
MATH 566 LECTURE NOTES 2: POWER SERIES, ANALYTICITY AND
ELEMENTARY FUNCTIONS

TSOGTGEREL GANTUMUR

1. Uniform and normal convergences

For a set Ω ⊆ C and a function f : Ω→ C, we define the uniform norm

‖f‖Ω = sup
Ω
|f |.

We say that a sequence {fk} of functions fk : Ω → C converges uniformly in Ω to f , if
‖fk − f‖Ω → 0 as k →∞. Recall that this is equivalent to the sequence {fk} being a Cauchy
sequence, i.e., ‖fk − f`‖Ω → 0 as k, `→∞.

Theorem 1 (Weierstrass M-test). If gn : Ω→ C and
∑

n ‖gn‖Ω <∞, then the series
∑

n gn
converges uniformly in Ω.

Proof. With fk =
∑

n≤k gn, we have for ` < k

‖fk − f`‖Ω = ‖
∑
`<n≤k

gn‖Ω ≤
∑
`<n≤k

‖gn‖Ω ≤
∑
n>`

‖gn‖Ω,

which tends to 0 when `→∞. So {fk} is a Cauchy sequence, hence converges. �

Example 2. The geometric series
∑

n z
n converges uniformly in Dr (and also in D̄r) as long

as r < 1. To be pedantic, with r < 1 and with functions gn : Dr → C given by gn(z) = zn,
the series

∑
n gn converges uniformly in Dr. However, the convergence is not uniform in the

open unit disk D1, and
∑

n z
n does not converge if |z| ≥ 1.

Convergence behaviour of frequently occurring sequences in complex analysis can be cap-
tured conveniently by the notion of locally uniform convergence. Recall that U ⊆ Ω is a
neighbourhood of z ∈ Ω in Ω if there is an open set V ⊆ C such that z ∈ V ∩ Ω ⊆ U .

Definition 3. A sequence {fk} of functions fk : Ω→ C is called locally uniformly convergent
in Ω if for each z ∈ Ω there is a neighbourhood U 3 z in Ω such that {fk} converges uniformly
in U .

Example 4. The series
∑

n z
n converges locally uniformly in D1.

Continuity is preserved under locally uniform convergence. In this regard uniform continu-
ity is a very strong type of convergence; it naturally preserves uniform continuity.

Theorem 5. If {fk} ⊂ C(Ω) converges to f : Ω→ C locally uniformly, then f ∈ C(Ω).

Proof. Let z ∈ Ω, and let U 3 z be an open neighbourhood such that ‖f − fk‖U → 0.
Let ε > 0. Then choose % > 0 such that B%(z) ⊂ U , and k such that ‖f − fk‖B%(z) ≤ ε.
Moreover, let δ > 0 be such that |fk(z) − fk(w)| ≤ ε whenever w ∈ Bδ(z). Then it is clear
that |f(z)− f(w)| ≤ 3ε whenever w ∈ Bδ(z) ∩B%(z). �
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One drawback of (locally) uniform convergence is that a rearrangement of a uniformly
convergent series can be divergent or converge to a limit different than the original series. So
uniform convergence can be compared to conditional convergence of series of numbers. An
improvement of uniform convergence that can be compared to absolute convergence of series
of numbers is the notion of normal convergence.

Definition 6. A series
∑

n gn of functions gn : Ω → C is called normally convergent in Ω if∑
n ‖gn‖Ω < ∞. Moreover, we say

∑
n gn converges locally normally in Ω if for each z ∈ Ω

there is an open neighbourhood U 3 z such that
∑

n ‖gn‖U <∞.

The Weierstrass M-test immediately implies that every (locally) normally convergent series
is (locally) uniformly convergent. It is also obvious from the definition that any subseries of
a (locally) normally convergent series is (locally) normally convergent.

Theorem 7. Let fk,` : Ω → C for k, l ∈ N, and let σ : N2 → N be a bijection. Define the
sequence {gn} by gσ(k,`) = fk,`. Then the followings are equivalent:
(a) The series

∑
n gn is locally normally convergent.

(b) For each z ∈ Ω there is an open neighbourhood U 3 z such that the series
∑

k(
∑

` ‖fk,`‖U )
converges. In particular, for all k ∈ N, the series

∑
` fk,` is locally normally convergent.

(c) For each z ∈ Ω there is an open neighbourhood U 3 z such that the series
∑

`(
∑

k ‖fk,`‖U )
converges. In particular, for all ` ∈ N, the series

∑
k fk,` is locally normally convergent.

If any (so all) of the above conditions is satisfied, then there holds that∑
`

(
∑
k

fk,`) =
∑
k

(
∑
`

fk,`) =
∑
n

gn.

