = k2γ2 + . . .+ knγn,

is a cycle with k2 + . . . + kn = K − k1 < K. If ∂γ1 6= 0, then in order for ∂γ = 0 to be
true, the terminal point of γ1 must coincide with the initial point of at least one of γ2, . . . , γn.
Without loss of generality, let γ2 be such a curve, and define γ0 = γ1 + γ2 which forms a
genuine oriented curve. With this new curve γ can be written as

γ = γ0 + (k1 − 1)γ1 + (k2 − 1)γ2 + . . .+ knγn,

and the sum of the coefficients is 1 + (k1 − 1) + (k2 − 1) + k3 + . . .+ kn = K − 1. �

Corollary 24. A connected open set Ω ⊆ C is simply connected if and only if every cycle in
Ω is null-homologous.

2This claim is not used in these notes, except in §7 to motivate a couple of definitions. A related assumption
will be used in Theorems 27 and 28, but it will be explicitly mentioned whenever there is an assumption involved.
To prove the claim, one would have to show that the group H1(Ω) has no torsion, i.e., that there is no element
[γ] ∈ H1(Ω) such that n[γ] = 0 for some n ∈ N. For bounded open subsets of S2 with finitely many holes, the
homology group is torsion-free. Examples of compact manifolds with nonzero torsion in their homology group
include nonorientable surfaces such as the Klein bottle and the real projective plane.
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Proof. Let Ω be simply connected, and let γ be a cycle in Ω. The preceding lemma gives

γ = k1γ1 + . . .+ knγn,

where all γj are closed oriented curves. But γj h 0 by simple connectedness, meaning that γ
is null-homologous. Since every loop is also a cycle, the other direction is trivial. �

Corollary 25. If Ω is simply connected then 〈f, γ〉 = 0 for f ∈ O(Ω) and for piecewise
differentiable γ ∈ Z1(Ω).

7. The residue theorem

Let us assume that the homology group H1(Ω) has a finite basis [γ1], . . . , [γn] of n elements,
i.e., that any homology class [γ] ∈ H1(Ω) has a unique expansion

[γ] = k1[γ1] + . . .+ kn[γn].

An equivalent way of saying this is that any cycle γ ∈ Z1(Ω) can be written uniquely as

γ ∼ k1γ1 + . . .+ knγn.

Then the integral of f ∈ O(Ω) over γ can be computed as

〈f, γ〉 = k1〈f, γ1〉+ . . .+ kn〈f, γn〉,

meaning that once the integrals 〈f, γj〉 are computed, integration over general cycles reduces
to knowing the coefficients kj . For open sets Ω ⊂ C with finitely many holes, it is known
that the basis elements [γj ] can be chosen to correspond to loops around the holes in Ω. In
particular the rank n of H1(Ω), also called the first Betti number, is equal to the number of
holes in Ω. So given a bounded domain with finite number of holes, and given a holomorphic
function, in certain sense the only nontrivial integrals over cycles are the integrals over the
contours around each hole.

We consider here the special situation where the relevant holes are isolated points. Let
Ω ⊂ C be a bounded open set, and let z1, . . . , zn ∈ Ω. Suppose that γ ∈ B1(Ω) is a null-
homologous cycle (in Ω) that does not intersect any of the points z1, . . . , zn. Then in light of
the above discussion, let us assume that as an element of Z1(Ω\{z1, . . . , zn}), the cycle γ can
be written uniquely as3

γ ∼ k1γ1 + . . .+ knγn, with γj = ∂Dε(zj), j = 1, . . . , n, (2)

where ε > 0 is chosen so small that the circles ∂Dε(zj) are pairwise disjoint and that each
of those circles is disjoint from ∂Ω. An approach to finding the coefficients kj would be to
construct functions g`, (` = 1, . . . , n), such that 〈g`, γj〉 = δ`j . Then it is easy to see that
kj = 〈gj , γ〉. In trying to find such functions, let us note that for a, b ∈ C with |a− b| > ε∫

∂Dε(a)

dz
z − a

= 2πi, and
∫
∂Dε(a)

dz
z − b

= 0.

So if we define the Cauchy kernel Ka by Ka(z) = 1
z−a , then we have 〈Kzj , ∂Dε(z`)〉 = 2πiδj`,

giving the formula

〈f, γ〉 =
1

2πi
〈Kz1 , γ〉〈f, ∂Dε(z1)〉+ . . .+

1
2πi
〈Kzn , γ〉〈f, ∂Dε(zn)〉.

for arbitrary f ∈ O(Ω \ {z1, . . . , zn}). This motivates the following definitions.

3This can be proven either by a purely topological argument, or by a careful study of isolated singularities
as we will do in the next set of notes (in particular the reasoning will not be circular). Nevertheless, we will
make it clear in the following if any particular assertion depends on this assumption.
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Definition 26. For a cycle γ ∈ Z1(C) that does not pass through a ∈ C, the index (or the
winding number) of γ with respect to a is defined to be

Ind(γ, a) =
1

2πi
〈Ka, γ〉 ≡

1
2πi

∫
γ

dz
z − a

.