Proof. First we prove the implication (a) ⇒ (b). Let U ⊂ Ω such that N =
∑

n ‖gn‖U <∞.
This obviously implies that for all k ∈ N, Mk =

∑
` ‖fk,`‖U < ∞. Let ε > 0 and let mk be

such that
∑

`>mk
‖fk,`‖U ≤ 2−kε. So for any m we have∑
k≤m

(
∑
`

‖fk,`‖U ) ≤
∑
k≤m

(
∑
`≤mk

‖fk,`‖U ) + 2ε ≤ N + 2ε.

Now we shall prove that g =
∑

n gn is equal to f =
∑

k(
∑

` fk,`). To this end, let m be such
that

∑
k>m(

∑
` ‖fk,`‖U ) ≤ ε, and let f̃ε =

∑
k≤m

∑
`≤mk

fk,`. Then we have

‖f − f̃ε‖U ≤
∑
k>m

(
∑
`

‖fk,`‖U ) +
∑
k≤m

(
∑
`>mk

‖fk,`‖U ) ≤ 3ε.

Similarly, for sufficiently large p, the partial sum g̃p =
∑

n≤p gn satisfies

‖g̃p − f̃ε‖U ≤
∑
k>m

(
∑
`

‖fk,`‖U ) +
∑
k≤m

(
∑
`>mk

‖fk,`‖U ) ≤ 3ε,

and so we have
‖f − g‖U ≤ ‖g − g̃p‖U + 6ε.

Since g̃p → g and ε is arbitrary, we conclude f = g.
For the other direction (b) ⇒ (a), we start with the definition of Mk and the condition

M =
∑

kMk <∞ for a suitable U . Then we have for any p∑
n≤p
‖gn‖U ≤

∑
k≤m

∑
`≤m
‖fk,`‖U ≤M,

where m is such that {` ≤ m}2 ⊇ σ−1({n ≤ p}). The equivalence of (a) and (c) can be proven
analogously. �
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Corollary 8. Suppose that the series
∑

n gn converges locally normally in Ω to g. Let N =
∪kMk be a disjoint decomposition of N, where k is from a countable set and each Mk = {mk,`}
is countable. Then for each k, the series g̃k =

∑
` gmk,`

converges locally normally in Ω, and
moreover the series

∑
k g̃k converges locally normally in Ω to g.

Proof. Let us say k runs over K ⊆ N, and for each k ∈ K, ` runs over Lk ⊆ N. Define the set
M ⊆ N2 by M = {(k, `) : k ∈ K and ` ∈ Lk}, and let fk,` = gmk,`

if (k, `) ∈ M , and fk,` = 0
otherwise. Then we get the proof by applying the above theorem with, e.g., σ(k, `) = 2mk,`

for (k, `) ∈ M , and σ(k, `) = 2τ(k, `) − 1 for (k, `) ∈ N2 \M , where τ : N2 \M → N is a
bijection. �

The above corollary with each Mk having a single element gives the following rearrangement
result.

Corollary 9. Suppose that the series
∑

n gn converges locally normally in Ω to g. Then given
any bijection τ : N → N, the rearranged series

∑
n gτ(n) also converges locally normally in Ω

to g.

Corollary 10. If f =
∑

m fm and g =
∑

n gn are locally normally convergent series in Ω,
then for every bijection σ : N2 → N, the series

∑
p hp with elements hσ(m,n) = fmgn converges

locally normally in Ω to fg.

Proof. For any z ∈ Ω we can certainly find a neighbourhood U 3 z such that∑
`

‖fkg`‖U ≤ ‖fk‖U
∑
`

‖g`‖U <∞,

and that ∑
k

(
∑
`

‖fkg`‖U ) ≤
∑
k

‖fk‖U (
∑
`

‖g`‖U ) = (
∑
k

‖fk‖U )(
∑
`

‖g`‖U ) <∞.

Note that these imply∑
`

fkg` = fkg, and
∑
k

(
∑
`

fkg`) = fg.

The proof is established upon employing Theorem 7 (b) with fk,` = fkg`. �

Remark 11. Apart from “local” convergences, one can talk about “compact” convergences,
which require a convergence in all compact subsets of Ω. Examples include compactly uni-
form convergence (which is often simply called compact convergence) and compactly normal
convergence. For subsets of the complex plane, it can be shown by covering arguments that
these compact convergences are equivalent to their local counterparts (In fact the equiva-
lence holds in any locally compact topological space). Another frequently occurring term is
“absolute convergence”, which means that the real valued function |f | : Ω → R enters the
discussion. For example, “uniformly absolute convergence” designates the uniform conver-
gence of the function series

∑
n |fn|. Note that this is in contrast to the normal convergence

where we consider the series
∑

n ‖fn‖Ω of numbers. In particular, normal convergence implies
uniformly absolute convergence, but the converse is not true as can be seen from a sequence of
bumps of height 1/n going off to infinity. The local version of the above “uniformly absolute
convergence” is “locally uniformly absolute convergence”; one now can guess what it should
mean. It is instructive to try to prove Theorem 7 and its corollaries for locally uniformly
absolutely converging series.

Remark 12. There seems to be no universally used “unambiguous language” in literature con-
cerning the terminology on various modes of convergence. For instance, depending on which
book you read, “normal convergence” may mean “locally uniform convergence” or “locally
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normal convergence”, and “absolute convergence” may mean “uniform absolute convergence”
or “pointwise absolute convergence”.

2. Power series

We understand by a power series an expression of the form

f(z) =
∞∑
n=0

an(z − c)n, (1)

with the coefficients an ∈ C, and the centre c ∈ C. Assume that the above series converges.
Then obviously |an||z − c|n → 0 as n → ∞, so that |an||z − c|n ≤ M for some constant
M <∞. In other words, we have

|z − c| ≤ R := sup{r ≥ 0 : sup
n
|an|rn <∞}. (2)

Put another way, the power series (1) diverges whenever |z− c| > R. The converse statement
is almost true as seen from the theorem below, which justifies the fact that the above defined
R ∈ [0,∞] is called the convergence radius of the power series (1).

Theorem 13. Let R ∈ [0,∞] be defined by (2). Then the power series (1) converges locally
normally in the open disk DR(c), and diverges at every z ∈ C \ D̄R(c). Moreover, R can be
determined by the Cauchy-Hadamard formula

1
R

= lim sup
n→∞

|an|1/n, (3)

with the conventions 1/∞ = 0 and 1/0 =∞, and furthermore, provided that an = 0 for only
finitely many n, one can estimate R by the ratio test

lim inf
n→∞

|an|
|an+1|

≤ R ≤ lim sup
n→∞

|an|
|an+1|

. (4)

Proof. Without loss of generality, we may take c = 0. Divergence at every z ∈ C \ D̄R(c) is
demonstrated above. For convergence, let z ∈ Dr with r < R. Then for any ρ ∈ (r,R) we
have |anzn| ≤ |an|ρn r

n

ρn ≤ M rn

ρn for some constant M < ∞. Since r
ρ < 1,

∑
anz

n converges
normally in Dr. Since any z ∈ DR is in some such Dr with r < R, the series converges locally
normally in DR.

To prove (3), let % be defined by 1/% = lim supn→∞ |an|1/n with the intention of showing
that % = R. By definition, for any ε ∈ (0, 1), we have |an|%n ≥ (1− ε)n for infinitely many n,
and there is nε such that |an|%n ≤ (1 + ε)n for all n > nε. Thus if |z| > % then |anzn| > 1
for infinitely many n, and the series

∑
anz

n diverges. This implies that % ≥ R. On the other
hand, if |z| < %, then for any ε > 0 we have |anzn| ≤ |an|%n |z|

n

%n ≤ (1 + ε)n |z|
n

%n =: kn for
all n > nε. By choosing ε > 0 small enough, one can ensure that k ∈ [0, 1), and so

∑
anz

n

converges. This implies that % ≤ R.
Now we shall prove the ratio test. Let α be the limit infimum in (4) and suppose that

|z| < α. By definition, for any ε > 0 we have |an| ≥ (α − ε)|an+1| for all sufficiently large
n. This gives |anzn| ≤ C( |z|α−ε)

n for all sufficiently large n, with some constant C > 0. By
choosing ε small enough we show the convergence of

∑
anz

n, which implies that α ≤ R.
For the upper bound on R, let β be the limit supremum in (4), and suppose that |z| > β

and ε = |z| − β > 0. Then by definition, we have |an| ≤ (β + ε)|an+1| for all sufficiently large
n. So |anzn| ≥ C|z|n

(β+ε)n ≥ C for some constant C > 0, and the series diverges. This implies
that R ≤ β. �

As an application, let us derive the product and quotient rules for power series.
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Corollary 14. Let R > 0 and S > 0 be the convergence radii of the power series f(z) =∑
an(z − c)n and g(z) =

∑
bn(z − c)n, respectively. Then we have

f(z)g(z) =
∞∑
n=0

 ∑
j+k=n

ajbk

 (z − c)n,

where the convergence radius of the power series is at least min{R,S}.
Furthermore, if b0 6= 0, then

f(z)
g(z)

=
∞∑
n=0

en(z − c)n, with en =
1
b0

(
an −

n−1∑
k=0

bn−kek

)
,

where the power series converges in a neighbourhood of c, and the empty sum in the definition
of en when n = 0 is understood to be 0.

Proof. The product rule is from Corollary 10 and the above characterization of convergence
radii. The recursive formula for en can be formally derived from the product rule, namely
from the formula

an =
n∑
k=0

bn−kek = b0en +
n−1∑
k=0

bn−kek.