If f is holomorphic on the punctured disk Dr(a) \ {a} with r > 0, then with ε ∈ (0, r)

Res(f, a) =
1

2πi
〈f, ∂Dε(a)〉 ≡ 1

2πi

∫
∂Dε(a)

f(z)dz,

is called the residue of f at a. Note that the residue does not depend on the value of ε ∈ (0, r),
so in particular one could take the limit ε→ 0.

Modulo the assumption in (2), we have proved the following theorem.

Theorem 27. Let Ω ⊂ C be a bounded open set, and let z1, . . . , zn ∈ Ω. Suppose that
γ ∈ B1(Ω) is a null-homologous cycle that does not pass through any of the points z1, . . . , zn.
Then we have

〈f, γ〉 = 2πi
n∑
j=1

Ind(γ, zj) Res(f, zj), for f ∈ O(Ω \ {z1, . . . , zn}).

8. Cauchy integral formulæ

If f is holomorphic at a, then Res(f, a) = 0, meaning that in order to have a nonzero
residue, f has to have a singularity at a. Assuming that f is holomorphic in a neighbourhood
of a, let us compute the residue of g = Kaf at a. For z ∈ ∂Dε(a) with small ε > 0, we have

g(z) =
f(z)
z − a

=
f(a)
z − a

+ f ′(a) + o(1),

inferring that

〈g, ∂Dε(a)〉 = f(a)〈Ka, ∂Dε(a)〉+ f ′(a)〈1, ∂Dε(a)〉+ o(ε) = 2πif(a),

where we have taken the limit ε→ 0 to conclude that the o(ε) term is indeed zero. Hence

Res(Kaf, a) = f(a), (3)

and by applying Theorem 27 to Kaf , we immediately get the following result.

Theorem 28. Let Ω ⊂ C be a bounded open set, and let a ∈ Ω. Suppose that γ ∈ B1(Ω) is a
null-homologous cycle that does not pass through a. Then for f ∈ O(Ω) we have

Ind(γ, a)f(a) =
1

2πi
〈Kaf, γ〉 ≡

1
2πi

∫
γ

f(z)dz
z − a

,

The main message of this result is that the values of f at points a with Ind(γ, a) 6= 0 are
determined by the values of f at the curve γ. The condition Ind(γ, a) 6= 0 means that γ
wraps around a, or that a is “inside” γ. Note that since we have used Theorem 27, this result
depends on the assumption in (2). We will revisit Theorem 27 and give it a self-contained
proof in the next set of notes, so for the sake of clarity in what follows we shall not use
Theorems 27 and 28 anymore. To develop the theory further, we will need the following
special case of Theorem 28, which we prove without the assumption in (2).

Theorem 29. Let f ∈ O(Ω), and let Dε(a) ⊂ Ω with ε > 0. Suppose that γ ∈ Z1(Ω \ {a}) is
a cycle that is homologous to ∂Dε(a) in Ω \ {a}. Then one has

f(a) =
1

2πi
〈Kaf, γ〉 ≡

1
2πi

∫
γ

f(z)dz
z − a

.
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Proof. Since Kaf ∈ O(Ω \ {a}), by Cauchy’s theorem for homologous cycles we have

〈Kaf, γ〉 = 〈Kaf, ∂Dε(a)〉 = 2πiRes(Kaf, a),

the latter equality by definition, and taking into account (3) the proof is established. �

9. The Cauchy-Taylor theorem

In this section we will complete the proof of Theorem 1 on page 1, by proving the implica-
tions (d) ⇒ (e) and (c) ⇒ (a).

Theorem 30. Let f ∈ C(Ω), and assume that for all closed disks Dr(c) ⊂ Ω one has

f(ζ) =
1

2πi
〈Kζf, ∂Dr(c)〉, for ζ ∈ Dr(c).

Let Dr(c) ⊂ Ω be any of those disks. Then the power series f(ζ) =
∑
an(ζ − c)n with

an =
1

2πi
〈Kn+1

c f, ∂Dε(c)〉 ≡
1

2πi

∫
∂Dε(c)

f(z)dz
(z − c)n+1

, 0 < ε < r,

converges on Dr(c). In particular, O(Ω) ⊆ Cω(Ω).

Proof. Without loss of generality, let us assume c = 0, and start with the integral formula

f(ζ) =
1

2πi

∫
∂Dε

f(z)dz
z − ζ

, for ζ ∈ Dε,

with ε ∈ (0, r). This can be rewritten as

f(ζ) =
1

2πi

∫
∂Dε

( ∞∑
n=0

f(z)ζn

zn+1

)
dz, (4)

where we have used

1
z − ζ

=
1
z
· 1

1− ζ/z
=

1
z

(
1 +

ζ

z
+ . . .