For convergence of the quotient series, let M > 0 and r > 0 be constants such that |an| and
|bn| are both bounded by Mr−n|b0|. Then the definition of en gives

|en| ≤Mr−n +M
n−1∑
k=0

rk−n|ek|,

which, with the shorthand notation Kn = |en|rn, maybe manipulated as

Kn ≤M +M
n−1∑
k=0

Kk ≤M(1 +M)n,

where the latter inequality can be proven by induction. This means that

|en| ≤M(1 +M)nr−n,

implying that the power series converges in the disk of radius r/(1 +M). �

Note that the convergence radius of the product series can actually be larger than min{R,S},
because of possible cancellations in the sum

∑
ajbk. Similarly, the following corollary gives

only the worst case estimate on the convergence radius of the rearranged series, where the
centre c is moved to another point d in the convergence disk.

Corollary 15. Let R > 0 be the convergence radius of the power series f(z) =
∑
an(z− c)n,

and let d ∈ DR(c). Then we have

f(z) =
∞∑
j=0

 ∞∑
n=j

(
n

j

)
an(d− c)n−j

 (z − d)j ,

where the convergence radius of the power series is at least R − |d − c|. In particular, the
convergence radius of a rearranged power series depends continuously on its centre.
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Proof. We have

(z − c)n = (z − d+ d− c)n =
n∑
j=0

(
n

j

)
(z − d)j(d− c)n−j ,

so that the proof is established upon justifying
∞∑
n=0

an

n∑
j=0

(
n

j

)
(z − d)j(d− c)n−j =

∞∑
j=0

∞∑
n=j

(
n

j

)
an(z − d)j(d− c)n−j ,

for z ∈ Dr(d) with r = R− |d− c|. This can be done by applying Corollary 8 if the left hand
side is locally normally convergent in Dr(d). To this end, let |z− d| ≤ ρ− |d− c| with ρ < R.
Then we have

n∑
j=0

(
n

j

)
|z − d|j |d− c|n−j = (|z − d|+ |d− c|)n ≤ ρn,

and since anρn = anR
n(ρ/R)n we obtain the desired local normal convergence.

The continuity of convergence radius can be shown as follows. LetR′ denote the convergence
radius of the rearranged series centred at d. We have R′ ≥ R − |d − c|, or put differently,
R − R′ ≤ |d − c|. So if |d − c| < R/2 it is obvious that c ∈ DR′(d), which means that the
above reasoning can be applied with the roles of the two power series interchanged, giving
R′ −R ≤ |c− d|. �

Finally, we turn to the question of termwise differentiating and integrating power series.
One consequence of this is that any power series is holomoprhic in its disk of convergence.

Theorem 16. Let R be the convergence radius of the power series (1). Then both

g(z) =
∞∑
n=0

nan(z − c)n−1, and F (z) =
∞∑
n=0

an
n+ 1

(z − c)n+1,

have convergence radii equal to R, and there hold that

f ′ = g and F ′ = f, in DR(c).

Proof. It is obvious that the convergence radius R′ of the power series representing g is at
most R, that is, R′ ≤ R. To prove the other direction, let r < R. Then for any ε > 0 there is
a constant Cε > 0 such that

n|an|rn ≤ Cε(1 + ε)n|an|rn ≤ Cε(1 + ε)n(r/R)n|an|Rn,
and choosing ε small enough we see that r ≤ R′, and so R ≤ R′.

Now we will show that f ′ = g in DR(c), i.e., that for each z ∈ DR(c) one has

f(z + h) = f(z) + g(z)h+ o(|h|).
To this end, we write

f(z + h)− f(z) =
∞∑
n=0

an ((z + h)n − zn) = h
∞∑
n=0

an

n−1∑
j=0

(z + h)jzn−1−j =: hλz(h).

Let r < R be such that |z| < r, and consider all h satisfying |z + h| ≤ r. Then
∞∑
n=0

|an|
n−1∑
j=0

|z + h|j |z|n−1−j ≤
∞∑
n=0

|an|nrn−1 <∞,

so the series for λz converges locally uniformly in a neighbourhood of the origin. Hence λz is
continuous at 0, and moreover from λz(0) = g(z), we infer

λz(h) = g(z) + o(1),
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with o(1)→ 0 as |h| → 0. The claim is proven since

f(z + h)− f(z) = h(g(z) + o(1)) = hg(z) + o(|h|).

The claims about F follow from the above if we start with F instead of f . �

3. Analyticity

In what follows, Ω will denote an open subset of C.

Definition 17. A complex-valued function f : Ω→ C is called (complex) analytic at z ∈ Ω if
it is developable into a power series around z, i.e, if there are coefficients an ∈ C and a radius
r > 0 such that the following equality holds for all h ∈ Dr

f(z + h) =
∞∑
n=0

anh
n.

Moreover, f is said to be (complex) analytic on Ω if it is analytic at each z ∈ Ω. The set of
analytic functions on Ω is denoted by Cω(Ω).

We observe from Corollary 14 that the product of two analytic functions is analytic, and
that their quotient is analytic wherever the denominator function is nonzero. Also from
Corollary 15 it is immediate that any power series is analytic in its disk of convergence.
Moreover, Theorem 16 implies that analytic functions are holomorphic, and they are infinitely
often differentiable: Cω(Ω) ⊆ O(Ω) and Cω(Ω) ⊆ C∞(Ω). Actually, the converse O(Ω) ⊆
Cω(Ω) is also true, which we will prove in the next set of notes. Returning to the current set
of affairs, and by repeatedly applying Theorem 16 we see that the coefficients of the power
series of f about c ∈ Ω are given by an = f (n)(c)/n!, or in other words, if f ∈ Cω(Ω) and
c ∈ Ω then the following Taylor series converges in a neighbourhood of c.

f(z) =
∞∑
n=0

f (n)(c)
n!

(z − c)n. (5)

Recall that an accumulation point of a set D ⊂ C is a point z ∈ C such that any neigh-
bourhood of z contains a point w 6= z from D. We say that z ∈ D is an isolated point if it is
not an accumulation point of D. If all points of D are isolated D is called discrete.

Theorem 18 (Identity theorem). Let f ∈ Cω(Ω) with Ω a connected open set, and let the
zero set of f has an accumulation point in Ω. Then f ≡ 0 in Ω.

Proof. Each Σn = {z ∈ Ω : f (n)(z) = 0} is relatively closed in Ω, so the intersection Σ =
⋂
n Σn

is also closed. But Σ is also open, because z ∈ Σ implies that f ≡ 0 in a small disk centred
at z by a Taylor series argument. We shall prove below that Σ is nonempty, which would
conclude that Σ = Ω.

Let c ∈ Ω be an accumulation point of Σ0. If c ∈ Σ, then Σ = Ω. If c 6∈ Σ, then there is n
such that f (n)(c) 6= 0. So we have f(z) = (z − c)ng(z) for some continuous function g with
g(c) 6= 0. This will imply the existence of a neighbourhood of c where f has at most one zero,
contradicting that c is an accumulation point of the zero set of f . �

The following corollary records the fact that an analytic function is completely determined
by its restriction to any non-discrete subset of its domain of definition. In other words, if it
is at all possible to extend an analytic function (defined on a non-discrete set) to a bigger
domain, then there is only one way to do the extension.

Corollary 19 (Uniqueness of analytic continuation). Let u, v ∈ Cω(Ω) with Ω a connected
open set, and let u ≡ v in a non-discrete set D ⊂ Ω. Then u ≡ v in Ω.
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A powerful tool to perform analytic continuation is power series. There is a theorem to the
effect that if an analytic continuation is at all possible, then power series can do it. We need
the following estimates on power series coefficients, which roughly says that the largest term
in the series determines the maximum absolute value the power series can have in a given
region.

Lemma 20 (Cauchy estimates). Let f(z) =
∑
anz

n be a uniformly convergent power series
in the closed disk D̄ρ. Then it holds that

|an|ρn ≤ max
|z|=ρ

|f(z)|, for all n.

Proof. We prove the lemma for ρ = 1, the general case follows by scaling. First we derive the
claimed bound on a0 in terms of M = max

|z|=1
|f(z)|. Defining pm(z) =

∑m
n=0 anz

n, we obviously

have pm → f uniformly on ∂D1 as m→∞, so in particular |pm| < M + εm on the unit circle,
with εm → 0 as m→∞. If ξ = cos(πt) + i sin(πt) with some irrational number t, then ξk 6= 1
whenever k 6= 0. So for any integer ` we have

`−1∑
k=0

pm(ξk) =
`−1∑
k=0

m∑
n=0

anξ
kn =

m∑
n=0

an

`−1∑
k=0

ξkn = `a0 +
m∑
n=1

an
ξn` − 1
ξn − 1

. (6)

Let us estimate the rightmost term as follows∣∣∣∣∣
m∑
n=1

an
ξn` − 1
ξn − 1

∣∣∣∣∣ ≤
m∑
n=1

2|an|
|ξn − 1|

=: λm,

where the real number λm ≥ 0 is independent of `. As a result we get

|a0| ≤
1
`

`−1∑
k=0

|pm(ξk)|+ λm
`
< M + εm +

λm
`
,

and since εm → 0 we conclude that |a0| ≤M .
The bound on an can be proven similarly, for instance, by summing over −n ≤ k ≤ ` − 1

instead of 0 ≤ k ≤ `− 1 in (6). �

An immediate consequence is the following quite remarkable theorem, which says that
any Taylor series (with fixed centre) converges in the largest possible disk. Combined with
Corollary 19, this reveals the possibility that power series can be used to extend analytic
functions to larger domains than they are originally defined.

Theorem 21. Let f ∈ Cω(Ω) and let Dr(c) ⊆ Ω. Then the Taylor series of f centred at c
converges in Dr(c).

Proof. We will prove that if the Taylor series of f centred at 0 converges uniformly in the
closed disk D̄ρ, and if f is analytic in a neighbourhood of D̄ρ, then the convergence radius of
the considered series is strictly larger than ρ. So termwise differentiating we have

f (k)(z) =
∞∑
n=k

f (n)(0)
(n− k)!

zn−k,

uniformly converging in D̄ρ. Then the previous lemma gives

|f (n)(0)|
(n− k)!

ρn−k ≤ max
|w|=ρ

|f (k)(w)|. (7)

Since f is analytic in a neighbourhood of D̄ρ, for every w ∈ ∂Dρ the Taylor series of f centred
at w has convergence radius Rw > 0. Now by continuity of w 7→ Rw there is σ > 0 such
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that σ < Rw for any w ∈ ∂Dρ, meaning that the Taylor series centred at w ∈ ∂Dρ converges
uniformly in D̄σ(w) with σ > 0 independent of w. So another application of Lemma 20 gives,
for any w ∈ ∂Dρ

|f (k)(w)|
k!

σk ≤ max
|z−w|=σ

|f(z)| ≤ max
|z|≤ρ+σ

|f(z)| =: M.

By combining this with (7) and summing over k = 0, . . . , n, we infer

|f (n)(0)|(ρ+ σ)n ≤M(n+ 1)!.

From this it is clear that the Taylor series

f(z) =
∑ f (n)(0)

n!
zn,

converges in Dρ+σ. �

Liouville’s theorem says that bounded entire analytic functions are constant. It is possible
to devise a proof that uses Cauchy estimates (Lemma 20) directly, but the use of the above
theorem gives a slight simplification.

Corollary 22. If f ∈ Cω(C), and if there exists a constant M > 0 such that |f(z)| ≤M |z|n
for z ∈ C \D1, then f must be a polynomial of degree at most n.

Proof. By the above theorem, the Taylor series of f centred at the origin converges uniformly
on any closed disk. Applying Lemma 20 to this series on D̄ρ with ρ > 1, we get the following
bound on the k-th coefficient

|ak|ρk ≤ max
|z|=ρ

|f(z)| ≤Mρn.

Since ρ can be arbitrarily large, this estimate shows that ak = 0 for all k > n. �

Liouville’s theorem is the case n = 0 in the preceding corollary, and can be used to prove
the fundamental theorem of algebra.

Corollary 23. Any nonconstant polynomial has at least one root in C.

Proof. Suppose that a polynomial p has no root. Then f = 1
p ∈ C

ω(C). If p(z) = a0 + a1z +
. . . + anz

n with an 6= 0, then |p(z)| ∼ |an||z|n for large z, meaning that f is bounded. By
Liouville’s theorem f must be constant, contradicting the hypothesis. �

Lemma 20 can also be used to prove the open mapping theorem. We remark that the
conditions of the following theorem can be slightly weakened so that Ω is not necessarily
connected and f is not constant on any of the connected components of Ω.

Theorem 24 (Open mapping theorem). Let Ω be a connected open set, and suppose that
f ∈ Cω(Ω) is not a constant function. Then f : Ω → C is an open mapping, i.e., it sends
open sets to open sets.

Proof. Without loss of generality let us assume that 0 ∈ Ω and that f(0) = 0. We will prove
that a small disk centred at the origin will be mapped by f to a neighbourhood of the origin.
Let Dr ⊆ Ω with r > 0, and let w 6∈ f(Dr). Then the function φ(z) = 1

f(z)−w is analytic
in Dr. Choose 0 < ρ < r so small that f(z) = 0 has no solution with |z| = ρ, so that
δ = inf

|z|=ρ
|f(z)| > 0. This is possible by the identity theorem since f is not constant and Ω is

connected. Since ρ < r, the Taylor series of φ about 0 converges uniformly in the closed disk
D̄ρ. Now we apply Lemma 20 to φ and get

|φ(0)| ≤ sup
|z|=ρ
|φ(z)| =

(
inf
|z|=ρ
|f(z)− w|

)−1

,
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which, taking into account that |φ(0)| = |w|−1, is equivalent to

inf
|z|=ρ
|f(z)− w| ≤ |w|.

We have |f(z) − w| ≥ |f(z)| − |w| ≥ δ − |w| for |z| = ρ, therefore the above estimate gives
|w| ≥ δ/2. It follows that Dδ/2 ⊆ f(Dr). �

Thus for example, one cannot get a (nonzero-length) curve as the image of a connected set
under an analytic mapping. In particular, the only real-valued analytic functions defined on
an open set in C are locally constant functions.

If f is analytic, then the function |f |2 is subharmonic, so the maximum principle for sub-
harmonic functions apply to the modulus of an analytic function. Nevertheless, the open
mapping theorem can be used to obtain a more insightful proof.

Corollary 25 (Maximum principle). Let f ∈ Cω(Ω) with Ω an open subset of C.
(a) If Ω is connected and |f(z)| = sup

Ω
|f | at some z ∈ Ω, then f is constant.

(b) If Ω is bounded and f ∈ C(Ω̄), then we have sup
Ω
|f | ≤ max

∂Ω
|f |.

Proof. The hypothesis in (a) says that f(z) is a boundary point of the image f(Ω), since
otherwise there would have to be a point in f(Ω) with absolute value strictly greater than
|f(z)|. If f is not a constant, by the open mapping theorem f(Ω) cannot include any of its
boundary points, leading to a contradiction.

For part (b), there is z ∈ Ω̄ with |f(z)| = sup
Ω̄

|f | since Ω is bounded and f is continuous

on Ω̄. If z ∈ ∂Ω then we are done; otherwise applying part (a) to the connected component
of Ω that contains z concludes the proof. �

We end this section with two simple corollaries of the open mapping theorem, the latter of
which gives an alternative proof of the fundamental theorem of algebra.

Corollary 26 (Preservation of domains). If Ω ⊆ C is connected open set and f ∈ Cω(Ω)
nonconstant, then f(Ω) is also a connected open set.

Corollary 27. Let f ∈ Cω(C), and suppose that |f(z)| → ∞ as |z| → ∞. Then f(C) = C.

Proof. Obviously f is not constant, and so the open mapping theorem implies that f(C) is
open. Let us show that f(C) is also closed. Suppose that f(zk) → w ∈ C as k → ∞. Then
{zk} is bounded, so taking a subsequence if necessary, there is z ∈ C such that zk → z. By
continuity f(zk)→ f(z), concluding that w = f(z). �

4. Elementary functions

We look for the complex exponential as a solution of the following problem

f ′ = f, f(0) = 1,

and we look for it in the form of a power series. Formally termwise differentiating we find
an = an−1/n = . . . = a0/n!, and the condition f(0) = 1 gives a0 = 1. So the complex
exponential is given by

exp(z) =
∞∑
n=0

zn

n!
, (8)

which converges (e.g. by the ratio test) locally normally in C, so in particular exp ∈ Cω(C).
For a ∈ C, let g(z) = exp(z) exp(a−z). Then g′(z) = exp(z) exp(a−z)−exp(z) exp(a−z) =

0 for all z ∈ C, thus g(z) ≡ g(0) = exp(a). In other words, we have

exp(z + w) = exp(z) exp(w), z, w ∈ C. (9)
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Putting w = −z, we infer

exp(−z) exp(z) = 1 and so exp(z) 6= 0 ∀z ∈ C.
Similarly to the above, by considering g(z) = f(z) exp(−z), one can also show that the only
function satisfying that f ′ = f in C and f(0) = 1 is exp.

We can construct an analytic inverse of the exponential function in the open disk D1(1).
Any such an inverse function is called a logarithm function.

Lemma 28. Consider the power series

λ(z) =
∞∑
n=1

(−1)n−1

n
(z − 1)n, (10)

whose convergence radius is 1. Then we have

expλ(z) = z and λ′(z) =
1
z

for z ∈ D1(1).

Proof. Termwise differentiation gives

λ′(z) =
∞∑
n=1

(−1)n−1(z − 1)n−1 =
∞∑
n=1

(1− z)n−1 =
1

1− (1− z)
=

1
z
,

provided that |1− z| < 1, that is, z ∈ D1(1).
Now let g(z) = z exp(−λ(z)). Then for z ∈ D1(1) we have

g′(z) = exp(−λ(z))− z exp(−λ(z))λ′(z) = 0,

meaning that g(z) = g(1) = exp(−λ(1)) = 1 in D1(1). �

Let us turn to the question of identifying the range and the kernel of the group homomor-
phism exp : C → C×, where C× = C \ {0} is the multiplicative group of C. Recall that the
range is exp C = {exp z : z ∈ C}, the kernel is ker(exp) = {z ∈ C : exp z = 1}, and that they
are subgroups of the additive group C and the multiplicative group C×, respectively.

As a preliminary to the theorem that follows, let us investigate the solutions of the equation
| exp z| = 1. If z = iy with y ∈ R, then since (iy)n = (−iy)n, formula (8) gives exp(iy) =
exp(−iy). Hence |exp(iy)|2 = exp(iy)exp(iy) = 1, meaning that |exp(z)| = 1 whenever <z =
0. Now if z = x+iy with x, y ∈ R, then |exp z| = |exp(x) exp(iy)| = |exp(x)||exp(iy)| = expx.
To conclude,

|exp z| = e<z, and so |exp z| = 1 ⇔ <z = 0, (11)
implying in particular that ker(exp) ⊂ iR.

Theorem 29. exp : C→ C× is surjective, and ker(exp) = iTZ with some constant T > 0.

Proof. Let A = exp C. By the above lemma, we know that D1(1) ⊆ A. So if a ∈ A, then by
the group structure of A, it must hold that az ∈ A for all z ∈ D1(1). Since the collection of
all such az is just the open disk D|a|(a) centred at a, the above amounts to D|a|(a) ⊆ A, so
that A is open.

Let b ∈ B = C× \ A. Then bA = {ba : a ∈ A} is open. Also bA ∩ A = ∅ since otherwise
the existence of c ∈ bA ∩ A would imply the existence of a ∈ A with c = ba, which would
mean b = ca−1 ∈ A. This implies that B = ∪b∈BbA is open, and since A is nonempty, we
have A = C×.

We shall prove the claim about the kernel K = ker(exp) ⊂ iR. Note the symmetry
K = −K since exp z = 1 implies exp(−z) = 1

exp z = 1. By surjectivity, there is s ∈ R with
exp(is) = −1, and so with exp(i2s) = 1. Obviously s 6= 0, and thus K 6= {0}. Since K
contains numbers with positive imaginary parts, the number T = inf{t > 0 : it ∈ K} is well
defined. Moreover, iT ∈ K because K is closed as the pre-image of {1} under a continuous
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function. So one trivially has iTZ ⊆ K. Since exp is (entire) analytic, the zeroes of exp(z)−1
form a discrete set, which means that there is a neighbourhood U of 0 such that the only
solution of exp z = 1 in U is 0. This implies T > 0. Now that we know T > 0, suppose that
r ∈ R with ir ∈ K. Then there is n ∈ Z such that nT ≤ r < (n + 1)T , or 0 ≤ r − nT < T .
But exp(ir − inT ) = exp(ir) exp(−inT ) = 1, hence r − nT = 0 by the minimal property of
T . This proves that K ⊆ iTZ. �

Once we know the kernel and the range, it is easy to study the periods and possible inverses
of the exponential function. So exp(z+w) = exp(z) is equivalent to exp(w) = 1, which means
w ∈ iTZ. One implication of this is that the periods of the exponential function are precisely
the numbers inT with n ∈ Z. Another, a quite strong implication is that if I is any half-open
interval of length T , then the function exp : R × I → C× takes any of the values in C×
precisely once. Moreover, the surjectivity of exp : C → C× combined with (11) implies that
the homomorphism p : t 7→ exp(it) sending the reals into the unit circle is surjective with the
periods TZ, and similarly to the above, for any half-open interval I, the function p : I → S1

goes through any point on S1 exactly once. Thus every z ∈ C with |z| = 1 can be written
uniquely as z = p(t) with t ∈ I. We have p′(t) = ip(t), and a little more careful analysis
(involving integration to find the length of an arc) shows that the central angle between 1 and
p(t) counted anti-clockwise from 1 is equal to t ∈ I when I is taken to be [0, T ). This implies
by definition the Euler identity

exp(it) = cos t+ i sin t, and that T = 2π. (12)

We will also use the short notation exp(z) = ez for the exponential function. Thus every
z ∈ C× can be written as z = |z|eiθ with θ ∈ R, and moreover θ is unique if one requires θ ∈ I
with any fixed half-open interval I of length 2π. Then with ζ = log |z| + iθ, it is clear that
exp(ζ) = exp(log |z|) exp(iθ) = |z| exp(iθ) = z. So for ρeiθ ∈ C× the solutions of exp(ζ) = ρeiθ

are precisely the numbers log ρ + iθ + i2πZ. We single out the continuous ones among the
inverses of the exponential function.

Definition 30. A continuous function ` : Ω → C is called a logarithm function on Ω if
exp(`(z)) = z for all z ∈ Ω.

Lemma 31. Let ` ∈ C(Ω) be a logarithm function on a connected domain Ω. Then any given
ˆ̀∈ C(Ω) is a logarithm function on Ω if and only if there is n ∈ Z such that ˆ̀(z) = `(z)+2πin
for all z ∈ Ω.

Proof. We immediately have exp(ˆ̀(z) − `(z)) = 1, or ˆ̀(z) − `(z) ∈ 2πiZ for all z ∈ Ω. Since
Ω is connected and ˆ̀− ` is continuous, the image of ˆ̀− ` must be a single point in 2πiZ. �

Example 32. The function λ defined in (10) is a logarithm function on D1(1). Moreover, if
a ∈ C× and expα = a, then λa(z) = λ( za) + α is a logarithm function on D|a|(a).

Another example is the so-called principal branch, defined on C− = C\(−∞, 0] as Log(ρeiθ) =
log ρ+ iθ with θ ∈ (−π, π).

We have λa ∈ Cω(D|a|(a)), and from the above lemma any logarithm function on a neigh-
bourhood of a must be equal to λa up to an additive constant. In particular it must be
analytic on the neighbourhood.

Corollary 33. If ` ∈ C(Ω) is a logarithm function on Ω, then ` ∈ Cω(Ω).

Definition 34. Let ` : Ω → C be a logarithm function on Ω. Then for σ ∈ C, the function
pσ(z) = exp(σ`(z)) is called a power function on Ω.

We can derive right away that power functions satisfy p′σ = σpσ−1, pσ+τ = pσpτ , and
pn(z) = zn if n ∈ N.

The notation zσ usually stands for exp(σLog z) involving the principal branch.