)
=
∞∑
n=0

ζn

zn+1
.

Each term in the series under integral in (4) can be estimated as∣∣∣∣f(z)ζn

zn+1

∣∣∣∣ ≤ ‖f‖Dεε
·
(
|ζ|
ε

)n
,

so as a function of z, the series converges uniformly on ∂Dε. Therefore we can interchange
the integral with the sum, resulting in

f(ζ) =
1

2πi

∞∑
n=0

ζn
∫
∂Dε

f(z)dz
zn+1

.

Now the individual term of the series satisfies∣∣∣∣ζn ∫
∂Dε

f(z)dz
zn+1

∣∣∣∣ ≤ 2π‖f‖Dε
(
|ζ|
ε

)n
,

implying that the series converges locally normally in Dε.
Finally, we note that since this proof implies that f ∈ Cω(Ω) so in particular f is holomor-

phic, the coefficients an do not depend on the choice of ε, and in particular an = Res(Kn+1
c f, c),

since Kn+1
c f is holomorphic on the punctured disk Dr(c) \ {c}. �

The following result gives a useful criterion to recognize holomorphy.

Theorem 31 (Morera’s theorem). A function f ∈ C(Ω) is holomorphic if either
(a) f is locally integrable, or
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(b) 〈f, ∂τ〉 = 0 for any closed triangle τ ⊂ Ω.

Proof. Part (b) follows from (a) by Theorem 8 on page 4. For (a), by definition each point in
Ω has a neighbourhood U and F ∈ O(U) such that F ′ = f on U . The Cauchy-Taylor theorem
guarantees that F ∈ Cω(U), and by termwise differentiating we infer f ∈ Cω(U). This means
that f ∈ Cω(Ω), or in other words f ∈ O(Ω). �

As an application, one can prove that the locally uniform limit of holomorphic functions is
holomorphic. This is to be contrasted with the situation in the real differentiable case where
the uniform limit of smooth functions is not smooth in general.

Theorem 32 (Weierstrass convergence theorem). Let {fk} ⊂ O(Ω) be a sequence such that
fk → f locally uniformly on Ω for some f : Ω → C. Then f ∈ O(Ω) and f

(n)
k → f (n) locally

uniformly on Ω, for each n ∈ N.

Proof. First of all we have f ∈ C(Ω). Let τ ⊂ Ω be a closed triangle. Then since ∂τ is
compact, fn converges uniformly to f on ∂τ , and so we have

〈f, ∂τ〉 = lim
k→∞
〈fk, ∂τ〉 = 0,

implying that f ∈ O(Ω) by Morera’s theorem.
For the second part of the claim we employ the Cauchy estimates. Let D2δ(a) ⊂ Ω for

some δ > 0. Then since fk − f ∈ O(Ω), for k ∈ N the Cauchy estimate gives

‖f (n)
k − f (n)‖Dδ(a) ≤

Cn
δn
‖fk − f‖D2δ(a),

where Cn > 0 are constants. This completes the proof. �

10. Simple connectivity

We list here several important consequences of simple connectivity. They will turn into
characterizations of simple connectivity upon proving the Riemann mapping theorem, which
states that for every connected open proper subset Ω of C satisfying the condition (g) of the
following theorem, there is a bijection ψ : Ω→ D such that ψ ∈ O(Ω) and ψ−1 ∈ O(D). Here
we denote by D the unit open disk in C.

Theorem 33. Let Ω ⊆ C be an open set. Then each of the following statements (except (f))
implies the statement following it.
(a) Ω ⊆ C is homeomorphic to D.
(b) Ω is simply connected.
(c) For any f ∈ O(Ω), and for any γ ∈ C1

pw(S1,Ω), it holds that 〈f, γ〉 = 0.
(d) For any f ∈ O(Ω), there exists F ∈ O(Ω) such that F ′ = f .
(e) For any f ∈ O(Ω) with 1/f ∈ O(Ω), there is g ∈ O(Ω) such that exp ◦g = f in Ω.
(f) For any f ∈ O(Ω) with 1/f ∈ O(Ω), and for any integer n ≥ 1, there is g ∈ O(Ω) such

that g(z)n = f(z) for all z ∈ Ω.

Proof. The implication (b) ⇒ (c) is Corollary 20 on page 7, and (c) ⇒ (d) is Theorem 10 on
page 5. Moreover, (d) ⇒ (e) can be proven by considering a primitive of f ′/f on Ω, and then
(e) ⇒ (f) is immediate.

So we need only to prove (a) ⇒ (b). Suppose that ψ : Ω → D is a homeomorphism.
Obviously Ω is path-connected. Now if γ : S1 → Ω is a loop in Ω, then Γ(t, s) = ψ−1(sψ(γ(t)))
with (t, s) ∈ S1 × [0, 1] is a homotopy of loops between the point ψ−1(0) ∈ Ω (considered as
a constant loop) and γ, hence Ω is simply connected. �


